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Abstract
Background: Malaria parasites that concurrently infect a host compete on the basis of their
intrinsic growth rates and by stimulating cross-reactive immune responses that inhibit each others'
growth. If the phenotypes also show different drug sensitivities ('sensitive' vs. 'resistant' strains),
drug treatment can change their joint dynamics and the long-term outcome of the infection: most
obviously, persistent drug pressure can permit the more resistant, but otherwise competitively-
inferior, strains to dominate.

Methods: Here a mathematical model is developed to analyse how these and more subtle effects
of antimalarial drug use are modulated by immune response, repeated re-inoculation of parasites,
drug pharmacokinetic parameters, dose and treatment frequency.

Results: The model quantifies possible effects of single and multiple (periodic) treatment on the
outcome of parasite competition. In the absence of further inoculation, the dosage and/or
treatment frequency required for complete clearance can be estimated. With persistent
superinfection, time-average parasite densities can be derived in terms of the basic immune-
regulating parameters, the drug efficacy and treatment regimen.

Conclusion: The functional relations in the model are applicable to a wide range of conditions and
transmission environments, allowing predictions to be made on both the individual and the
community levels, and, in particular, transitions from drug-sensitive to drug-resistant parasite
dominance to be projected on both levels.

Background
Since the 1920s it has been clear that interactions of
immune-system and drug dynamics are critical to the
elimination or persistence of drug-resistant malaria para-
sites in individual patients, but details and dynamic prin-
ciples remain to be established [1,2]. Later, in the 1980s,
it was found that an isolate from a malaria infection is typ-
ically a mixture of parasite genotypes, some of which dif-

fer in antigenic profile, growth rate and drug response,
and show complex population dynamics in mixed cul-
tures [3,4]. Here a mathematical model is developed to
investigate the dynamics of parasite phenotypes in a
malaria-infected host, with respect to critical interactions
between their immune-mediated competition, relative
drug sensitivities and persistent superinfection. The
results characterize conditions under which a malaria
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infection dominated by relatively drug-sensitive parasites
transitions to one dominated by relatively drug-resistant
parasites.

Antimalarial drugs taken prophylactically or early in infec-
tion limit the development of immune responses protec-
tive against clinical attacks in subsequent infections [5,6].
In endemic regions, antimalarial drug treatment is usually
meant to cure a symptomatic malaria infection, thus, usu-
ally, a host with incomplete clinical immunity. Hosts are
repeatedly re-infected and superinfected with mixtures of
parasites. Within an infection, in the absence of drug, the
dynamics of the competing parasites are determined in
large part by their differences and similarities in stimulat-
ing and succumbing to the host's immune responses. The
frequency with which drug clears parasites, including
drug-resistant parasites, increases with host age, a surro-
gate for exposure and acquired immunity [7,8]. Stronger,
more diverse antibody responses are associated with
greater success in antimalarial drug treatment [9,10].
Thus, for instance, all else equal, both a higher prevalence
of drug-resistant parasites and a higher frequency of drug
treatment would be expected in younger age groups.

Understanding the aggregate effects of immunity can help
to guide the introduction of new antimalarial drugs,
explain discrepancies between in-vitro and in-vivo tests in
drug-resistance surveys [11], and, in general, inform pop-
ulation-based intervention strategies. Indeed, these com-
munity patterns summarize very broad effects of
immunity across many infections, so their interpretation
and application can be greatly improved by a more
detailed understanding of immune-drug-parasite interac-
tions within individual infections.

Most studies of intra-host parasite-drug dynamics focus
on the clearing effect of drug (the key medical objective)
or on optimal strategies for treatment (dosage, fre-
quency). These issues become less relevant under persist-
ent superinfection in endemic areas, however. The focus
here is more on longer-term outcomes of treatment (or
prophylaxis), and their effects on competition among par-
asites. For instance, when joined to a proper model of par-
asite transmission, the crude estimates derived in relating
the mean parasitaemia of phenotypes in a 'typical' host to
drug dose and frequency should allow community-level
analysis of the spread and prevalence of drug -resistant
parasites.

The model developed here builds on earlier models of the
within-host dynamics of malaria [12,13] to address criti-
cal interactions between immune response and drug
resistance. In the baseline model, the relative cross-reac-
tivities, immune efficiencies and growth rates of compet-
ing parasites determine their dynamics and joint

equilibria. Further developments examine the effects of
repeated re-inoculations of parasites, then incorporate dif-
ferences in drug sensitivity between the competing para-
sites, with the costs of resistance summarized by
differences in intrinsic growth rate, to examine how dose,
decay rate and frequency of drug administration affect
competitive dynamics.

Methods
Model of intra-host competition mediated by immunity
The basic model of intra-host competition of multiple
parasite phenotypes is based on the models of cross-reac-
tive 'stimulating-clearing' immunity formulated in previ-
ous papers [12,13]. Briefly, it describes interactions in
which parasite phenotypes stimulate the production of
non-specific and specific immune effectors, which clear
(kill) them at rates that depend on the strength, specificity
and quantity of effector.

Mathematically the model is a coupled system of differen-
tial equations for parasite densities x, y, and immune-
effector densities: non-specific I and specific J,K for x,y-
species respectively (see [12,13]),

In the follow up analysis of drug treatment x will represent
a resistant strain, while y -a sensitive one. This is similar to
the basic model of [12] but augmented with two addi-
tional features:

(i) a 'fever regulator' f(z) = F0φq(z), described by a sigmoid
function φq(z) = zq/(1 + zq), switched 'on' and 'off by the
combined parasite density (over their pyrogenic thresh-
olds xp, yp), with maximal pyrogenic removal rate F0.

(ii) super-infection (inoculation) sources SX;SY, which can
be either stationary (convenient for qualitative analysis
and numeric simulation), or stochastic with a prescribed
'spacing distribution' between inoculations.

The fever plays a limited role in the dynamics of (1). At the
initial stage of infection it serves to arrest the parasite
growth about the pyrogenic threshold, while immune
effectors build up, but then becomes negligible below that
level. Therefore it is omitted in the analyses of subfebrile
equilibria, but is included in the dynamic simulations.
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The immune-stimulation terms (in the I,J,K – equations)
are taken here as simple linear functions, so that the effec-
tors are stimulated in proportion to parasite densities.
Other parameters in system (1) are similar to [12,13]:

(i) Parasite growth rates: aX;aY

(ii) Stimulation coefficients, for nonspecific and specific
effectors: σn;σX;σY

(iii) Clearing coefficients, for nonspecific and specific
effectors: cn;cX;cY

(iv) Decay/deactivation rates, for nonspecific and specific
effectors: μn;μs

(v) Cross-reactivities, in terms of the relative clearing rates
of the x-effector on y and the y-effector on x: 0 ≤ ξ, η < 1

System (1) can be rescaled to a nondimensional form
which yields the essential (non-dimensional) parameters.
The most important of those are cross-reactivities and the
immune efficiencies (non-specific en and specific ex, ey)
introduced in [13]. The immune efficiencies combine the
appropriate 'stimulation' and 'clearing' coefficients
against the product of 'immune decay' and 'parasite
growth' into a single nondimensional parameter.

System (1) can be considered a 'multi-prey, multi-preda-
tor' model of parasites and immune effectors, or alterna-
tively as 'immune-mediated' competition between
parasites x and y. The outcome of such competition
depends on phenotypic traits with respect to the host
immune response, as expressed through the essential,
non-dimensional parameters above (cross-reactivities and
immune efficiencies), as well as relative parasite growth rate
α = aY/aX. Note, for instance, that different parasite species
may differ in replication rates (aX ≠ aY) and show low
cross-reactivity, while different "strains" of a species (e.g.
drug-sensitive or drug-resistant/tolerant) may be more
strongly cross-reactive

Basic pharmaco-dynamics of drug treatment
The next development is a simple pharmaco-dynamic
model for a single parasite phenotype. The degree to
which drug treatment reduces the growth rate of a given
parasite depends on both the pharmacokinetic character-
istics of the drug and the sensitivity of the parasite to the
drug. Key assumptions are that the phenotypic cost of
drug resistance is a lower intrinsic growth rate in the
absence of drug, and that the drug-induced reduction can
be approximated from the basic drug parameters and the
frequency of (periodic) treatment. The effect of 'heavy
treatment' may be to remove the more sensitive strain
completely, or, for repeated treatment, with superinfec-

tion, to tip the effective relative growth rate α in favour of
x (below its critical levels α1,2, explained in the following
sections), releasing the more resistant strain from compet-
itive constraints.

The pharmacodynamic model adopts the basic premises
of [14]:

(i) after intake, drug concentration decays from its initial
dose d0 at an exponential rate d(t) = d0e-βt (for simplicity,
blood and tissue decay are not distinguished);

(ii) the drug removes parasites through a 'clearing func-
tion' Bφp(d/dS), where B denotes the maximal clearing
rate, dS the parasite 'sensitivity threshold' (often denoted
d50, as it clears parasite at 50% maximal rate), and φp(z) –
a sigmoid function φ = φp(z) = zp/(1 + zp) with a suitable
Hill exponent p.

A large p in φ means that the clearing rate remains rela-
tively steady ≈ B over a wide range of drug concentrations,
provided that d stays above d50. For the numeric simula-
tions below, the exponent p = 3, close to its estimated
value for mefloquine [15].

The resulting dynamic treatment model [14] with con-
stant parasite growth and a source (inoculation) S, takes
the form

 = a[1 - bφ(D(t))]x + S(t)  (2)

where D(t) = d(t)/dS is the dimensionless drug concentra-
tion, and b = B/a the relative parasite clearing rate. Two
special cases are:

(i) D(t) =  – for a single dose administered at

t0, written in terms of a dimensionless initial dose D0 = d0/

dS Ŭ 1;

(ii) a periodic function (equation 5; presented below) for
multiple applications with period T.

Equation (2) contains the essential pharmaco-kinetics of
drug (the relative parasite clearing rate b and 'clearing pat-
tern' φ), as well as its pharmaco-dynamics (initial dose and
the frequency of treatment encoded in D(t)).

Drug treatment will enter system (1) or its rescaled version
(3) as additional attrition terms: bX/Yφ(DX/Y(t)) in the x, y
equations. Two phenotypes are assumed to have different
drug-sensitivities, with x the more tolerant/resistant and y
the more sensitive strain. Hence the different clearing
coefficients, bX <bY (to indicate higher maximal removal
rate of y), and different drug-thresholds, expressed

x
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through their relative initial dosages, DX <DY (y being
cleared at lower concentrations of drug, compared to x).
Thus strain y has a higher natural growth rate, α = aY/ax >
1, and is competitively superior in the absence of drug,
but, as shown below, drug treatment can offset this advan-
tage.

Results
Analysis of stationary equilibria
The analysis at this stage is meant to outline the long-term
effect of parasite-immune interactions. In particular, it
attempts to predict the resulting parasite densities (long
term 'outcome of competition') through the basic host
parameters (growth rates, immune efficiencies, cross-reac-
tivities), and does not yet involve drug treatment.

The rescaled system (1) with drug treatment represented
by time-dependent concentration D = D(t) is given by a
coupled differential system

It depends on several dimensionless parameters: fever effi-

ciency , cross-reactivities 0 ≤ ξ, η < 1, and immune

efficiencies: , .

To facilitate analysis we drop the fever term, assuming
'subfebrile equilibria' x*, y* <<> 1 that result from (rela-
tively) high immune efficiencies en;eX,Y Ŭ 1. The equilib-

rium equations for (3) without treatment or fever, are
then reduced to the classical Volterra-Lotka system

In the absence of sources (SX,Y = 0), it has three types of
equilibria (Figure 1). Two of them, 'x-domination' (x1, 0)
or 'y-domination' (0, y2), are given by coordinate inter-
cepts of the 'linear factors' in the F-equation: x1 = 1/(eX +
en); y1 = 1/(ηeX + en), and the G-equation x2 = α/(ξeY + en);
y2 = α/(eY + en). The third possibility is a state of 'coexist-
ence' (x*, y*). The stability and qualitative behaviour of
equilibria depend on the relative position of two null-
clines (4). In our case, the equations y1 = y2 and x1 = x2 give
two critical (bifurcation) values of the relative growth-rate
(fitness parameter) α = aY/aX, namely

The three fitness regions include:

Here 'domination' in the absence of inoculation sources,
means complete removal of the competitor. The familiar
phase-plots of such competition are illustrated in Figure 1.

The presence of stationary sources of infection SX; SY > 0
(no matter how small) will shift all three types of equi-
libria to the upper-right quadrant into a stable 'coexist-
ence state', defined by two asymptotic hyperbolae (solid-
x and dashed-y, Figure 1). Now 'domination' does not
mean complete removal, but a 'dominant density', e.g. y*/
x* Ŭ 1. The use of α as the 'control parameter' is relevant
for qualitative analysis of drug intervention (below).
Indeed, given two parasites with different drug-sensitivi-
ties, drug treatment effectively lowers their growth rates,
and thus tips the outcome of competition in favour of the
resistant strain.

This qualitative analysis makes two simplifying assump-
tions – a reduced 2D model in place of the full 5D (3),
and the omission of fever. The latter has minor conse-
quences for high immune efficiencies. The dimensional
reduction (5D to 2D) maintains the equilibrium values
x*, y*, but changes their stability types somewhat, from
'2D stable nodes' (real negative eigenvalues of the Jaco-
bian matrix), to '5D spiral sinks' (complex negative eigen-
values), (see [13] for details).

Dynamic relaxation
Next, the dynamics of this baseline model are examined
by numerically computing solutions of rescaled system
(3) with and without inoculation sources, using the
parameter values described in Table 1. Some parameter
values are based on earlier work, e.g. the relative pyrogenic
clearing rate [18] and immune loss rates [12]. The essen-
tial 'uncertain parameters' are the immune efficiencies
and cross-reactivities. Because the immune efficiencies
control equilibria as ≈ 1/(en + eX,Y) we chose {en,eX,Y} suf-
ficiently large to keep equilibria below pyrogenic levels, as
expected for a typical 'asymptomatic parasitaemia'. The
exact choice of e – values makes little qualitative differ-
ence, provided equilibria stay below the 'pyrogenic level'
xp, but could affect the pharmacokinetic parameters
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(doses) for parasite clearing, as explained in the next sec-
tion.

The role of cross-reactivities in the equilibrium analysis
above is to narrow (ξ, η ≈ 0) or widen (ξ, η Ŭ 0) the α -

range of coexistence. Intermediate values are chosen to
indicate a relative genetic (antigenic) proximity of the
competing strains.

Table 1: Basic parameters for dynamic model (3)

Fever: Hill exponents, clearing efficiency and pyrogenic parasitaemia levels Immune efficiencies Cross-reactivities Immune decay rate/half-life

q = l2; f0 = F0/aX = 1.2
xp = yp = 1

en = 3
eX = eY = 10

ξ = .4
η = .3

μn = .45(≈ 1.5 days)
μs = .014(≈ 50 days)

Phase-plane of dynamical system (4)Figure 1
Phase-plane of dynamical system (4). (a) Phase-plane views of 3 regions of system (4) in terms of relative growth rate α : 
y-domination (equilibrium y2, left); coexistence (equilibrium I, middle) and x-domination (equilibrium x1, right). Stable equilibria 
are marked in black. In all 3 cases, adding sources (inoculations) produces a stable coexistence equilibrium (intersection of 
asymptotic hyperbolae). The two solid lines are x-nullclines F(x, y) = 0, the two dashed lines are y-nullclines G(x, y) = 0. (b) 
Equilibria (4) for stationary sources SX,Y (x(ε) – solid, y(ε) – dashed), with the parameters of Table 1, in 3 different ranges of α, 
as functions of EIR, 0 <ε < 100. Two sets of curves on each plot correspond to different partitions of EIR among strains: (i) pX 
= pY = .5 (outer curves), (ii) pX = .9; pY = .1 (inner 'x-biased' curves). The two solid lines are x-strains, and the dashed lines are 
y-strains.
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Under this choice of parameters the predicted thresholds
for the relative growth rate α (5)-(6) become α1 = 2.17; α2
= .54. Also introduced is a lower cut-off for parasite densi-
ties, xc = 10-11 (in dimensionless units), assuming a pyro-
genic threshold x0 = 104/μl, corresponding to a density of
10-7/μl (i.e. fewer than one parasite for the entire blood
volume of an adult). If either of the densities x,y falls
below xc it is set to zero – i.e. complete clearing.

The inoculation sources are considered either stationary,
of strength EIR × "injected density s0", or 'random,' with
exponentially distributed waiting times and mean spacing
EIR ('entomological inoculation rate,' i.e. the frequency of
infectious bites by mosquitoes). The 'injected density' is
estimated in terms of the parasites (primary merozoites)
released from the liver, assuming a mean of 10 parasites
(sporozoites) per mosquito inoculum, with each sporo-
zoite developing into 30,000 primary merozoites, thus a
total 300,000 per 4.5 liters, or 0.67/ml. This gives a
dimensionless value, s0 = 6.7·10-5. The infection source is
distributed among the two phenotypes in different pro-
portions meant to reflect parasite prevalences in the com-
munity: pX + pY = 1. Dynamic simulations with stochastic
S use relatively low EIR ε = .3/day, due to computational
constraints, but the use of equivalent stationary (mean)
sources allows sampling of a broad range of EIR. Figure
1(b) demonstrates the effect of stationary EIR on x,y-equi-
libria. It remains marginal for a wide range of EIR, but
high values O(10 – 100) can bring about a significant
shift.

Figure 2 shows computed solutions of system (3) with the
parameters of Table 1 in two cases: (a) 'y-dominant' α >
α1; (b) x,y coexistence. Solid curves on each of the upper
panels show x, and dashed curves y; the same marking is
used for their specific (SS) effectors on the lower panels,
while the non-specific (NS) is marked by thin curves. In
each case three solutions are compared, marked in shades
of gray: black corresponds to the unperturbed system (i.e.
no inoculation), dark gray has steady sources SX = pXεs0; SY
= pYεs0, and light gray has random sources of the same
proportions. In case (a) inoculation has a marginal effect
on the 'dominant' species, as its equilibrium level O(10-1)
stays far above the source level O(10-4), but the 'losing
side' gains in strength at a level comparable to the effective
stationary source (Figure 2(a): 2 gray 'x-curves'). Indeed,
the complete clearance of x by day 30 in plot (a) (black 'x-
curve') is changed into the 'quasi-equilibrated' value x* ≈
10-2y*. Note also that random inoculation paths closely
follow the 'mean inoculation' curves. This observation is
used to replace (the computationally extensive) 'stochas-
tic source' with its stationary mean.

For coexistence, in Figure 2(b) the equilibrium values
show little change, but the amplitude and phases of

'damped oscillations' are shifted during the initial stage.
Overall the dynamic simulations confirm the earlier con-
clusion that inoculation (stationary or random) will
change the outcome of competition to a coexistence pat-
tern, though the two equilibria may differ by orders of
magnitude.

Single drug treatment

The simple growth-treatment model (2) for a single para-
site without immune response allows exact analytic solu-
tion, expressed through the multiplier function

,

This form allows one to estimate the drug efficacy (maxi-
mal burden reduction) and the time required to reach it.
Assuming zero inoculation (S = 0) in (2) we get

in terms of its relative clearing b > 1, Hill exponent p, drug
decay-rate β, and (relative) initial dose D0. The (dimen-
sionless) clearing level for malaria is set at xc = 10-11 (rela-
tive to the pyrogenic xp = 1), i.e. less than one parasite in
the entire 4.5-liter blood volume of an adult. Figure 3
shows (upper left) the maximal parasite removal as a
function of the relative initial dose D0 for three hypothet-
ical drugs with decay rates β = 0.2/day, 0.1/day, and 0.05/
day; (upper right) the corresponding clearing time tmin;
(lower left) the resulting solutions x(t) for several initial
doses D0. The dashed line at the bottom is the hypotheti-
cal (relative) clearing level for malaria parasites. In partic-
ular, the decay rate 0.05/day (close to mefloquine) would
require an initial dose d0 = 2d50 to kill the parasites by day
18. The lower right plot compares the effect of a drug with
β = 0.05/day on two hypothetical strains: 'sensitive' (thin
line) with clearing rate bY = 3 and relative initial dose DY =
4, and 'resistant' (thick line) with bX = 1.5, DX = 2. So both
parameters (parasite clearing rates and sensitivity thresh-
olds) differ by factor 2. Note that the different relative D's
do not imply different actual doses, as both strains inhabit
the same 'treated host', but rather refer to different sensi-
tivity thresholds d50 for x and y.

This method also works in the case of zero parasite growth
(a = 0), when equation (2) is solved for initial value x0.

The corresponding solution x(t) (7) would then stabilize
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at its minimal value, . So the

'clearing dose' to bring parasitaemia down from x0 below

xc is estimated by

While immune regulation complicates the dynamics of
drug treatment beyond the simple model (2), it still

affords some clues for possible treatment strategies.
Indeed, sustained immune levels (I*; J* > 0) in the 'mixed'
system (3) or a simpler 'single-strain' version would effec-
tively lower the parasite growth rate from its natural value
a to a' = a(1 - cnI* - cXJ*). This would automatically raise
the clearing drug-efficiency for such an 'immune-compe-
tent' host from its 'natural' value b to b' = B/a', hence to
higher clearing in a shorter time, as illustrated in Figure 3
(lower left panel). This result supports earlier findings
[9,10] on the positive impact of acquired immunity on
antimalarial therapies.

x x Dp b p

min
/

/ 0 01= +( )− β

D x xc
p b p

0 0

1
1 9≥ ( ) −⎡
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⎦⎥ ( )/ / /β

Dynamic historiesFigure 2
Dynamic histories. Three long-term dynamic histories for 2 cases of Figure 1 over the time range 0 <t < 250 days (horizon-
tal axis). The top plot in each panel shows dimensionless densities of two strains (x(t) – solid, y(t) – dashed), relative to pyro-
genic levels xp = yp = 1; the bottom plot shows their immune effectors, I(t) – thin, J(t) – solid thick, K(t) – dashed, weighted by 
their respective efficiencies en;eX;eY. For each panel, the shading (black, heavy gray, light gray) corresponds to the case of 'no-
source', 'stationary source', 'stochastic source'. Note that 'y-curves' (dashed) are essentially the same in all 3 cases, leaving y 
unaffected, while x is strongly affected by the 'stationary' and 'random' sources.
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Unlike this 'simple growth' (2), however, dynamic
immune regulation (with or without treatment) renders
system (3) unsolvable, so it is analysed using numeric
simulations. The analysis of treatment for mixed pheno-
types starts with a single drug dose applied at the peak par-
asitaemia, close to the pyrogenic threshold, and considers
two phenotypes with the parameters of Figure 4(a), where
y dominates and, in the absence of inoculation, drives x to
extinction. As above we assume different 'drug clearing
rates' and sensitivity thresholds for x,y: bX = 1.5;bY = 3; dX =
2dY (so the x- strain exhibits substantially higher resistance
than y). The drug is introduced by day 10, when the 'fast'
y reaches its peak parasitaemia. The outcomes are shown
in Figure 4 for two different values of the relative initial
dose DY = d0/dY. For DY = 1.5 (left plot) both x and y are
brought to their minima by day 20 and 28 respectively,
with x taking a temporal lead through day 45. Then the

competitive dominance of y is restored, and, as in Figure
4(a), leads to the demise of x by day 70. Increasing the
dose to DY = 1.85 is sufficient to eliminate y, making x the
sole survivor, by day 27. Note that DY = 1.5 or 1.85 exceeds
the predicted value D0 = 1.37, if one applies a 'neutral-
growth' model (2) initiated at the pyrogenic level x0 = 1.
This example demonstrates important differences
between the 'balanced states' of nonlinear interacting par-
asite-immune-drug systems and the simple linear-growth
system (2) often used in pharmacokinetic estimates of
dosage.

Thus the above has shown how a high single-treatment
dose can lead to the dominance of an otherwise less-fit
drug-resistant/tolerant phenotype, in the absence of inoc-
ulation. Clearly, the introduction of a y-inoculum follow-
ing such treatment would restore 'y-domination,' as

Pharmaco-dynamics of the simple 'growth-treatment' modelFigure 3
Pharmaco-dynamics of the simple 'growth-treatment' model. The upper-left panel shows maximal parasite reduction 
(8) as a function of (relative) initial dose D0 for fixed clearing efficiency b = 3 and several decay rates β. The upper right panel 
shows the corresponding time to attain 'maximal clearing' (lowest parasite density). The lower left panels plot exact solutions 
x(t) for fixed b = 3, three choices D0 = 2,3,4, and two decay rates β = .2 (thin curves) and β = .1 (thick curves). Only one of 
them (β = .1; D0 = 4) leads to complete clearing by day 12. The lower right panel compares treatment outcomes of a sensitive 
strain (thin) and resistant strain (thick) at the decay rate β = .05, with clearing rates bX = .5bY; DX = .5DY.
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predicted in Figure 4(a). Successful malaria prophylaxis or
treatment in endemically-exposed hosts typically requires
repeated doses.

Repeated periodic treatment
Now the effect of multiple, periodically-spaced drug doses
at time intervals T is explored. The drug concentration and
its 'clearing function' become periodic as well, namely,

where Mod(t,T) designates a periodic linear function t on
interval [0,T]. Turning to the clearing function φ(D(t)),
observe that a high Hill exponent of φ(z) allows φ(D(t)) to
be approximated by a periodic step-function, taking value
1 on interval [0, TM] and 0 on the complimentary range
[TM,T], with TM ≈ ln D0/β. Hence as the first-order approx-
imation the periodic φ(D(t)) can be replaced by its mean
value,

where D0 is either DX or DY. The long-term effect of such

treatment is to effectively lower the parasites' growth-rates

to aY - bY  and aX - bX . That in turn can modify (reduce)

the basic relative growth-rate parameter 

used in the qualitative analysis of equilibria (see Figure 5).
Based on the comparison with the stationary (mean) case,

it is to be expected that α <α1 should change y-domina-

tion to a (periodically-modulated) coexistence pattern,

while α <α2 would bring about 'x- domination'.

Therefore approximate formula (11) is applied to get
crude estimates of the treatment frequency for the estab-
lishment of the resistant strain. Assuming for simplicity bX
= 0 (fully-resistant strain), the equation is obtained for
two 'critical' treatment frequencies/periods, TC (for coex-
istence) and TR (for 'x-domination'),

in terms of pharmacokinetic parameters β and ,

initial dose D0, and relative growth rate . As in sec-

tion 1 the sensitive strain y is assumed competitively supe-

rior in the absence of drug, i.e. α > α1, and we expect the

following long-term outcomes:

(i) treatment frequency T > TC will maintain y-domina-
tion;

(ii) TC > T > TR will bring about coexistence, with alternat-
ing x,y phases;

(iii) T <TR will lead to dominance by the resistant x-strain.

To test these predictions the y-dominant case of Figure
2(a) is subjected to random inoculation with EIR = 0.3/
day, distributed among 2 strains in proportions pX = .6; pY
= .4 (60% of inoculations are x-type, 40% are y). Periodic
treatment (10) is then applied to such a host, and a range
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Single treatmentFigure 4
Single treatment. The effect of single treatment (shaded region at the bottom) on the x-y competing pair of Figure 2(a) with 
different initial dose DY = D0 = 1.5 vs. 1.85, over an 80-day time span. The upper plots show (as above) the rescaled x,y densities 
(x-solid, y-dashed), the lower plots the corresponding immune effectors (J,K – solid/dashed, I – thin line).
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Effect of periodic treatment on inter-strain competitionFigure 5
Effect of periodic treatment on inter-strain competition. The outcomes vary from long periods of 'y-domination' (top), 
to a coexistence pattern (middle) to persistent 'x-domination' (bottom). The upper plot has relatively short windows of 'x-
domination', the lower one has persistent 'dominant x' by 1 or 2 orders of magnitude over y. The treatment cover is shown as 
gray areas; curve marking and axes are the same as Figure 4.
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of values of period T sampled, using the pharmacokinetic
parameters of the two strains as in the previous section, bX
= 1.5;bY = 3; dx = 2dY.

Figure 5 shows the resulting outcomes, ranging from y-
dominance at period T = 120 days, to alternating x or y
dominance (T = 45 days; 'periodic coexistence'), to x-
dominance at T = 20. The inoculations, though barely vis-
ible in plots, still play a role here. Indeed, without them
the process would terminate (at T = 120) after the first two
cycles. Namely, the first cycle would drop 'treated y' to
near-extinction, after which it would rebound, at a lower
level, and drive x to extinction (Figure 5, left), but a sec-
ond treatment would y altogether. These numeric results
confirm the earlier qualitative predictions on the 'domi-
nance – coexistence' transition, but the 'critical' periods
TC;TR differ from the simple estimates (12).

The effect of treatment on mean parasite densities is dem-
onstrated by taking a 'sensitive + fully resistant' pair (with
a different set of parameters) and examining the period-

average values of parasitaemia, ,

 and their dependence on T. The

relative initial dose 2.5 <DY < 6 is also varied. In each plot

in Figure 6, observe that high treatment-frequency (short
T) drives y to extinction and leaves the dominant x at (or
close to) its equilibrium value. But an increased initial
dose DY = D0 extends the frequency range for x-domina-

tion, from T ≈ 42 days at D0 = 3.5, to T = 60 at D0 = 6. It

can be shown that the competition model (3) with peri-
odic coefficients (due e.g. to 'periodic treatment') has a

x T
T

x t dt
nT

n T( ) = ( )+( )
∫

1 1

y T
T

y t dt
nT

n T( ) = ( )+( )
∫

1 1

Time average densitiesFigure 6
Time average densities. Periodically treated mean values ,  (thick/thin) as functions of period 35 <T < 120 for increased 

initial dose 1.5 <DY < 3.5. Increased DY and frequency 1/T facilitate the onset of drug-resistance (dominant ), e.g. the transi-
tion period TR = 30 for DY = 1.5, is shifted towards TR = 49 for DY = 3.5. Dashed lines indicate untreated equilibria for y (thin) 

and x (thick). The parameter α = 2.06 > α1 assures 'y-domination' for the untreated case.

20 30 40 50 60 70 80

0.05

0.1

0.15

0.2
D0 2.5

naeM
x,
y

20 30 40 50 60 70 80

0.05

0.1

0.15

0.2
D0 3.5

naeM
x,
y

20 30 40 50 60 70 80

0.05

0.1

0.15

0.2
D0 1.5

naeM
x,
y

20 30 40 50 60 70 80

0.05

0.1

0.15

0.2
D0 2.

naeM
x,
y

x y

x

Page 11 of 15
(page number not for citation purposes)



Malaria Journal 2006, 5:86 http://www.malariajournal.com/content/5/1/86
stable 'periodic equilibrium' – a counterpart of the stable
'stationary' equilibrium.

The above shows that persistent treatment creates a new
'effective environment' that could significantly alter the
time-averaged distribution of phenotype densities within
a host. Provided that such 'over-treated' hosts make up a
sizable fraction of the population and that transmission
to mosquitoes is in some way proportional to parasite
densities, this could further promote the spread of drug
resistance through the community.

Stationary treatment

The above has demonstrated some critical effects of peri-
odic drug treatment and superinfection on immune-
mediated competition. Many applications require a more
'exact' account of the relationships among all these fac-
tors, however. Specifically, this section examines the
effects of (i) drug efficiencies bX <<> bY, (ii) treatment

intensity, as measured by the (period average) factor 

(11), and (iii) superinfection sources {SX, SY}, through

analysis of an (approximate) stationary system obtained by
averaging the sources and the treatment regimen. The
resulting stationary model allows all three factors to be
incorporated in a simple and efficient way.

The 'averaging' proceeds by replacing the stochastic inoc-
ulation source by its steady (mean) value (SX, SY) = (pX, pY)

, where  is the product of EIR and 'mean inocula'
(merozoite release s0), and (pX, pY) – the relative fractions

of the two phenotypes. By the same pattern we replace the

'periodic drug function' φ [D(t)] with its mean value

(treatment intensity) (11),  = (T,D0); 0 ≤  ≤ 1, con-

sidered as a function of the initial dose DY = D0 and treat-

ment period T. The resulting 'average' equilibrium system
is similar to (4),

But somewhat different rescaling and notations are used
for the 'x,y'-intercepts (designated here by {mi, ni}), and

for the stationary (mean) sources (S1,S2) = (αpX, pY)S of

relative strength S = EIR × s0/aY, where α = aY/ax – the

above 'fitness' parameter. All three factors (intensity ,

clearing rates bx <<> bY, and sources {Si}) enter (13)

explicitly. The resulting 'stationary equilibria' of (13) are
expected to approximate the stable periodic (or quasi-
periodic/stochastic) equilibria of the original system.

The exact solution of the 4-th order algebraic system (13)

is given by (grossly cumbersome) functions: x = x* ( ,

S,bX,bY) and y = y* (φ,S,bX,bY). (Note that these can be

brought into a more manageable 'analytic form' under
simplifying assumptions, e.g. a 'highly sensitive' y-strain.)
These can easily be manipulated, however (for numeric
and graphic purposes), by any symbolic algebra package
(here Mathematica 5). Having four independent parame-
ters in x*, y* some of them can be fixed (e.g. clearing rates
bY;bX – for the drug-sensitive/resistant phenotypes), to

examine the effect of the treatment intensity 0 <  < 1,

and/or the source strength S.

Figure 7(a) shows equilibria x*,y* as functions of treat-

ment intensity 0 <  < 1, and Figure 7(b) does the same

in terms of the source strength 0 <S < 3. In the upper plots
(a) we fix bY = 10 (for the drug-sensitive strain), and take

three dispersed values of the source strength S. The lower
plots (b) show a similar exercise for x*,y* as functions of
source strength S for three treatment intensities. Three
solid curves on each panel correspond to three choices of
bX : highly drug-resistant bX = .25 (top solid curve), mod-

erate bX = 1 (middle curve), and relatively sensitive bX = 4

(bottom curve). The overall effect of increased intensity

 is to bring down y* (by several orders of magnitude),

while maintaining near-stable x*. In the upper panel (a),
x becomes dominant at relatively low treatment levels;

this threshold c increases with source strength (0 <S <

3), but remains confined within a narrow range .1 < c <

.2. In the lower panel (b), equilibria increase with the

source strength S (as expected), and, at φ = .5, the x-strain
becomes fully dominant. Note that in both panels widely
divergent drug sensitivities bX of the x-strain have only

marginal effects on the behaviour of y-equilibria (either its

 – or S-dependence).

This suggests that treatment intensity is more crucial for
the onset of resistance than inoculation frequency. The
increased source by itself (at all treatment levels) would
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raise equilibria but diminish their relative difference: x*/
y* ≈ 1 at high S.

Discussion
The above has examined how immune-mediated compe-
tition between parasites is perturbed by a drug to which
the competing parasites are differentially resistant, and
how drug dose, drug timing, and inoculations of new par-
asites affect these interactions. For clarity, the examples
focused on the situation in which, in the absence of drug,
the drug-sensitive strain is numerically dominant in
immune-mediated competition, but the model spans the
full range of possibilities. That is, while the outcome of
immune-mediated competition is either that one pheno-
type dominates, or the phenotypes coexist, further possi-
bilities arise when phenotypes of differing drug sensitivity
are subjected to treatment and superinfection. Figure 7
illustrates possible outcomes for a range of sensitivities,
drug efficacies, treatment intensities, and superinfection
frequencies, and shows the potential for comparing
model predictions across the range of possibilities that
may arise in empirical studies.

Actual frequencies of parasite inoculation vary with the
size of the vector mosquito population, and, like the com-
position of inocula, with the prevalence and characteris-
tics of parasites and immunity in the human population.
The baseline results reflect an inoculum that initiates an
infection, i.e. after any previous infections have cleared.
The parasites in superinfecting inocula are in general
greatly outnumbered by those in an ongoing infection,
particularly when the ongoing infection is at or near its
peak. In the model, parasite inoculation enters either as a
random (stochastic) source, or as its stationary (mean)
value. The latter allowed exploration of a broad range of
source strengths (EIR): overall, increased strength drives
both equilibrium densities (or their 'period means') up,
but increased intensity and efficacy of treatment eventu-
ally tips the outcome from the strain that is more 'fit' in
terms of a host immune response to the one that is more
'fit' in terms of a drug.

What is transmitted from an infected human to a mos-
quito, and onward, poses another complex set of ques-
tions, but our results here seem to support the hypothesis

Equilibria of stationary modelFigure 7
Equilibria of stationary model. Three plots of panel (a) show equilibria of system (13) (x-solid, y-dashed) as functions of rel-
ative treatment intensity 0 <φ < 1, for selected values of the superinfection source S. Panel (b) does the same in terms of the 
variable 0 <S < 3 (source strength) for 3 selected treatment intensities. Three solid curves on each plot (in descending order) 
correspond to 3 values of clearing rate for resistant strain: bX = 0.25 (highly resistant), 1 (medium); 4 (low).
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that immune-mediated interactions can shape the spread
of drug resistance, even if the phenotypic traits are not
linked genetically [19,20]. The fitness cost of drug resist-
ance, considered here simply in terms of replication rate,
is likely to be multifactorial in a population of hosts het-
erogeneous with respect to infection histories and
immune profiles [21]. It would be interesting, in future
work, to explicitly consider the genetics of parasite drug
resistance, with respect to both origin and spread, and the
common use of anti-malarial drugs to "treat" non-malar-
ial fevers or other symptoms.

Antigenic variation can also play a role in parasite compe-
tition. From the standpoint of this model the only poten-
tially relevant effect is a change of immune stimulation/
clearing, since parasites' intrinsic replication or drug sen-
sitivities should not be affected. A simple way to accom-
modate antigenic variation (in lieu of more complicated
'multi-strain/multi-clone' models [22,23]) is to make the
specific immune clearing function to change in time c(t).
A drop in c can be thought of as resulting from a new var-
iant of 'low cross-reactivity' to prior antibodies, taking
over and growing into a dominant strain. As the clone
keeps replicating, specific antibodies develop, and func-
tion c(t) gradually 'relaxes' to its normal (relatively high)
value. Such a 'random drop + relaxation' form of c(t) was
proposed in [13].

Time dependent c(t) would make the model non-station-
ary, the same way as the 'variable inoculation source' or
'non-stationary treatment'. In each case the strategy here
was to 'average variable coefficients' over time. Applying
the same 'averaging methodology' to variable clearing
rates would replace them with somewhat lower 'mean val-
ues' { X; Y }, and the new 'effective' c would enter for-

mulae and analyses. Indeed, lower {eX;eY} (proportional

to { X; Y}) would change (decrease) 'fitness thresholds'

{α1,α2}, and drive up equilibrium levels of x,y (as both

are cleared less 'efficiently' on average).

Thus the implication of antigenic variation is that degrees
of cross-reactivity between parasites may fluctuate during
the course of an infection, and its net effect would be to
(effectively) lower the immune efficiencies, and change
the related equilibria, the fitness ranges of 'domination
and coexistence' etc. The major points of interest here
have to do with the relationship between the parasite enti-
ties, however, which would shift if antigenic variation dif-
fers between them in some systematic, biased way, which
would then be expressed in terms of relative competitive
advantage. Thus most of our results would maintain their
qualitative form, but some quantitative changes on the
predicted outcomes of treatment would be expected (Fig-

ures 6, 7). It might prove interesting, in future work, to
explicitly consider the extent to which antigenic variation
gives rise to fevers which give rise to drug-taking, for
instance.

Apparently no previous work has examined these critical
within-host interactions between parasite, immune-
response and drug dynamics in a malaria infection, but
several models have touched on important aspects of
these analyses or on closely-related issues. Davis and Mar-
tin [24] compared several simple descriptive models of
parasite clearance dynamics during curative drug treat-
ment. Based on the results of pharmacokinetic-pharmaco-
dynamic models, Hoshen et al. [25] argued that well-
timed follow-up doses might eliminate even resistant phe-
notypes, and Simpson et al. [15] that, to prevent resist-
ance, larger doses should be deployed as standard at the
first introduction. While these models did not consider
host immune responses or parasite replication, Austin et
al. [14] noted that "most drugs act best against replicating
pathogens in combination with effective immunological
responses," joined a pharmacokinetic model to a simple
model of pathogen-immune dynamics [26], and derived
drug doses and frequencies necessary to reduce the aver-
age lifespan of infected RBCs below a critical threshold.
Their model did not consider drug- or immune-mediated
competition between strains, however.

Gatton et al. [27] modeled the risk of a drug-resistant
mutant arising during an infection, in terms of the rate at
which a single parasite genotype switches between anti-
genic variants, the response rate of the corresponding spe-
cific antibody, and a simple time-of-treatment model.
They found mutants most likely to arise in hosts lacking
any such specific antibodies, in hosts treated before anti-
body response to a switch of variants, and, in recent work
[28], in hosts taking drugs with long half-lives or in sub-
curative doses. Hastings [29] recently developed parasite-
population-genetic models that represent competing
forces behind shifts in equilibrium gene frequencies in
terms of within-host averages and proportions; though
these models do not yet encompass considerations of
immune responses or other dynamic factors, he empha-
sized that "intense competition between separate malaria
clones co-infecting the same human can generate complex
dynamics," and that "the dynamics underlying the evolu-
tion of antimalarial resistance may therefore be much
more complex than previously realized." This appears
irrefutable, hence the model above was developed to
address these "complex dynamics."
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