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Abstract
Background: The environmental conditions experienced by parents are increasingly recognized
to impact the success of offspring. Little is known on the presence of such parental effects in
Anopheles. If present, parental effects could influence mosquito breeding programmes, some malaria
control measures and have epidemiological and evolutionary consequences.

Methods: The presence of parental effects on offspring emergence time, size, survival, blood meal
size and fecundity in laboratory reared An. stephensi were tested.

Results: Parental rearing conditions did not influence the time taken for offspring to emerge, or
their size or survival as adults. However, parental effects were influential in determining the
fecundity of daughters. Counter-intuitively, daughters of parents reared in low food conditions
produced larger egg clutches than daughters of parents reared in high food conditions. Offspring
reared in low food conditions took larger blood meals if their parents had also experienced a low
food environment.

Conclusion: So far as we are aware, this is the first evidence of parental effects on progeny in
Anopheles.

Background
The reproductive success of an individual is dependent on
genetic background, environmental conditions, and inter-
actions between these. One factor which is increasingly
recognized to have a profound impact on individual suc-
cess is the environmental conditions experienced by their
parents [1-4] Parental effects have been demonstrated in a
wide range of taxa [e.g. [5-18]]. Some of these effects arise
from environmental constraints where, for instance,
nutrient deprivation in mothers results in less well-provi-
sioned and hence smaller offspring. Parental effects can
also be adaptive if parents can perceive cues in their envi-

ronment and adjust per offspring investment so as to opti-
mize offspring fitness. For instance, in the freshwater
crustacean Daphnia, mothers kept in poor conditions alter
offspring size, survival, fecundity or resistance to parasites
[e.g. [16,19,20]]. Here, mothers in poor environments
increase per offspring investment in the few offspring they
can produce. Thus, there are various routes by which
maternal effects can affect important offspring traits such
as development time, survival and fecundity.

Anopheline mosquitoes (Diptera: Culicidae) are medi-
cally important vectors, responsible for the transmission
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of many diseases including malaria, filariasis and several
arboviral diseases. The distribution of Anopheles mosqui-
toes is an important factor in determining the prevalence
of Plasmodium infections and is influenced by the presence
of suitable blood-meal hosts and oviposition sites. Female
preference studies indicate that fecund mosquitoes
choose oviposition sites based on many factors including
the presence/absence of conspecific instars (which may
indicate high food levels), food sources, moisture content
and the presence/absence of potential predators [e.g. [21-
25]]. Such behaviour indicates that female mosquitoes
have the ability to alter their offspring fitness through
behaviour and raises the question of whether Anopheles
parents may also alter investment in their offspring in
response to their own condition, or the environmental
conditions their offspring might experience.

Despite the hope for large scale rearing and release of ster-
ile males and genetically modified mosquitoes for malaria
control, little is known about the effect of Anopheles larval
parental rearing experience on offspring success. Yet, cen-
tral to the success of any breeding and release strategy is
the production of large numbers of laboratory-reared
mosquitoes, and the fitness of released mosquitoes
[26,27]. Moreover, many larval control programmes are
aimed at actively degrading larval habitats, with unknown
effects on the fitness of survivors and their progeny.

To begin the study of non-behavioural parental effects on
Anopheles life-history, a laboratory study was conducted
where Anopheles larvae experienced either the same or dif-
ferent rearing conditions to that experienced by their par-
ents (high or low food availability). After varying the
parental environment, the offspring fitness components
of emergence time, size, survival, blood meal size and
fecundity were measured. As genetic and phenotypic vari-
ance is often greater in stressful environments, particular
attention is paid to parental effects in offspring reared in
low food environments[5,28,29]. This study shows that
parental rearing conditions can influence offspring life
history.

Methods
Experimental design
Mosquitoes originated from a longstanding laboratory
stock of An. stephensi and were reared under standard lab-
oratory conditions at 27 ± 2°C, 70% humidity and in a
12:12 light: dark cycle. Eggs were hatched in three plastic
trays (25 cm × 25 cm) filled with 1.5 L of distilled water.
Two days after hatching, larvae from the three trays were
mixed and 200 transferred to 30 ml vials containing 5 mls
of distilled water, where they were reared individually
(Figure 1a). Half of these larvae were then randomly allo-
cated to the low food treatment group (1 mg of Tetrafin®

food per day) and half to the high food treatment group

(10 mg of Tetrafin® food per day). When individuals
pupated, their vial was covered with fine nylon gauze
until emergence. Food levels were determined from an
earlier pilot study and include the range where 100%
emergence occurred. The position of the vials within the
insectary was fully randomized at this and all subsequent
stages.

On emergence, the mosquitoes were pooled into three
mesh cages (30 × 30 × 30 cm) per treatments groups and
provided with 10% glucose solution ad libitum (Figure
1b). Approximately one week after emergence, one anaes-
thetized mouse was placed on each cage from which the
mosquitoes were allowed to feed for 20 minutes. One day
later bowls of water were introduced into the cage for ovi-
position.

These eggs were then pooled and hatched in six plastic
trays for each treatment and 400 individual larvae (200
from each parental treatment group) transferred to a
standard vials as above (Figure 1c). The larvae were allo-
cated to either the high or low food treatment groups (as
above) and monitored daily for pupation. When individ-
uals pupated, they were transferred to a vial that was cov-
ered with fine nylon gauze and maintained without food
for survival analysis (Figure 1d). On death, mosquitoes
were transferred to a 1 ml tube and refrigerated until the
end of the experiment. At the end of the experiment the
wings of each mosquito were dissected and measured
from the distal to dorsal points using microscopy.

This experiment was repeated eight weeks later. In the
repeat experiment, offspring were separated into two
groups for either survival analysis as in the previous exper-
iment, or for fecundity analysis after a blood meal (Figure
1d and 1e). Fecundity analysis involved transferring both
male and female offspring into mating cages (30 × 30 × 30
cm), with four mating cages per offspring group. Five days
after emergence, anaesthetized mice were placed on each
of the 16 mating cages and the mosquitoes allowed feed
for 20 minutes. These mice had all been infected 14 days
before the feed with Plasmodium chabaudi, as the original
intention was to determine whether vectorial capacity was
affected by parental environmental conditions. However,
most unexpectedly on the day of the blood-meal, neither
asexual nor sexual parasites were present in any of the
mice and on dissection of the female mosquitoes after
egg-laying, no transmission had occurred. As all infected
mice were parasite negative on the day of the feed and
were randomly assigned treatment groups which were
replicated, any treatment effect should be unrelated to any
effect of infection. Immediately after the feed, each female
mosquito was transferred to a clean vial covered with fine
nylon gauze for three days to allow all haematin (a by-
product of decomposition of haemoglobin) to be excreted
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The experimental set upFigure 1
The experimental set up. (a) In experiments 1 and 2, a total of 320 larvae were separated into the parental treatments of high 
and low food, with individual larvae placed in a standard 30 ml vial containing 5 mls of distilled water. (b) After emergence, 
adult parents were transferred to a mating cage and kept in good conditions. (c) Eggs from within treatment matings were split 
into high and low food. (d) In experiment 1, post emergence, the offspring were starved and their survival determined. In 
experiment 2, half of each offspring treatment was starved, while the other half was transferred to one of four mating cages for 
a blood meal. (e) After the blood meal individual females were transferred to standard vials for haematin collection. (f) After 
haematin collection individual females were transferred to standard vials for egg laying.
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(Figure 1e), from which blood meal size was estimated
[30]. Excreted haematin collected in the bottom of the vial
was dissolved in 1 ml of 1% LiC03 solution. The absorb-
ance of the resulting mixture was read at 387 nm in a spec-
trophotometer using LiC03 solution as a blank and
compared with a standard curve made with porcine serum
haematin (Sigma Aldrich). Solutions that were within the
error range of the LiC03 blanks (absorbance < 0.01) were
eliminated from the analysis and classified as non-feeders.
After the 3-day haematin collection period, mosquitoes
were moved to new 30 ml tubes containing 3 mls of water
to allow oviposition (Figure 1f).

Trait definition
The fitness components of emergence time, survival, adult
size, blood meal size and fecundity were measured. Both
emergence time and survival were measured as the
number of days required for either a) the larvae to emerge
as an adult, post hatching, or b) taken to die post emer-
gence. As an indicator of size, the length of one wing per
mosquito from the distal to dorsal points using micros-
copy was measured. Haematin mass was used as an indi-
cator of blood meal size, while fecundity was determined
by counting the number of eggs laid over the three days
following the blood meal.

Statistical analysis
The life history traits of emergence time and survival were
analysed using Proportional Hazards (JMP in 5.1). Adult
size, blood meal size and fecundity were analysed using
General Linear Models. The explanatory variables were
parental food (two levels), offspring food (two levels),
gender (two levels) and where relevant, experimental
block (two levels). For all models, a maximal model
including all two and three-way interactions was fitted
first. Models were then minimized by removing non-sig-
nificant terms beginning with the highest-level interac-
tion. In no cases were any of the three-way
block*parent*offspring condition interactions significant
and these are therefore not reported. Significant
block*parent or block*offspring interactions did occur,
but as they only reflected differences in magnitude
between blocks, they are not reported. For the blood meal
analysis as well as the fecundity analysis, the average
blood meal size per replicate cage and the average number
of eggs per replicate cage were used as response variables
(n = 16), with average adult size as a covariate. This is a
conservative approach to deal with the issue of pseudore-
plication of treatments arising from mosquitoes fed on
the same mouse. The statistical significance of the main
effect of mouse and of the interactions between mouse
and the covariates (adult size and blood meal size) was
also tested. For both of the response variables of blood
meal size and fecundity, the main effect of mouse and the
interactions were non-significant.

Results
Sample sizes
In experiment 1, two hundred larvae were split into either
a high food group or low food group, to form the parental
generation. Once adults, these parents were mated within
groups (three per treatment) and 400 eggs from the paren-
tal high food generation and 400 eggs from the parental
low food generation were used for the offspring experi-
ments. Of these, complete records of the emergence time,
survival, gender and size were noted for 460 mosquitoes
which were included in the analysis. In the repeat experi-
ment, 120 larvae formed the parental generation, from
which, 400 eggs from the parental high food generation
and 400 eggs from the parental low food generation were
used for the offspring analysis. Of these, emergence time
was noted for 478 mosquitoes, with 140 of used in the
survival trial and 287 used for blood meal and fecundity
analysis. Altogether, 149 females were included the fecun-
dity trials in which 19,844 eggs were counted.

Time taken to emerge
The time taken for larvae to emerge as adults post-hatch-
ing was determined by offspring food conditions and to a
lesser degree by offspring gender (Figure 2a, Table 1-1).
Larvae reared in high food conditions emerged from
pupation up to four days earlier than larvae reared in low
food conditions and males emerged on average, one day
before females. The food levels experienced by the paren-
tal generation did not influence emergence time and this
lack of parental influence was constant across offspring
food levels (Figure 2a, Table 1-1).

Size
Offspring larval food level was also the main factor influ-
encing the size of offspring once they reached adulthood
(Fig 2b, Table 1-2). Larvae emerging from high food con-
ditions were on average 16% larger than those emerging
from low food conditions. Gender was also an important
determinant of offspring size, with females being 7%
larger than males (Figure 2b, table 1-2). The larval food
levels of the parental generation did not influence off-
spring adult size (Figure 2b, Table 1-2).

Survival
The food level experienced by the offspring was again the
only factor found to be influencing adult survival (Figure
2c, Table 1-3a). As expected, offspring reared in high food
conditions survived for longer than offspring reared in
low food conditions. Survival did not differ between the
males and the females and was unaffected by parental
rearing conditions (Figure 2c, Table 1-3a). Larger off-
spring survived for longer than smaller offspring (χ2 =
148, df = 1, p = <0.0001), but offspring food level was still
a major determinant of survival even when controlling for
offspring size (Figure 2c, Table 1-3c).
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Blood feeding
Nineteen out of the 149 females that were given access to
a blood meal were classified as non feeders. No effect of
parental food level, offspring food level or an interaction
between the two influenced female propensity to fed (par-
ent: χ2 = 2.8, df = 1, p = 0.09; offspring: χ2 = 2.7, df = 1, p
= 0.1; parent*offspring: χ2 = 2.5, df = 1, p = 0.1, respec-
tively).

Of the 130 females that did feed, only the level of food
they themselves experienced as larvae influenced the size
of the blood meal they took as adults (Figure 3a, Table 1-
4a). Daughters reared in high food conditions took 25%
larger blood meals than the daughters reared at low food

conditions. Controlling for adult size, it was again found
that blood-meal size was influenced only by the food level
experience of the offspring (Figure 3a, table 1-4b). How-
ever, genetic and phenotypic variance is often greater in
stressful environments [5,28,29]. Indeed, parental effects
were apparent when the offspring reared on low food only
were considered: blood meal size was influenced by the
larval food level of parents, even when controlled for
adult size, with the offspring of parents reared in low food
conditions taking larger blood meals (parent: F1,6 = 27.4,
p = 0.002, parent controlled for size: F1,5 = 138.3, p <
0.0001, respectively).

2a: Summary graphs showing the main effect of i) Offspring food (low and high) ii) Gender (male and female) iii) Parental food (low and high) and the iv) interaction between parent and offspring on emergence timeFigure 2
2a: Summary graphs showing the main effect of i) Offspring food (low and high) ii) Gender (male and female) iii) Parental food 
(low and high) and the iv) interaction between parent and offspring on emergence time. Emergence time was measured as the 
number of days taken post hatching to emerge as an adult. In total the emergence time of 938 mosquitoes was recorded. For 
this and all following analysis, 'experimental block' interactions were fitted. Each graph including those below, represents the 
least square means and the associated standard error. Note that in some cases the dashed line is obscured by the solid line in 
the interaction graphs. 2b: Summary graphs showing the main effect of i) Offspring food ii) Gender iii) Parental food and the iv) 
interaction between parent and offspring on adult size. Adult size was determined from the wing length of each mosquito. In 
total the wing length of 747 mosquitoes was recorded. 2c: Summary graphs showing the main effect of i) Offspring food ii) 
Gender iii) Parental food, and the iv) interaction between parent and offspring on adult survival. Adult survival was determined 
as the number of days the mosquito remained alive, post hatching in the absence of water or glucose. In total the wing length 
of 747 mosquitoes was recorded.
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Egg number
Parental effects influenced offspring fecundity. Offspring
of parents reared in low food conditions produced more
eggs than the offspring from parents reared in high food
conditions (Figure 3b, Table 1-5a). Parental food level
influenced offspring egg number, even when controlling
for offspring size (Figure 3b, Table 1-5b). Considering the
offspring reared on low food only, the fecundity of low
food daughters was influenced by the larval food level of
their parents, even when controlled for adult size (F1,6 =
13.6, p = 0.01, F1,5 = 12.3, p = 0.017, respectively).

Blood meal size and egg number were positively corre-
lated, with larger blood meal sizes resulting in increased
egg production (F1,14 = 34.1, p < 0.0001). The number of
eggs produced for a given blood meal size was influenced
by offspring as well as parental larval food level (Figure
3b, Table 1-5c). Parental effects influenced the fecundity
of daughters reared at low food conditions but not of
daughters reared at high food (F1,5 = 16.1, p = 0.01, F1,5 =
4.5, p = 0.09, respectively). For the same size blood meal,
the daughters reared at low food conditions were 20%
more fecund if their parents had also been reared at low
food levels.

Table 1: The effects of parent food level, offspring food level and an interaction between them on the fitness components of 
emergence time, adult size, survival, blood meal size and fecundity. * = <0.05, ** = <0.01, *** = <0.001, **** = <0.0001

Fitness Effects Test Statistic p Significance
component

1 Emergence time (days)
Parental food χ2 = 2.7 0.09
Offspring food χ2 = 699.7 <0.0001 ***
Gender χ2 = 41.4 <0.0001 ***
Parental*Offspring χ2 = 1.2 0.21

2 Size (wing length)
Parental food F1,593 = 1.2 0.27
Offspring food F1,594 = 2567 <0.0001 ***
Gender F1,594 = 900 <0.0001 ***
Parental*Offspring F1,592 = 0.7 0.39

3a Survival (days)
Parental food χ2 = 1.1 0.30
Offspring food χ2 = 96.7 <0.0001 ***
Gender χ2 = 1.9 0.17
Parental*Offspring χ2 = 1.1 0.30

3b controlling for offspring adult size Parental food χ2 = 0.8 0.38
Offspring food χ2 = 62.9 <0.0001 ***
Gender χ2 = 1.6 0.20
Parental*Offspring χ2 = 1.6 0.20

4a Blood meal size (haematin)
Parental food F1,13 = 3.29 0.09
Offspring food F1,14 = 7.3 0.017 *
Parental*Offspring F1,12 = 0.8 0.39

4b controlling for offspring adult size Parental food F1,12 = 3.1 0.1
Offspring food F1,13 = 6.9 0.02 *
Parental*Offspring F1,11 = 0.9 0.35

5a Fecundity (egg number)
Parental food F1,14 = 6.7 0.02 *
Offspring food F1,13 = 3.2 0.096
Parental*Offspring F1,12 = 2.5 0.13

5b controlling for offspring adult size Parental food F1,13 = 5.9 0.03 *
Offspring food F1,12 = 3.0 0.1
Parental*Offspring F1,11 = 2.4 0.14

5c controlling for daughters blood 
meal size

Parental food F1,11 = 16.7 0.0018 **

Offspring food F1,11 = 8.0 0.016 *
Parental*Offspring F1,11 = 5.6 0.037 *
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Discussion
This study sought to establish the potential for parental
effects to influence offspring reproduction in Anopheles. It
was found that parental environment had variable effects
on mosquito life history traits. Parental effects did not
influence the time taken for offspring to emerge, offspring
size or survival. These traits were influenced by current off-
spring food levels only. However, there was a parental
effect on blood meal size, but only in offspring reared in
the low food environment. Daughters raised in the low
food environment took larger blood meals if their parents
had also experienced low food than if their parents had
experienced high food. It is tempting to think that the
enlarged blood meals were to compensate for poor mater-
nal provisioning and resource acquisition during larval
development.

Parental effects were also influential in determining the
fecundity of their daughters. Daughters from parents
reared in low food conditions produced more eggs than
daughters from parents reared in high food. This
increased fecundity may arise to compensate for expected
decreased longevity in low food environments. Although
studies showing condition-mediated life history shifts
affecting clutch size are limited, shifts to earlier reproduc-
tion due to parasite and predator mediated effects have
been previously observed in invertebrates [31,32]. For the
female mosquitoes in this study, a reduced adult lifespan
of even a few days could dramatically decrease total life-
time fecundity. In an environment where numerous bouts
of reproduction are not probable, the optimal strategy
may be to shift resources into few larger reproductive
efforts [33]. If this explanation is correct, there must be

3a: Summary graphs showing the main effects of i) Offspring food and ii) Parental food, as well as iii) the interaction between parent and offspring and iv) the interaction between parent and offspring on blood meal size, controlling for adult sizeFigure 3
3a: Summary graphs showing the main effects of i) Offspring food and ii) Parental food, as well as iii) the interaction between 
parent and offspring and iv) the interaction between parent and offspring on blood meal size, controlling for adult size. Haema-
tin concentration was used as an indicator or blood meal size. For each treatment 10–15 female mosquitoes fed on 4 replicate 
mice. The plotted points are therefore the average blood meal size of each mosquito per mouse (n = 16) and the associated 
standard error. 3b: Summary graphs showing the main effects of i) Offspring food and ii) Parental food, as well as iii) the inter-
action between parent and offspring and iv) the interaction between parent and offspring on fecundity, controlling for blood 
meal size. Fecundity was determined by counting the number of eggs laid over the 3 days following a blood meal. For each 
treatment 10–15 female mosquitoes fed on 4 replicate mice. The plotted points are therefore the average total number of eggs 
laid per mosquito per mouse (n = 16) and the associated standard error.

a) Offspring food

80

100

120

140

160

180

200

Low  food High food

b) Parental food

80

100

120

140

160

180

200

Parent low  food Parent high food 

c) Parent*Offspring

80

100

120

140

160

180

200

Offspring low  food Of fspring high food

Parent  Low food

Parent High food

d) Parent*Offspring: controlling 

for adult size 

80

100

120

140

160

180

200

Low food High food

Parent  Low food

Parent High food

e) Parent*Offspring: controlling 

for blood meal size 

80

100

120

140

160

180

200

Offspring low  food Offspring high food

Parent  Low food

Parent High food

c) Parent*Offspring

3

4

5

6

7

Offspring low  food Offspring high food

Parent  Low food

Parent  High food

a) Offspring food

3

4

5

6

7

Low  food High food

b) Parental food

3

4

5

6

7

Parent low  food Parent high food 

d) Parent*Offspring: controlling 

for size

3

4

5

6

7

Offspring low  food Offspring high food

Parent  Low food

Parent  High foodB
lo

o
d

 m
e
a

l 
s

iz
e

E
g

g
 n

u
m

b
e

r

(a)

(b)

* *

* Significant difference

****

**

i) Offspring food                                           ii) Parent food                                            iii) Parent*offspring                                        iv) Parent * Offspring:   
                                                                                                                                                                             controlling for adult size 

   i) Offspring food                               ii) Parent food                               iii) Parent * Offspring                      iv) Parent * Offspring                          v) Parent * Offspring 
                                                                                                                                                                                                                  controlling for adult size                               controlling for blood meal size
Page 7 of 9
(page number not for citation purposes)



Malaria Journal 2007, 6:130 http://www.malariajournal.com/content/6/1/130
costs of increased fecundity, possibly in terms of survival
in benign environments or in terms of offspring quality.

Does the potential for adaptive parental provisioning exist
in this system? For this to be the case (i) ecologically-rele-
vant environmental variation would need to affect off-
spring fitness, (ii) parents would need be able to predict
their offspring's environment through reliable cues, and
(iii) parents would be able to adaptively adjust the pheno-
type of their offspring to the anticipated environment
[15]. Evidence for environmental variation influencing
mosquito fitness is abundant. Temperature, humidity,
parasitism, sugar feeding and plant extracts have all been
found to influence fecundity [e.g. [34-38]]. The potential
for prediction and life history adjustment are less clear.
Oviposition preference indicates that mothers can assess
the environment their larval offspring will inhabit. How-
ever, the frequently ephemeral oviposition sites of Anoph-
eles may make it difficult for a female mosquito to predict
the environment that her offspring will inhabit. With little
direct evidence either way; there is much potential for
work on adaptive parental effects in Anopheles.

The parental effects reported here may be relevant to con-
trol strategies against vector-borne diseases. The deliberate
ecological manipulation of larval habitats is a mainstay of
vector control against malaria [e.g. [39-44]]. Moreover,
the large scale releases of captive raised genetically-modi-
fied or sterile Anopheles are being proposed as possible
future malaria control strategies [e.g. [45-50]]. Where
maximal fecundity is an aspiration of mass rearing pro-
grammes, our finding that fecundity is influenced by
parental condition argues for further work to optimize the
offspring and parent rearing conditions. Furthermore, if
the fecundity effects arise because of adaptive life history
provisioning, then there must be fitness costs to larger
clutches (otherwise, it would be hard to explain why only
the offspring of parents raised in poor conditions respond
to poor conditions by increasing fecundity). It may be that
maximizing fecundity in mosquito captive rearing pro-
grammes would be sub-optimal. In the rearing and release
of hatchery salmon, for example, it has been suggested
that selection for increased fecundity has resulted in
decreased egg size, which was linked to decreased survival
[51]. By its nature, captive breeding selects for quantity
over quality. It may be that large-scale rearing in benign
environments may lead to their maladaptation to wild
conditions. These considerations, together with the data
reported here, point to the need for more work on paren-
tal effects in malaria vectors. Obvious next steps include
the analyses of wild caught mosquitoes, of other Anopheles
species, and of other feeding regimes.
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