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Abstract
Background: There have been many reports on the population genetic structures of Plasmodium
falciparum from different endemic regions, but few studies have examined the characteristics of
isolates from patients with different clinical outcomes. The population genetic structures of P.
falciparum isolates from patients with either severe or uncomplicated malaria were examined.

Methods: Twelve microsatellite DNA loci from P. falciparum were used to assess the population
genetic structures of 50 isolates (i.e., 25 isolates from patients with severe malaria and 25 from
patients with uncomplicated malaria) collected in the Thai-Myanmar border area between 2002 and
2005.

Results: Genetic diversity and effective population sizes were greater in the uncomplicated malaria
group than in the severe malaria group. Evidence of genetic bottlenecks was not observed in either
group. Strong linkage disequilibrium was observed in the uncomplicated malaria group. The groups
demonstrated significant genetic differentiation (P < 0.05), and allele frequencies for 3 of the 12
microsatellite loci differed significantly between the two groups.

Conclusion: These findings suggest that the genetic structure of P. falciparum populations in
patients with severe malaria differs from that in patients with uncomplicated malaria. The
microsatellite loci used in this study were presumably unrelated to antigenic features of the
parasites, but, these findings suggest that some loci may influence the clinical outcome of malaria.

Background
Plasmodium falciparum is the most pathogenic of the pro-
tozoan parasites that cause human malaria. According to
the World Health Organization, more than 1 million peo-

ple die from malaria each year [1]. The clinical manifesta-
tions of malaria are quite pleomorphic, ranging from mild
or asymptomatic parasitemia to potentially fatal condi-
tions such as coma and multi-organ failure. Although the
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molecular basis of severe malaria has been well studied in
recent years [2], determinants of the clinical outcomes of
malaria remain unknown. Several factors, including host
and parasite genetic characteristics, are thought to contrib-
ute to the clinical outcome of malaria.

Several studies have reported evidence of a relationship
between parasite genotype and clinical outcome [2-8].
Ariey et al found that certain alleles in the polymorphic
microsatellite loci of clinical isolates from French Guyana
were associated with disease severity [6]; however, Ferreira
et al found no evidence to suggest that the parasite geno-
types of the isolates from malaria patients in Vietnam
were associated with disease severity [8]. These results
demonstrate the difficulties associated with evaluating the
role of parasite genetic factors in malaria pathogenesis.

The present study examines the relationship between par-
asite genetic factors and clinical outcomes. To this end,
the genetic population structures of parasites isolated
from patients with either uncomplicated or severe malaria
were compared using highly polymorphic microsatellite
DNA loci from P. falciparum.

Methods
Sample collection
A total of 50 P. falciparum isolates were collected from
patients who contracted malaria along the Thai-Myanmar
border and who had been admitted to the Bangkok Hos-
pital for Tropical Diseases, Faculty of Tropical Medicine,
Mahidol University between 2002 and 2005. Inclusion
criteria of the study are: age ≥ 15 years old, both male and
female, positive for P. falciparum malaria infection with
microscopic confirmation showing acute manifestation,
informed consent to take part in the study obtained either
from the patient or the legal guardian, and signs of severe
malaria according to the World Health Organization crite-
ria [9] (for patients in severe malaria group). Exclusion
criteria are: pregnant or lactating women, pre-treatment
with any anti-malarial drugs within the past two weeks,
evidence of mixed infection on admission, and the evi-
dence of any contra-indication of blood sampling collec-
tion. Consequently, the 50 isolates were divided into two
clinical groups (25 isolates from patients with severe
malaria and 25 from patients with uncomplicated
malaria) (Additional File 1, 2). Hyperparasitemia (>
250,000 parasite/μL), peripheral schizontemia, blood
urea nitrogen (> 60 mg/dL) and elevation of serum
enzymes (AST, ALT) were noted for patients in the severe
group. Clinical manifestations such as nausea/vomiting
and jaundice were also taken into account of the clinical
severity of the patients.

The geographic and temporal distributions of the pre-
sumed area of infection were similar among both groups.

Blood samples and clinical data were collected from
patients after obtaining informed consent. Blood samples
were frozen at -80°C until use.

This study was approved by the Ethics Committee of the
Faculty of Tropical Medicine at Mahidol University in
Thailand, and complied with the ethical guidelines for
epidemiological studies set forth by the Japanese Ministry
of Education, Culture, Sports, Science, and Technology
and the Japanese Ministry of Health, Labour, and Welfare.

Preparation of parasite genomic DNA and genotyping 
analyses
Genomic DNA was extracted from the parasites in 2 mL of
frozen blood sample using previously described methods
[10].

Genotyping
Twelve microsatellite DNA loci were amplified by semi-
nested PCR. The loci were as follows: TA1 (Chromosome
6), TA40 (Chromosome 10), Poly α (Chromosome 4),
TA60 (Chromosome 13), ARAII (Chromosome 11),
Pfg377 (Chromosome 12), PfPK2 (Chromosome 12),
TA109 (Chromosome 6), TA87 (Chromosome 6), TA81
(Chromosome 5), TA42 (Chromosome 5), and 2490
(Chromosome 10). The PCR primer sets and amplifica-
tion conditions were consistent with the protocol of
Anderson et al, using a modified TA40 primer set [11,12].
Sizes of fluorescence-labeled PCR products were meas-
ured on an Applied Biosystems Prism Genetic Analyzer
310 using Gene Scan version 3.1.2 with a 500 ROX size
standard (ABI, CA, USA).

Different-sized PCR products amplified using the same
primer set were considered to be individual alleles within
a locus, as size variation among isolates is consistent with
the repeat number in a microsatellite locus.

Data analysis
Expected heterozygosity (H) was calculated for each locus
based on the allele frequencies of the 12 examined micro-
satellite loci. H values were calculated using H = [n/(n -
1)] [1 - ∑pi2], where n corresponds to the number of iso-
lates examined and pi is the frequency of the ith allele.

Effective population size (Ne) was estimated based on H
and the microsatellite mutation rate (μ = 1.59 × 10-4; 95%
confidence interval: 6.98 × 10-5, 3.7 × 10-4) for P. falci-
parum [13-15]. The infinite-alleles model (IAM) and the
stepwise mutation model (SMM) were used to estimate
Ne.

Each population was examined for evidence of a recent
genetic bottleneck (i.e., a severe decrease in population
size). In non-bottlenecked populations approaching
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mutation-drift equilibrium, the H value for each locus was
calculated based on the number of alleles, and the sample
size was equal to the observed Hardy-Weinberg equilib-
rium heterozygosity (He) [16,17]. After a bottleneck
event, the number of alleles and the expected heterozygos-
ity of a population are predicted to decrease; however, rare
alleles are purged more quickly, reducing the number of
alleles without altering the extent of heterozygosity
[16,17]. Furthermore, the mode shift in allele frequency
distribution for the presence of rare alleles was examined.
The BOTTLENECK program (version 1.2.02) [18] was
used to search for evidence of heterozygosity excess and
mode-shift. The Sign Test and the Wilcoxon Signed-Rank
Test were used to evaluate statistical significance.

Multilocus linkage disequilibrium was assessed using the
standardized index of association (IA

S) [19,20]. This anal-
ysis was performed using the LIAN 3.5 Web interface [21].
IA

S was calculated using the formula IA
S = (VD/Ve - 1)/(l - 1)

with permutation testing of the null hypothesis of com-
plete linkage equilibrium (IA

S = 0), where VD is the
observed mismatch variance, Ve is the expected mismatch
variance, and l is the number of examined loci. Significan-
ces of the observed IA

S values were calculated by Monte-
Carlo simulation, using 10,000 random permutations of
the data. This statistic is a variation of the method pro-
posed by Maynard-Smith et al. To enable comparison of
different data sets, the results were standardized by the
number of loci [19,22].

The extent of population subdivision was estimated using
Weir and Cockerham's theta estimator for determining F
statistics (FST) [23]. FST were calculated using the FSTAT
program (version 2.9.3.2: available at http://
www2.unil.ch/popgen/softwares/fstat.htm) [24] and
tested for significant difference from 0, based on 1,000
random permutations of the data set.

Fisher's exact test was used to calculate differences in allele
frequencies for each locus in the uncomplicated and
severe malaria groups (SAS for Windows, version 9.1.3;
SAS Institute Inc., Cary, NC, USA). A p-value of less than
0.05 was considered statistically significant.

Results
Allele frequencies for each locus are shown in Additional
File 3. Of the 50 isolates examined, 45 (i.e., 90%) repre-
sented single-genotype infections involving all 12 loci.
The remaining five isolates (i.e., 10%) represented multi-
ple-genotype infections involving one to four loci. Three
of the five isolates were obtained from the severe malaria
group, while the remaining two isolates were obtained
from the uncomplicated malaria group. Data from multi-
ple loci were excluded from the analyses. We excluded
data from loci that originated from multi-genotype infec-
tion.

Genetic diversity
The genetic diversity of each population was assessed by
determining the number of alleles per locus in each pop-
ulation and by calculating the expected H values (Table
1). The mean numbers of alleles ± SE in the severe and
uncomplicated malaria populations were 5.17 ± 0.66 and
6.58 ± 0.66, respectively. The H values ± SE for the severe
and uncomplicated malaria populations were 0.60 ± 0.07
and 0.71 ± 0.05, respectively. These results indicated that
the genetic diversity in the uncomplicated population was
slightly greater than that in the severe population,
although the differences were not statistically significant.

Effective population size
Ne values were calculated from the mean expected heter-
ozygosity and mutation rates of P. falciparum microsatel-
lite loci using the infinite-allele model (IAM) and the
stepwise mutation model (SMM) (Table 2) [14,15]. The
sizes of the severe and uncomplicated malaria popula-
tions were 2,356 and 3,944, respectively, based on IAM,
and 4,120 and 8,890, respectively, based on SMM. These
findings indicated that the severe malaria population was
genetically less divergent than the uncomplicated malaria
population.

Genetic bottleneck
Evidence of genetic bottleneck was assessed based on het-
erozygosity excess and patterns of allele frequency distri-
bution (i.e., mode-shift) [16,17]. Table 3 shows the
number of loci corresponding to H excess and deficiency.
Statistically high levels of H excess compared with H defi-
ciency were not observed in either study population when

Table 1: Sample size, mean number of alleles, and expected heterozygosity in the two study populations.

Population No. of isolates No. of alleles Expected heterozygosity (H)

mean ± SE mean ± SE mean ± SE

Severe malaria 24.50 ± 0.15 5.17 ± 0.66 0.60 ± 0.07

Uncomplicated malaria 24.67 ± 0.19 6.58 ± 0.66 0.72 ± 0.05
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IAM and SMM were applied to the analyses, indicating the
absence of genetic bottleneck events. The mode-shift indi-
cator test revealed a normal L-shaped allele frequency dis-
tribution in the two study populations (Table 3), further
demonstrating the absence of genetic bottleneck events.

Multilocus linkage disequilibrium
IA

S values were calculated for 12 loci from 22 isolates in
the severe malaria group and 23 isolates in the uncompli-
cated malaria group. IA

S values were equal to 0.010 and
0.127 for the severe and uncomplicated groups, respec-
tively (Table 4). Significant linkage disequilibrium was
observed in the uncomplicated malaria population (p <
0.0001).

Genetic differentiation and allele frequency-distribution 
patterns
Genetic differentiation between the two populations was
indicated by an FST value of 0.014. This value was found
to be significantly different from 0 (p < 0.05). The distri-
bution of alleles for each locus in the severe malaria group
was compared with that in the uncomplicated group. Dis-
tribution patterns for 3 (i.e., Pfg377, TA109, and TA42) of
the 12 loci were significantly different (p < 0.05) between
the two populations (Figure 1). Specifically, distribution
patterns in the uncomplicated malaria population were
more variable than those in the severe malaria popula-
tion.

Discussion
The genetic structures of two parasite populations col-
lected from patients with either severe or uncomplicated
malaria who contracted malaria, from the Thai-Myanmar
border region were assessed. This area is known to be
endemic for multidrug-resistant malaria [25-27]; trans-
mission is unstable and hypoendemic [28]. However,
morbidity and mortality in the area have gradually

decreased in recent years, with a 2006 parasite incidence
of 0.49 per 1,000 people [29].

In the present study, only 10% of the isolates were
obtained from multi-genotype infections involving one to
four loci. This is significantly lower than a previous esti-
mate (i.e., 40%) reported for the same region in 1997 and
1998 [22]. The frequency of multiple-genotype infection
by malaria parasites is known to increase as malaria trans-
mission becomes more prevalent. For example, more than
50% of isolates are obtained from multiple-genotype
infection in high-transmission areas (e.g., Uganda,
Congo, and Zimbabwe), while fewer than 10% are
obtained from multiple-genotype infection in low-trans-
mission areas (e.g., Colombia and Brazil) [22]. Therefore,
the present study indicates that malaria transmission has
decreased in the Thai-Myanmar border region in recent
years.

The genetic structure of the P. falciparum population in the
severe and uncomplicated malaria groups differed in
regards to several genetic indexes. Specifically, H values in
the severe population were lower than those in the
uncomplicated population. H values determined for both
the severe and uncomplicated groups were higher than
previously reported values for the same area [22]. Ne val-
ues for the severe population were also lower than those
in the uncomplicated population, and our values were
generally higher than previously reported values for this
area [22]. Discrepancies between our study and previous
reports may have resulted from differences in the length of
sampling periods. In the present study, samples were col-
lected between 2002 and 2005, while other investigators
collected samples between December 1997 and January
1998. Thus, the longer sampling period used in our study
may have resulted in higher H and Ne values in the P. fal-
ciparum populations.

Significant genetic differentiation was observed between
the severe and uncomplicated malaria groups (p < 0.05),
even though the groups were collected from the same
endemic area. This may reflect differences in transmission
intensity between the two groups.

Table 2: Effective size (Ne) values for the two study populations.

Population IAM SMM

Severe malaria 2,356 (1,012, 5,366) 4,120 (1,770, 9,385)
Uncomplicated malaria 3,944 (1,695, 8984) 8,890 (3,820, 20,251)

Table 3: Observed versus expected heteroxygosity in the study populations.

IAM SMM

Population No. of loci H excess H deficiency P H excess H deficiency P Mode- shift

Severe malaria 12 8 4 NS 5 7 NS normal
Uncomplicated malaria 12 6 6 NS 2 10 P < 0.05 normal

Proportion of loci with excessive or deficient observed heterozygosities, relative to expected heterozygosities. Data were subject to mutation drift 
equilibrium via IAM and SMM, as well as mode-shift analyses. H: heterozygosity. NS: not significant.
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Allele frequency distributions for 3 (i.e., Pfg377, TA109,
and TA42) of 12 loci differed significantly between the
uncomplicated and severe malaria groups (P < 0.05).
Pfg377 is located within the telomeric region of chromo-
some 12, while TA109 is located within a hypothetical
protein on the centromeric region of chromosome 6, and
TA42 is located within a hypothetical protein on the telo-
meric region of chromosome 5.

Differences in allele frequencies between the severe and
uncomplicated malaria groups are mainly attributed to
variations in minor alleles among the respective groups.
The sizes and frequencies of the major alleles were similar
in the two groups, while the numbers of minor alleles in

the uncomplicated group were higher than those in the
severe group.

In a previous study of the Western Amazon, Martha et al
found that allele frequency distribution within the TA42
locus differs between symptomatic and non-symptomatic
malaria patients [7]. In light of these results, the authors
suggested that specific alleles within the TA42 locus are
dominant in non-symptomatic malaria patients; how-
ever, evidence of such phenomena was not observed in
either the severe or uncomplicated populations.

Other possibilities that are not linked with the parasite
genetic background and that could influence the popula-
tion structure, such as age of the patient, or number of
days between onset of the symptom and admission to the
hospital, were excluded by the statistical analysis of the
two groups (Additional File 1, 2).

Many population geneticists have accepted a model of P.
falciparum infection that depicts low-transmission regions
as having high levels of monoclonal infection, inbreed-
ing, and rare recombination; while high-transmission

Table 4: Multilocus linkage disequilibrium in the two study 
populations.

Population No. of loci No. of isolates IAS

Severe malaria 12 22 0.010
Uncomplicated malaria 12 23 0.127**

**P < 0.0001

Allele frequency distribution of the three microsatellite loci Pfg377 (a), TA109 (b), and TA42 (c)Figure 1
Allele frequency distribution of the three microsatellite loci Pfg377 (a), TA109 (b), and TA42 (c). Black bars rep-
resent the severe malaria group; white bars represent the uncomplicated malaria group. ND: not detected.
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regions are depicted as having frequent mosquito inocula-
tion, multiple-genotype infections, frequent outbreeding,
and extensive recombination [22]. According to this
model, genetic diversity increases in high-transmission
regions and decreases in low-transmission regions. The
results described in the present study appear to link
genetic diversity with transmission levels in both the
severe and uncomplicated populations. Luxemburger et al
found that only 5% of malaria cases in the Thai-Myanmar
border region in 1992 were severe: the remainder was
uncomplicated [30].

The genetic indexes examined in this study were generally
consistent with transmission levels; however, the level of
linkage disequilibrium in the severe malaria group was
lower than that in the uncomplicated malaria group. For
reasons that remain unclear, significant linkage disequi-
librium was evident in the uncomplicated malaria group
but not in the severe group. Further studies are required to
explore this finding in greater detail.

Conclusion
Twelve highly polymorphic microsatellite loci were exam-
ined and the genetic structure of P. falciparum populations
in patients with severe malaria was demonstrated to differ
from that in patients with uncomplicated malaria. The
microsatellite loci used in this study were presumably
unrelated to the antigenic features of the parasites; how-
ever, it was suggested that the loci might somehow influ-
ence the clinical outcome of malaria.
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