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Abstract

Background: Protein structure plays a pivotal role in elucidating mechanisms of parasite
functioning and drug resistance. Moreover, protein structure aids the determination of protein
function, which can together with the structure be used to identify novel drug targets in the
parasite. However, various structural features in Plasmodium falciparum proteins complicate the
experimental determination of protein structures. Limited similarity to proteins in the Protein Data
Bank and the shortage of solved protein structures in the malaria parasite necessitate genome-scale
structural annotation of P. falciparum proteins. Additionally, the annotation of a range of structural
features facilitates the identification of suitable targets for experimental and computational studies.

Methods: An integrated structural annotation system was developed and applied to P. falciparum,
Plasmodium vivax and Plasmodium yoelii. The annotation included searches for sequence similarity,
patterns and domains in addition to the following predictions: secondary structure, transmembrane
helices, protein disorder, low complexity, coiled-coils and small molecule interactions.
Subsequently, candidate proteins for further structural studies were identified based on the
annotated structural features.

Results: The annotation results are accessible through a web interface, enabling users to select
groups of proteins which fulfil multiple criteria pertaining to structural and functional features [1].
Analysis of features in the P. falciparum proteome showed that protein-interacting proteins
contained a higher percentage of predicted disordered residues than non-interacting proteins.
Proteins interacting with 10 or more proteins have a disordered content concentrated in the range
of 60—100%, while the disorder distribution for proteins having only one interacting partner, was
more evenly spread.

Conclusion: A series of P. falciparum protein targets for experimental structure determination,
comparative modelling and in silico docking studies were putatively identified. The system is available
for public use, where researchers may identify proteins by querying with multiple physico-chemical,
sequence similarity and interaction features.
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Background

Malaria parasite resistance to therapeutic drugs such as
sulfadoxine and pyrimethamine have increased signifi-
cantly during the past two decades [2,3]. Following the
rise in resistance, there has been a pressing need to under-
stand the mechanism of drug resistance and develop
novel anti-malarial drugs. Protein structure has previously
been used to elucidate the mechanism of resistance in
Plasmodium falciparum [4,5]. Furthermore, inhibitors can
be designed from structure [6,7]. As resistance to existing
drugs is a globally occurring phenomenon, new informa-
tion regarding the structure and function of the proteins
in especially the P. falciparum genome is of importance.
However, various features of the parasite genome and pro-
teome complicate functional and structural characteriza-
tion studies, including a high AT-content and the presence
of low complexity regions and inserts [8,9].

Structural and functional information is limited for P. fal-
ciparum proteins. To illustrate, a search of the PDB using
"falciparum" as keyword retrieved 210 structures at the
time of writing. Once sequences with more than 90%
sequence identity were removed, 103 structures remained
[10]. Regarding functional annotation, Gene Ontology
terms [11] have been assigned manually to around 40%
of all P. falciparum gene products [8]. Almost 60% percent
of the proteins do not have sufficient similarity to known
proteins and therefore no function can be assigned to
them. In short, 4% of P. falciparum proteins have experi-
mental three dimensional structures assigned, and 60% of
the proteome is described as hypothetical. Furthermore,
the amount of redundant P. falciparum proteins in the
PDB is significant.

Generating experimental data to provide evidence of pro-
tein structure and function is expensive, difficult and
slow. Conversely, predictive computational methods are
fast and applicable to whole proteomes. Although they
are less reliable than experimental results, predictions can
identify proteins of interest and determine their suitability
for experimental studies [12,13]. Moreover, knowledge of
the structural features of proteins guides experiment
design [14].

Methods used for three dimensional protein structure pre-
diction are primarily based on homology transfer. Struc-
ture is more conserved than sequence and therefore
distantly related sequences often have the same or very
similar structures [15]. Computational methods for struc-
ture feature prediction make use of machine learning, sta-
tistical methods and physical properties of amino acid
sequences. Typical computer-based methods for structural
annotation include the prediction of secondary structure,
transmembrane helices, low complexity, disorder, coiled-
coils, and 3D structure.
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Integrating these annotations are important for three
major reasons: Different databases cover different sets of
proteins; prediction methods have different strengths and
weaknesses and finally, biological conclusions about
function and structure can be derived more accurately
considering as much information as possible about a cer-
tain sequence. Therefore, many meta-servers and inte-
grated databases for genome-scale protein structural and
functional annotation have been generated. Proteome
annotation with regard to structure and function is impor-
tant for comparative studies [16] and for selecting sets of
proteins of particular interest from an organism [12].

This study entailed the development of an automated
structural annotation pipeline for the malaria parasite [1]
and the semi-automated annotation of additional features
in the P. falciparum, P, vivax and P. yoelii genomes. In addi-
tion, the number of proteins with specific predicted fea-
tures was calculated. Finally, lists of putative candidates
for further experimental and in silico structural studies
were compiled. It is not intended to compete with the
established PlasmoDB database [17], but attempts to pro-
vide a supplementary specialized environment for per-
forming complex queries based on structural and other
properties, enabling researchers to select molecules with
specific properties for further investigation. It does make
use of information from, and provide links to the Plas-
moDB site.

Methods

Development was done in Python, utilizing the Zope web
application framework with a PostgreSQL database. Pro-
tein sequences were obtained from PlasmoDB release 5
[17]. Data sources were the Plasmodium falciparum [8],
Plasmodium vivax [18] and Plasmodium yoelii [19] genome
sequencing projects. All annotated proteins were used.
Analyses were performed on a 64x CPU Linux cluster. Pro-
tein statistics were gathered using Pepstats from EMBOSS
[20]. BLAST searches were done using NCBI BLAST 2.2.10
[21] against the PDB [22] with a E-value cut-off value of
20. HMMPfam from the HMMER package [23] was run
against the Superfamily database [24] with an e-value cut-
off of le-! for protein structural family classification.
Threading was done with Threader 3 [25], using second-
ary structure predictions from PsiPred [26]. Only
sequences shorter than 400 residues were used. Trans-
membrane helix predictions were done using TMHMM?2
[27]. The EMBOSS program, SigCleave was used to predict
signal peptides, and Paircoil2 [28] was employed to pre-
dict coiled-coil regions. Secondary structure predictions
were performed with three iterations of PsiPred 2.5. Pro-
tein disorder was predicted with the Disprot/VSL2 predic-
tors [29]. SMID-BLAST 1.02 was used to analyse possible
protein-ligand interactions (Unleashed Informatics), no
e-value cutoffs were implemented. Motifs were analysed
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with pscan and patmatmotifs from EMBOSS. For protein-
protein interactions, data from high-throughput yeast-
two hybrid experiments [30] were annotated to the
malaria sequences. Proteins previously predicted to be
exported out of the red blood cell [31,32] were annotated.

For the identification of candidate proteins for homology
modelling, sequence similarity with a protein in the PDB
was required. Contrastingly, candidate selection for X-ray
crystallization required that proteins did not have
sequence similarity with proteins in the PDB. Protein
sequences with more than 30% predicted coiled-coils, dis-
order, transmembrane regions and signal peptides were
eliminated. The SMID-BLAST predictions were used to
identify proteins to which small molecules bind and
which might be suitable for in silico docking studies. In
addition, these proteins had to have a crystal structure or
good sequence similarity in the PDB.

Results and Discussion

The structural annotation system

Using the web interface, proteins can be searched by key-
words, by browsing per chromosome and by designing
complex inclusion and exclusion queries using an intui-
tive check-box and form interface. Following selection
and filtering, an individual protein's result page starts
with sequence, followed by statistics as calculated by pep-
stats. The next section provides the user with a summary
image displaying database coverage, motifs, disordered
regions, coiled-coils, low complexity and transmembrane
helices (Figure 1).

Each of the subsequent sections lists the results of a spe-
cific analysis. The results include start and end positions
on the query sequence, scores, e-values, links to other
databases and descriptions. A graph constructed by Mat-
plotlib then displays the confidence values for helix,
strand and disorder predictions over the length of the pro-
tein sequence. BLAST PDB hits as well as Threader results
are displayed in a tabular format, with links to the relevant
protein structures. Similarly, protein-protein and small
molecule interactions are reported in tabular form,
together with the relevant links. Pfam domains and Super-
family results are represented graphically together with
links to the relevant entries. Subsequently, patterns and
disordered regions are graphically displayed. Metabolic
pathway information is summarized, and sequence simi-
larity between Plasmodium species is presented.

Analysis of the P. falciparum proteome

A short summary of the results discussed here is provided
in Table 1. Twenty-seven percent of proteins had BLAST/
PDB hits with at least 25% identity to the hit. One third of
these proteins (10% of the proteome) had at least two-
thirds of their sequence covered by a PDB match. Almost
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20% of the sequences had at least one-third of the length
covered by a PDB hit. An additional 413 sequences had
Superfamily hits with a score of 100 or better. Therefore,
an estimate of proteins which could be assigned to an
existing fold is 1 224 or 23%. Finally, out of 2,462 pro-
teins subjected to threading, 423 had alignments with Z-
scores better than 3.95. Out of these, about 100 did not
have BLAST-PDB matches with e-values smaller than 0.5,
which covered more than 30% of the query sequence.

Thirty-two percent of proteins had hits in Pfam below an
e-value of 1 x 10-15. At least 43% of all sequences had no
hits with families in Pfam. There were 1,987 sequences
with hits in Pfam with an e-value smaller than 1 x 10-10,
An additional 332 sequences had PRINTS hits. Thus, a
total of 2 319 sequences or 43% of the annotated pro-
teome could be assigned to functional families making
use of the Pfam and PRINTS databases. Almost 200 pro-
teins had Superfamily hits with an e-value smaller than 1
x 103, Of these, 650 sequences did not have Pfam or
PRINTS matches.

Ten percent of proteins had one or more predicted coiled-
coil region, 5% are predicted to be transported out of the
red blood cell based on the presence of the Pexel motifs,
and about 30% of proteins were predicted to contain at
least one transmembrane helix. At least 22% of proteins
were predicted to bind to small molecules by SMID-
BLAST. Almost 15% of the proteins interact with other
proteins according to the high-throughput yeast-two
hybrid experiments. Sixty percent of the proteins were pre-
dicted to contain at least 40% intrinsic disorder or no reg-
ular secondary structure.

As with other genomes, the most abundant transmem-
brane proteins contain only one transmembrane helix
[33]. The amount of transmembrane proteins decrease as
the amount of membrane spanning helices increase, with
the exception of 6-tm and 11-tm proteins which are
slightly more than the portion of 5-tm and 10-tm pro-
teins, respectively. The correlation between intrinsic disor-
der and interacting proteins was investigated. The mean
percentage disorder in interacting sequences is 61%, while
the mean percentage disorder in non-interacting proteins
is 44% and the overall mean percentage disorder for all
sequences is 48%. In agreement with previous studies of
interacting proteins in human and their disorder content,
P. falciparum interacting proteins contain higher intrinsic
disorder content than non-interacting proteins. Because
disorder in a protein makes it more flexible, it was
expected that the disorder content would increase with
the number of interacting partners. For proteins interact-
ing with only one other protein, the predicted disorder
varies from 4% to 100%. The majority of interacting pro-
teins interact with less than 10 other proteins. As the
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Sequence length : 608
Description : bifunctional dihydrofolate reductase-thymidylate synthase
Sequence :

EQVUDVFD IYAIC Al CKV BRSKNEGKKNE VFNIYTFRGL GUKGVLPWE . NSLDIKYFCA VITYVHESKY EKLEYKRCKY LIKETVDIVII
DUPHSKKLQN VWVHGRTSWE SIPEEFKPLS INIRTHNVILSRT LEKEDFDEDV YITNKEVEDLI VLLGELINYK CFIIGGSVVY QEFLEKKLIK
KIYFTRINST YECDVFFPEI NZHEYQIISV SDVYTSHNNTT LDFIIYKETHN NEILIEQNCI KGEEEHNDHP LENDDKDTCH HKKLTEFYKI
VDEYKINYREN DDDDEEEDDF Vi FHFIKEKE RENKHNSIHPH DFCIYNSLEKY KYHPEYQYLH ITIYDINHNGH KQSDRTGVGY LSKFGYIIKF
DLSQYFPLLT TEKLFLREGII EZLLWFIRGE THGNTLLIKI VRIWEANGTR EFLDIIRKLFH REVIIDLGPIY GFOWRHFGAE YTHIIYDHYEI
KGVDQLENITI NLIKNDPTSRE RILLCAWNVE DLDQUALPPC HILCQFYVFD GELSCTINYQR SCDLGLGVPF NIASYSIFTH [ITAQVCHLQP
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An example of a part of the protein information view for the P. falciparum protein, bifunctional dihydrofolate-
reductase/thymidylate synthase. The sequence is colored by physical-chemical properties. Protein statistics shown include
molecular weight (MW), average residue weight (ARW), charge, iso-electric point (IP), molar extinction coefficient (MEC),
extinction coefficient at | mg/ml (EC) and improbability of expression in inclusion bodies (IEIB). SMID (red triangles), Pfam
(green bars) and Prosite (yellow bars) hits are graphically indicated along the length of the protein.

amount of proteins decreases with an increasing number  Inter-species comparisons

of interacting partners, the range of variation in disorder =~ The proteins from the P. falciparum length distribution
in the proteins also decreases, as expected. The rangestend ~ have a longer tail than the other two species, and P. yoelii
to span higher percentages of disorder as the amount of =~ has a more symmetrical length distribution than the other
interacting partners increase. species. The mean length for P. vivax is 630 with a stand-
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Table I: A summary of selected features calculated for annotated proteins in Plasmodium falciparum (a total of 5,411 proteins were

analysed).
Feature Occurrence
BLAST vs. PDB hits with at least 25% identity 27%
Hits vs. Pfam with E-value < | x 0-15 32%
No Pfam hits 43%
Threading Z score > 3.95 8%
One or more predicted coiled-coil regions 10%
Predicted to be transported out of the RBC (Pexel) 5%
Predicted to contain at least one transmembrane helix 30%
Predicted small molecule binding by SMID 22%
Protein-protein interaction by yeast-two hybrid results 15%
Predicted < 40% disorder or no regular secondary structure 60%

Mean percentage low complexity per sequence

16%

ard deviation of 576 amino acids and the mean length for
P. yoelii is 420 with a standard deviation of 450. The pro-
teins in P. yoelii vary less in length than in the other two
species, with P. falciparum showing the most variation.
Asparagine is the most abundant amino acid in P. falci-
parum and P. yoelii, and Lysine in P. vivax. Although lysine
is the most abundant amino acid in P. vivax, it should be
noted that lysine is less abundant in P. vivax (9%) than in
the other two species (11.5%). Plasmodium vivax contains
on average twice as many alanine and glycine as the other
two species. Overall, 26% of residues in P. vivax are tiny
(A, C, G, S, T), in comparison to the 18% and 19% tiny
residues contained within P. falciparum and P. yoelii,
respectively.

Plasmodium vivax contains more proteins with small per-
centages of low complexity. Although P. yoelii and P. falci-
parum contain the same amount of proteins with
predicted low complexity regions, the proportion of P.
yoelii proteins is much lower than for P. falciparum. P. yoelii
and P. falciparum have similar proportions of disorder and
order-promoting amino acids, whereas P. vivax has pro-
portionally more disorder-favouring amino acids and less
order-promoting amino acids. The average percentage low
complexity per sequence is 16% in P. falciparum, 10% in
P. vivax, and 12% in P. yoelii. No low complexity is pre-
dicted for 27%, 19% and 13% percent of the sequences in
P. yoelii, P. vivax and P. falciparum, respectively. P. yoelii
and P. falciparum have an equal portion of transmem-
brane proteins, while P. vivax has less predicted trans-
membrane proteins. P. falciparum has more 2-tm, 3-tm, 4-
tm, 6-tm and 9-tm proteins than the other two species. P.
vivax has slightly more 8-tm proteins than P. yoelii and P.
falciparum and P. yoelii has the most 1-tm proteins.

Identification of potential molecules for further study

Tables containing putative candidates possibly suitable
for homology modelling can be viewed through the web
interface [34]. These proteins contain PDB matches with

e-values better than 1 x 10-29 and which have more than
70% of their sequence covered by the PDB match. The cut-
off sequence identity was set to 25%. Therefore, these
tables contain proteins for which high quality models
could possibly be obtained through automatic model
building. Separate tables contain interacting proteins,
proteins with Pfam domains and uncharacterized pro-
teins [35].

Proteins possibly suitable for in silico docking studies can
also be accessed through the web interface [35]. These
proteins were selected based on the presence of predicted
small molecule binding sites and the availability of a 3D
structure. Interacting proteins were separated from non-
interacting proteins.

Possible targets for experimental structure determination
are available for proteins with a Pfam domain [36] and for
proteins without a Pfam domain [37]. A lack of significant
BLAST hits to entries in the PDB formed part of the basis
for the putative identification of possible new targets for
X-ray crystallography. For these, priority categories were
determined, which are explained in Table 2.

Conclusion

In order to allow researchers to select groups of proteins
which fulfil certain criteria with regard to structural and
functional features, a semi-automated structural annota-
tion of selected species of the malaria parasite as per-
formed, and a web-based resource with query
functionality was developed. This tool was used to gather
statistics regarding a series of structural and functional
characteristics. Furthermore, a series of putative candidate
proteins for homology modelling, crystallization and
docking studies were generated.

It is important to realize that the results presented her are
dependent on the genome data and gene predictions
available at the time of analysis. In the case of Plasmodium
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Table 2: The number of targets suggested for further study using experimental structural elucidation techniques in each priority

category (PC, ranked | - 6) after the relevant elimination step.

Priority Class (PC) PDB E-value range

Nr of proteins

Tm + disorder CC+LC+SP a b

PCI No PDB matches
PC2 E-value > 10
PC3 10 >= E-value > 5
PC4 5 >= E-value > 3
PC5 3 >= E-value > |
PCé6 | >= E-value > 0.5

139
174
352
332
810
529

I 8 | 7
I5 I 3 8
34 31 9 22
35 19 5 14
88 51 12 39
60 58 10 48

Tm+disorder refers to the amount of proteins in each group after the transmembrane and disorder filtering step. CC+LC+SP refers to the proteins
in each group after coiled-coils, low complexity and signal peptide filtering step. Group a indicates proteins containing a Pfam functional domain.

Group b indicates proteins without a Pfam functional domain.

falciparum, a recent article has highlighted the shortcom-
ings in the current state of gene prediction for malaria par-
asites, based on ¢cDNA analysis [38]. Furthermore, this
study is based on P. falciparum data from PlasmoDB 5.0,
and a draft re-annotation of this genome has recently
taken place. It is planned to incorporate the relevant
results as soon as possible, Also, the P. vivax data should
be regarded as preliminary as the genome is still unfin-
ished, with a publication expected soon [39]. It is hoped
that this web-based resource may be valuable for research-
ers aiming to identify malaria proteins with specific com-
binations of sequence, structural and interaction features
for further studies.
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