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Abstract
Background: Timely and accurate information about the onset of malaria epidemics is essential
for effective control activities in epidemic-prone regions. Early warning methods that provide
earlier alerts (usually by the use of weather variables) may permit control measures to interrupt
transmission earlier in the epidemic, perhaps at the expense of some level of accuracy.

Methods: Expected case numbers were modeled using a Poisson regression with lagged weather
factors in a 4th-degree polynomial distributed lag model. For each week, the numbers of malaria
cases were predicted using coefficients obtained using all years except that for which the prediction
was being made. The effectiveness of alerts generated by the prediction system was compared
against that of alerts based on observed cases. The usefulness of the prediction system was
evaluated in cold and hot districts.

Results: The system predicts the overall pattern of cases well, yet underestimates the height of
the largest peaks. Relative to alerts triggered by observed cases, the alerts triggered by the
predicted number of cases performed slightly worse, within 5% of the detection system. The
prediction-based alerts were able to prevent 10–25% more cases at a given sensitivity in cold
districts than in hot ones.

Conclusions: The prediction of malaria cases using lagged weather performed well in identifying
periods of increased malaria cases. Weather-derived predictions identified epidemics with
reasonable accuracy and better timeliness than early detection systems; therefore, the prediction
of malarial epidemics using weather is a plausible alternative to early detection systems.
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Background
Malaria epidemics are reported frequently and have
caused high morbidity and mortality among all age
groups in the African highlands [1-4]. Early detection and
accurate forecasting of the time, place and intensity of
these epidemics is important for emergency preparedness,
planning and response [5,6]. Considerable efforts are
being made to promote, develop and implement early
warning systems for malaria epidemics in Africa [5,7]. Ide-
ally, public health and vector control workers would have
access to a system that alerts them when substantial num-
bers of excess cases are expected, and such alerts should be
sensitive (so that alerts are reliably generated when excess
cases are imminent), specific (so that there are few "false
alarms") and timely (so that there is adequate lead time to
act). Generally, each of these performance characteristics
is enhanced at the expense of another. The value of inter-
ventions – such as larviciding, residual house spraying
and mass drug administration – to control malaria epi-
demics has been documented [8]. However, due to the
explosive nature of malaria epidemics, the usefulness of
such interventions in epidemic settings depends on timely
information about the onset of a severe epidemic.

Early detection systems, which are used to detect epidem-
ics once they have begun, can correctly identify periods
that are defined by expert observers as "epidemic," albeit
with varying specificity. A number of such systems have
been proposed or implemented. For example, WHO has
advocated the use of alerts when weekly cases exceed the
75th percentile of cases from the same week in previous
years [9] and other methods, based on smoothing or par-
ametric assumptions, have also been considered [10-12].
However, an early detection system, which generates
alerts once unusually high case numbers are already
observable, will be useful for targeting interventions only
if it identifies epidemics at an early phase, when there is
still time to take effective action [13] and if the epidemics
persist (and indeed grow) over time so that action taken
after the warning can still have an effect. It was previously
shown, using weekly case numbers from 10 districts in the
Ethiopian highlands over approximately 10 years, that
simple weekly percentile cutoffs used for early detection
are capable of identifying periods with unusually high
malaria incidence, and that interventions that take effect
within two weeks of such alerts could have a substantial
impact in reducing excess cases [14].

While early detection systems appear to provide timely
information about the onset of severe epidemics, they
intrinsically trigger alerts only when unusual transmission
is already underway. Another approach, known as "early
warning," attempts to predict epidemics before unusual
transmission activity begins, usually by using weather var-
iables that predict vector abundance and efficiency, and

therefore, transmission potential [6,15-18]. The advance
notice provided by an early warning system could allow
action to be taken earlier in the course of the epidemic, or
could increase the span of time available to undertake
control measures before the predicted excess cases occur.
A number of authors have used weather factors to attempt
to predict malaria epidemics [19-24], and Teklehaimanot
et al. [25] showed that polynomial distributed lag (PDL)
models incorporating lagged effects of minimum temper-
ature, maximum temperature and rainfall could mimic
seasonal patterns of malaria incidence in the same ten
sites for which early detection algorithms were evaluated.
Because the significant weather predictors of malaria cases
are lagged by four or more weeks, such prediction systems
may, in principle, provide a means of anticipating unu-
sual malaria incidence with more lead time than early
detection methods.

Here, an attempt to combine these avenues of previous
work is described, using modified versions of previously
described models based on weather factors to provide pre-
dictions of Plasmodium falciparum cases in these 10 dis-
tricts of Ethiopia, and evaluating thresholds that trigger
warnings. The hypothesis tested here is that the use of pre-
dicted cases (rather than actual cases, as in our previous
work on early detection) would reduce the precision of
the alert thresholds (resulting in alerts whose timing was
less well matched to periods of excess cases than those
generated by early detection), as the price of obtaining the
alerts with greater advance notice. In fact, the early warn-
ing system based on predicted cases performed slightly
worse in most cases than the early detection system, but
the performance was rarely much worse and occasionally
slightly better. These comparisons are described and their
implications for the choice of malaria prediction/detec-
tion systems in epidemic-prone areas of Africa are
discussed.

Methods
Study area and data
Microscopically confirmed malaria cases were collected
from a health facility in each of ten districts of Ethiopia
over an average of 10 years; this data set has been previ-
ously described [14]. Each of these health facilities serves
people living in the surrounding localities with few excep-
tions coming from other places. The data were extracted
(by species) from records of outpatient consultations for
the years 1990 through 2000. The analysis was restricted
to P. falciparum. The original data collected on the basis of
Ethiopian weeks (where the number of days in each week
varies between 5 and 9) were normalized to obtain mean
daily cases for each Ethiopian week [14].

Daily meteorological data (minimum and maximum
temperatures and rainfall) recorded at the local weather
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stations nearest to the health facility were obtained from
the National Meteorological Services Agency (NMSA) for
the same period. These daily data were collapsed into
weekly data to correspond with the weekly malaria cases.
The weekly mean for minimum and maximum tempera-
tures and the total weekly rainfall were calculated from
the daily records.

1) Modeling the relationship between predictors and malaria cases
The expected case numbers for a given week were modeled
using a Poisson regression with lagged weather factors, an
autoregressive term, a time trend and indicator variables
for week of the year. Biological considerations about the
interrelationship between weather, mosquito and malaria
parasite suggest that malaria cases should follow periods
of increased temperature and increased rainfall, at defined
intervals [26-28]. Thus, lags of 4 – 12 weeks for rainfall,
and 4 – 10 weeks for minimum and maximum tempera-
tures were considered [25]. In addition week and time
trend, as well as an autoregressive term (based on a mov-
ing average of the number of cases four, five and six weeks
before) were included, which is intended to improve the
prediction. Because of the Poisson regression context the
autoregressive term enters logarithmically. A 4th-degree
polynomial distributed lag (PDL) model [29] was fitted to
the data. This reduces the number of degrees of freedom
for each weather factor from the number of lags consid-
ered and circumvents some of the difficulties associated
with estimation of coefficients for multiple lags, including
instability of estimates due to collinearity of the different
lags of the same variable. The generalized form of the
model is thus expressed as:

where E(Yst) denotes expected value for the daily average

number of malaria cases at site s on week t; , ,
Rt-i, and Yst-i are the weekly minimum and maximum tem-
peratures, rainfall and autoregressive term i weeks previ-
ously; ts and Ws designate time trend and week in a year at
site s; αs represent the intercept, at site s.

2) Epidemic Prediction Strategies
For each week at each location in the data set, the number
of cases was predicted using equation (1) and data availa-
ble four weeks prior to the week for which the prediction
is made. Coefficients of equation (1) were obtained using
all years except that for which the prediction was being
made, to avoid circularity. The prediction for week t was
then made using this all-but-current-year model with
weather and case data for the weeks up to week t-4. The

predicted number of cases is thus estimated using the fol-
lowing model:

where  represent the predicted cases for year j; ,

, , , ,  and  are parameter

estimates (for intercept, minimum and maximum tem-
perature, rainfall, time, week and autoregressive term

respectively) from all years except j; , ,

, tj,  and  are minimum and maximum tem-

peratures, rainfall, time, week and autoregressive term
respectively from year j.

3) Evaluation of the prediction system
Expected number of cases to be used as threshold levels
In early detection algorithms, actual cases in a given time
period are typically compared against some threshold
level of cases to determine whether excess cases have been
observed. Often, the threshold level represents an upper
bound on "normal" case numbers from previous years. If
this threshold level is crossed (perhaps, depending on the
system, for several consecutive weeks), an alert is gener-
ated [14]. Such systems for early detection have been eval-
uated previously [14].

In this study of the usefulness of prediction systems for
generating alerts, historically based thresholds were simi-
larly used – weekly percentile (defined as a given percen-
tile of the case numbers obtained in the same week) or
weekly mean with standard deviation (defined as the
weekly mean plus a defined number of standard devia-
tions) algorithms as threshold levels [14] – but generated
alerts when predicted cases for a week exceeded the
threshold. The thresholds for each year were calculated on
the basis of all other years in the data set for a given health
facility, excluding the year under consideration. In each
case, an alert was triggered if the defined threshold was
exceeded by the predicted number of cases for two consec-
utive weeks (this choice is intended to improve the specif-
icity of the alert system for any given threshold). If
another alert was triggered within six months, it was
ignored, on the assumption that intervention following
the first alert would prevent another epidemic within the
next six months. Algebraic descriptions of the thresholds
are given below:
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Threshold is exceeded when , where Tsij = Qpsij,

where Qpsij represents the pth (p = 70, 75, 80, 85, 90, or 95)
percentile of observations from week i at facility s in years
other than j.

2. Weekly mean with standard deviation.

Threshold is exceeded when , where Tsij = µsij +

βσYsij, where β = 0.5, 1.0, 1.5, 2.0, 2.5 or 3.

Measure of performance of each alert
The effectiveness of alerts generated by our four-week-
ahead prediction system was compared against that of
alerts based on a detection system using actual cases. Since
the prediction system generates predicted numbers of
cases four weeks ahead of time, this permits implementa-
tion of control measures four weeks earlier than under a
detection system. On the other hand, one would expect
that the accuracy of prediction might be less than that of
detection. The comparisons were designed to assess this
trade-off between the ability to act earlier in possible epi-
demics and the possible loss of accuracy.

A method previously described [14] was used to compare
different alert-generating procedures on a scale that
reflects their operational uses. Briefly, this method quan-
tifies the usefulness of a particular alert-generating system
set to a given sensitivity by estimating how many malaria
cases might be prevented by measures taken after each
alert generated by the system, with defined assumptions
about the lead time from alert to the effectiveness of such
measures, and about the duration of effectiveness of these
measures. Potentially prevented cases (PPC) for each alert
are defined as a function of the number of cases in a win-
dow following the alert. To obtain the PPC, the following
three assumptions were made. (a) It was assumed that
four weeks elapse from the decision to make an interven-
tion based on an alert until the interventions take effect.
(b) From that time, the window of effectiveness is
assumed to last either eight or 24 weeks (to account for
control measures whose effects are of different durations).
(c) Since no control measure would be expected to abro-
gate malaria cases completely, two possibilities were con-
sidered for the number of cases in each week of the
window that could be prevented: 1) cases in excess of the
seasonal mean (low effectiveness) and 2) cases in excess
of the seasonal mean minus one standard deviation (high
effectiveness). These different assumptions allowed test-
ing the sensitivity of the performance of the prediction
and detection systems to the length of the window of
effectiveness and the choice of function to define poten-
tially prevented cases. When the observed number of cases
in a week is less than the seasonal mean or the seasonal

mean minus the standard deviation, PPC is set to a mini-
mum value of zero for that week.

Methods of comparison
For each value of each type of threshold (applied to either
the predicted and observed number of cases) at each
health facility, the number of PPC was transformed into a
proportion (percentage), by adding the number of PPC
for the alerts obtained and dividing this sum by the sum,
over all weeks in the data set, of the number of potentially
prevented cases. Proportion rather than actual cases were
used because the numbers of malaria cases vary from dis-
trict to district. To compare the performance of the pre-
dicted and observed cases on a single scale, a curve was
plotted for each algorithm showing the mean percent of
PPC (%PPC) over all districts versus the average number
of alerts triggered per year, with each point representing a
particular threshold value. Better methods of generating a
warning were those that potentially prevent higher num-
bers of malaria cases using smaller numbers of alerts.

Random and optimally timed alerts
The performance of the alerts provided by both the pre-
dicted and observed cases was compared with random
and optimally timed alerts. PPC was estimated for alerts
chosen on random weeks during the sampling period. To
estimate the performance of optimally-timed alerts
(which could not have been implemented but is optimal
in hindsight), the optimal timing of alerts were identified
by retrospectively going through data if one had perfect
predictive ability; the optimal week for one alert was cho-
sen; then by going through the remaining weeks, the opti-
mal week for a second alert was chosen, and so on. The
optimal alert would serve as an upper bound curve for the
best choice of alert times, given a defined alert frequency
[14].

Cold versus hot districts
The relative importance of weather factors in determining
malaria transmission significantly depends on the climate
of the area. It has recently been shown that although rain-
fall was significantly associated in cold and hot districts,
minimum temperature contributed only in the cold dis-
tricts of Ethiopia [25]. Furthermore, Zhou et al. [30]
showed that there was high spatial variation in the sensi-
tivity of malaria outpatient numbers to climate fluctua-
tions in East African highlands. To determine the effect of
the differential contribution of weather factors on the
accuracy of predictions, the performance of predictions in
the hot and cold environments were compared. Thus, dis-
tricts with similar climatic characteristics (on the basis of
altitude and temperature) were grouped, in order to pro-
duce more generalizable results within similar climatic
conditions. The hot districts (altitude < 1700 mm above
sea level) included Diredawa, Nazareth, Wolayita and

Ŷ Tsij sij>

Ŷ Tsij sij>
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Zeway; and the cold districts included Alaba, Awasa,
Bahirdar, Debrezeit, Hosana and Jimma. Mean %PPC and
the average number of alerts for the cold and hot districts
were obtained and the same method was used to compare
the performance of the prediction system in the hot and
cold districts.

Results
The prediction algorithm indicates the overall pattern of
cases well, yet underestimates the height of the largest
peaks. Comparisons of the predicted and observed
malaria cases, for each week in six of the ten districts, are
shown in Figure 1. The model predicted the actual cases
well, although the agreement between the observed and
predicted cases varied from district to district. However,
the models were not able to differentiate clearly between
years with very high and moderately high peaks. To
explore whether the predicted number of malaria cases
using weather factors can accurately identify time periods
with increased number of malaria cases, the timing of
alerts triggered, for example, by a mean plus 1.5 standard
deviation threshold algorithm, is presented in the same
figure. Despite the fact that the actual height of peaks in
the highest-incidence periods is poorly predicted by the
model, the model nonetheless often triggered alerts prior
to these high-incidence periods.

The prediction system generates alerts that could prevent
nearly as many cases as alerts generated by a detection sys-
tem. To obtain a quantitative estimate of the usefulness of
the prediction algorithm as an early warning system, the
%PPC obtained from alerts triggered by predicted cases
were compared with %PPC obtained from alerts based on
observed cases (Figure 2) under an early detection scheme
similar to that previously analyzed [14]. Percentile and
mean + standard deviation thresholds are shown, with
each point representing a particular value of the threshold
(e.g., 85th percentile or mean + 1.50 standard deviations).
The horizontal axis gives the number of alerts per year trig-
gered by the particular threshold value, while the vertical
axis shows the %PPC associated with that threshold value.
Each point represents the mean across all 10 districts. Two
different choices of the function for determining PPC
(reducing cases to weekly mean: low-effectiveness, a and
c, or weekly mean minus one s.d.: high-effectiveness, b
and d) and the choice of window of effectiveness (eight
weeks, a and b; 24 weeks, c and d) were considered. The
performance of the predicted number of malaria cases
using the mean plus (0.5, 1, and 1.5) standard deviation
algorithm (for an eight-week window of low-effective-
ness) reveals that it prevented 29%/0.9 alerts, 27.3%/0.6
alerts and 24.2%/0.43 alerts per year, which compares
with 31.4%/0.85 alerts, 29.8%/0.65 alerts and 27.5%/
0.52 alerts per year respectively when the observed cases
are used to trigger alerts (Figure 2a). In general, relative to

alerts triggered by observed cases, the alerts triggered by
the predicted number of malaria cases performed slightly
worse, within 5% of the detection system. All alerts trig-
gered by predicted and observed cases potentially pre-
vented larger numbers of cases than random alerts.
Relative to the optimally timed alerts, both systems per-
formed well, within 10%–20% of the best achievable per-
formance. On average, the number of alerts per year
triggered by the prediction system is less than the number
of alerts triggered by the observed cases for the corre-
sponding level of alert threshold. Comparative perform-
ance of the detection and prediction methods was
insensitive to the length of the window of effectiveness
and the choice of function to define potentially prevented
cases (Figure 2).

Prediction-based systems perform much better in cold
than in hot districts. To compare the relative importance
of weather factors in cold and hot districts, the %PPC
obtained from predicted cases in the cold and hot districts
were evaluated separately. Figure 3 shows that alerts trig-
gered by the predicted number of malaria cases in the cold
districts perform much better than in the hot districts.
Comparative performance in the cold and hot districts
was insensitive to the length of the window of effective-
ness and the choice of function to define potentially pre-
vented cases. In all cases, the prediction-based alerts were
able to prevent 10–25% more cases of malaria at a given
sensitivity in cold districts than in hot ones. On the other
hand, although, the performance of the detection algo-
rithms in the cold and hot districts was similar with eight-
week window of effectiveness, it performed better in the
cold than in hot districts with 24-week effectiveness (not
shown).

Discussion
Timely and accurate information about the onset of P. fal-
ciparum epidemics is essential for effective control activi-
ties in epidemic-prone regions, especially those in which
limited resources must be deployed to the areas of greatest
need. In the Ethiopian highland fringe region, one such
epidemic-prone area, early detection of epidemics based
on simple algorithms for detecting excess cases had been
shown to generate alerts that are well timed to precede
periods of high incidence [14]. Early warning methods
that provide earlier alerts may allow the interruption of
transmission earlier in the epidemic, but perhaps at the
expense of some level of accuracy. In this study, we have
shown that predictions four weeks ahead, based on
weather factors and past case numbers, can provide alerts
that are of comparable value to those provided by an
equivalent early detection system, based simply on
observed cases.
Page 5 of 10
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Observed and predicted number of malaria cases with alerts triggered by mean plus 1.5 SD using predicted casesFigure 1
Observed and predicted number of malaria cases with alerts triggered by mean plus 1.5 SD using predicted cases. The solid 
lines for observed cases and the dotted lines for predicted cases. The red marks are the timing of alerts triggered using pre-
dicted cases; their position along the y-axis does not have a meaning.
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Comparing performance of prediction and detection systemsFigure 2
Comparing performance of prediction and detection systems. Percent of PPC by number of alerts per year for different algo-
rithms. (a) and (c) were obtained from cases in excess of the weekly mean (low effectiveness) with window of effectiveness of 
8 and 24 weeks respectively. (b) and (d) were obtained from cases in excess of the weekly mean minus one standard deviation 
(high effectiveness) for windows of eight & 24 weeks, respectively. The solid lines are for detection (Obs) and the dotted lines 
for prediction (Pred). MeanSD and Percentile represent threshold algorithms based on mean plus standard deviation and per-
centile, respectively.
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An interesting feature of the results was that the prediction
system performed well in generating alerts for control
measures, despite the fact that the model under-predicts
high peaks. Correlation analyses (data not shown)
indicate that for most (but not all) districts, the model
performed well qualitatively, in the sense of predicting
more cases than expected from the weekly mean when
such excess cases occurred, and predicting fewer when in
fact fewer cases than the weekly mean occurred. This find-
ing focuses attention on the fact that a system can give
timely and accurate alerts for epidemic control, even if it
is unable to provide accurate predictions of case numbers
(Figure 1). The initial hypothesis was that the improved
timeliness of an early detection system comes at the
expense of some accuracy. The overall results show that
these two effects nearly balance each other, so that early
warning systems based on our predictive model provide
alerts whose value in terms of epidemic control is compa-
rable to those provided by equivalent early detection sys-
tems. In a separate analysis (not shown), these two effects
were separated out. If the alert system is based on predic-
tion, but the alerts are timed such that their effects start
eight weeks after the alert (i.e., four weeks after the week
in which the predicted cases cross the alert threshold,
equivalent to the timing for early detection), they identify

5% to 10% fewer PPC than the equivalent detection algo-
rithm. The main analysis (Figure 2) showed that the addi-
tional four weeks of notice available by implementing
control measures so that their effects begin by the week on
which excess cases are predicted (four weeks earlier than if
the detection algorithm were used) nearly makes up for
this deficit.

Studies have shown that temperature affects transmission
in cold environments more than it does in hot environ-
ments [31,32]. Thus the addition of minimum and maxi-
mum temperature into the prediction model contributes
less to predictions in the hot districts than it does in the
cold districts. The study revealed this differential effect of
weather on malaria transmission. The weather-based pre-
diction system performed much better in the cold than
the hot districts. Two mechanisms could have been
responsible for this difference: epidemic alert algorithms
in general could be less useful in hot districts, or weather-
based algorithms, specifically, may be less useful in hot
districts. Since simple detection-based alerts performed
similarly in hot and cold districts (at least with an eight-
week window of effectiveness), it appears that the prob-
lem in hot districts is with prediction-based methods.
However, when 24 weeks were used as the window of

Comparison of performance of prediction systems in cold and hot districtsFigure 3
Comparison of performance of prediction systems in cold and hot districts. Percent of PPC by number of alerts per year. PPC 
was obtained from cases in excess of the weekly mean (low effectiveness) with windows of effectiveness of eight weeks (a) and 
24 weeks (b). The solid lines represent cold and the dotted lines hot districts.
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effectiveness, the early detection system, like the predic-
tion system, performed better in the cold than the hot dis-
tricts. This may be because of the shorter transmission
season in the hot than cold districts, due to evaporation
and drying up of breeding sites in hot districts, such that
rainfall's effects on transmission last for fewer weeks in
hot areas [25]. In conclusion, an early warning system
using weather and other predictor variables is more relia-
ble in relatively cold than hot districts.

Non-climatic factors such as population immunity,
migration and drug resistance are believed to influence
malaria transmission and have been cited as causes of
malaria epidemics [33-36]. The variability in accuracy of
prediction seen in the ten districts may have been due to
such factors and others [37-41]. These findings are con-
sistent with the findings of Zhou et al. which indicated
that there was high spatial variation in the sensitivity of
malaria outpatient number to climate fluctuations in East
African highlands [30]. Determining the relative contribu-
tion of the non-climatic factors would be an important
step in the development of an early warning system for
malaria and a predictive model which incorporates such
indicators would give more accurate predictions, but this
is not feasible in practice at this moment due to the
absence of quantitative data on these factors.

The model chosen for the prediction of malaria cases was
based loosely on a model previously evaluated for its abil-
ity to explain seasonal variation in malaria incidence in
the same data set [25]. The former model, in turn, used
polynomial distributed lags of weather factors based on
biological considerations about the effects of these
weather factors on malaria cases. To that model, addi-
tional terms – an autoregressive term and an indicator var-
iable for the week of the year (on the Ethiopian calendar)
were added – to improve predictive power. The usefulness
of this predictive model has been shown, but modifica-
tions of the model have not been systematically explored
which might improve its predictive ability still further.
Further work should consider a range of prediction mod-
els for their ability to generate accurate and timely alerts.

Conclusions
This study showed that short-term (four-week-ahead) pre-
dictions of P. falciparum cases using lagged weather and
case incidence data performed well in identifying periods
of increased malaria cases. Furthermore, the prediction
system allowed recognition of epidemic periods at an
early stage, thereby facilitating interventions making epi-
demics preventable with adequate lead time. However,
this study indicated that early warning system using
weather and other predictor variables are more reliable in
relatively cold than hot districts. In conclusion, it has been
demonstrated that weather derived predictions identified

epidemics with reasonable accuracy and better timeliness
compared to early detection systems. Therefore, warning
systems based on predictions derived from lagged weather
variables may be a useful alternative to early detection sys-
tems for targeting resources against incipient falciparum
malaria epidemics.
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