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Abstract

Background: Plasmodium falciparum malaria is one of the most widespread and deadliest infectious diseases in
children under five years in endemic areas. The disease has been a strong force for evolutionary selection in the
human genome, and uncovering the critical host genetic factors that confer resistance to the disease would
provide clues to the molecular basis of protective immunity and improve vaccine development initiatives.

Methods: The effect of single nucleotide polymorphisms (SNPs) and plasma transforming growth factor beta
(TGF-B) and interleukin 10 (IL-10) levels on malaria pathology was investigated in a case—control study of 1862
individuals from two major ethnic groups in three regions with intense perennial P. falciparum transmission in
Cameroon. Thirty-four malaria candidate polymorphisms, including the sickle cell trait (HbS), were assayed on the
Sequenom iPLEX platform while plasma TGF-f3 and IL-10 levels were measured by sandwich ELISA.

Results: The study confirms the known protective effect of HbS against severe malaria and also reveals a protective
effect of SNPs in the nitrogen oxide synthase 2 (NOS2) gene against malaria infection, anaemia and uncomplicated
malaria. Furthermore, ADCY9 rs10775349 (additive G) and ABO rs8176746 AC individuals were associated with
protection from hyperpyrexia and hyperparasitaemia, respectively. Meanwhile, individuals with the EMRT rs373533
GT, EMRT rs461645 CT and RTN3 rs542998 (additive C) genotypes were more susceptible to hyperpyrexia while both
females and males with the rs1050828 and rs1050829 SNPs of G6PD, respectively, were more vulnerable to anaemia.
Plasma TGF-f levels were strongly correlated with heterozygosity for the ADCY9 rs2230739 and HBB rs334 SNPs
while individuals with the ABO rs8176746 AC genotype had lower IL-10 levels.

Conclusion: Taken together, this study suggests that some rare polymorphisms in candidate genes may have
important implications for the susceptibility of Cameroonians to severe malaria. Moreover using the uncomplicated
malaria phenotype may permit the identification of novel pathways in the early development of the disease.
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Background

Malaria affects about one quarter of a billion people an-
nually, with up to two-thirds of a million deaths still oc-
curring per year, particularly in sub-Saharan African
children below five years of age [1]. Why only a small
proportion (1-3%) of Plasmodium falciparum infections
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progress to severe or fatal episodes [2] while others re-
main asymptomatic or develop an uncomplicated illness
is not yet fully understood. Epidemiological data indicate
that about 25% of the risk to Plasmodium infection in
Africa is determined by human genetic factors [3].
Nevertheless, haemoglobin S, the strongest known re-
sistance genetic factor, explains only 2% of the total vari-
ation [3], suggesting the existence of many unknown
protective genes, each individually having small popula-
tion effects. Single-nucleotide polymorphisms (SNPs)
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comprise a large part of human diversity, and their in-
heritance may alter susceptibility to disease [4].

Many of the malaria protective associations described
to date relate to genes that affect cytokine and toll-like
gene expression [5,6], red blood cell (RBC) structure or
function [7]. However, there are a number of interesting
candidate polymorphisms that have been associated with
other infectious diseases and may be linked to malaria
pathogenesis. Complement factor 6 (C6), for instance,
shows polymorphism resulting in deficiency of the pro-
tein [8] although its role in malaria has not been proven.
The susceptibility to typhoid fever is associated with a
polymorphism in the cystic fibrosis transmembrane con-
ductance regulator (CFTR) [9], while genetic associations
of a member of the tripartite motif (TRIM) family with
human immunodeficiency virus type 1 infection [10]
have been reported. The levels of reticulon 3 (RTN3) is
significantly increased in malaria and other infections
[11] suggesting that it may be linked to the disease.

The effect of some polymorphisms on malaria patho-
genesis still remains controversial. There was no associ-
ation between intercellular adhesion molecule 1 gene
polymorphisms and severe malaria in a West African
population [12], although the SNP had earlier been re-
ported to predispose to cerebral malaria in Kenya [13].
The NOS2A-954C allele has been associated with pro-
tection from severe malaria in Gabonese individuals
[14,15], but studies in The Gambia and Tanzania failed
to detect such a disease association [16,17]. Additionally,
the NOS2A-1173 T allele which appears, on the basis of
measurements in urine and plasma, to be associated
with high NO production in children is associated with
protection from malarial illness in Tanzania and from
severe malarial anaemia in Kenya [18], but no protect-
ive effect against severe malaria was detected in The
Gambia [17].

Several studies have demonstrated the critical role of
anti-inflammatory cytokines in the immuno-pathogenesis
of severe malaria anaemia (SMA) and cerebral malaria
(CM). Plasmodium chabaudi chabaudi infected mice defi-
cient in interleukin-10 (IL-10) show higher mortality than
their normal littermates [19], suggesting a protective role
for this cytokine. Furthermore, IL-10 seems to induce and
maintain immunity to P. falciparum in naturally exposed
populations [20]. Importantly, the down regulation of
TNF-a production and consequent resistance to severe
malaria, has been linked to the ability to produce the
immuno-regulatory cytokine, Transforming growth factor
(TGF)-p [21]. Low levels of IL-10 and TGF-§ have been
associated with severe malaria [22,23]. Functional poly-
morphisms in the promoter and/or coding region(s) of
cytokine genes may, therefore, be crucial in the develop-
ment and clinical course of malaria [5]. Indeed, poly-
morphisms in genes encoding IL-10 [6,24] have been
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associated with susceptibility to malaria, although their
functional role in severe malaria still remains open to
question. How the levels of these cytokines vary in differ-
ent haemoglobin B-globin and other malaria candidate
SNP genotypes, therefore, warrants further investigation.

Case—control studies have been vital in detecting sev-
eral genes associated with malaria or severe malaria
[6,25-27]. However, some reports have been contradict-
ory, due partly, to the analysis of small sample numbers,
and hence limited statistical power. Furthermore, differ-
ences in transmission intensities or other epidemiologic
characteristics at the different sites and ethnicities may
affect the detection of modest effects of susceptibility or
resistance genes. Some rare SNPs were investigated in a
case—control study among 971 children with malaria
and 891 unmatched apparently healthy control school
children and blood bank donors in a bid to identify
novel ones that may be linked to malaria and TGF-f3
and IL-10 levels.

Methods

Study area

This cross-sectional study was conducted in four towns
distributed in three regions of Cameroon, namely:
Yaoundé in the Centre; Douala in the Littoral; and Buea
and Limbe in the South West. The study sites included
hospitals (Bota District Hospital - Limbe, Laquintinie
Hospital - Douala, Mother and Child Hospital —
Yaoundé, Regional Hospital - Limbe and Regional
Hospital - Buea) and health centres (Bokova Health
Centre, Mount Mary Health Centre - Buea and PMI
Down Beach - Limbe). All chosen health facilities, except
Mount Mary, were the main government institutions in
the selected towns, also receiving patients from sur-
rounding areas. Although malaria is endemic throughout
Cameroon, the country has very different geographical
and epidemiologic strata that may alter the course of the
infection. In general, malaria transmission is intense and
perennial in the Centre, Littoral (Coastal), and South
Western regions, with peak periods corresponding to the
rainy seasons [28].

The Centre region (Yaoundé) is located within the
rainforest belt of central Africa [29] and has the Guinea-
type equatorial climate [28]. This is characterized by
fairly constant temperatures [ranging from 17°C to 30°C
(mean = 23.1°C)] [30], abundant rainfall (1,500-2,000 mm),
with the average relative humidity index ranging from 85%
to 90%, and four distinct seasons: two rainy seasons
(March — May/June, September — November) and two
dry seasons (December — February, June/July — August).
Maximal transmission of malaria occurs during and imme-
diately following the two rainy seasons [28-30]. The
Mother and Child Hospital is a referral hospital for chil-
dren and mothers, located in the heart of the city of
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Yaoundé; it also attracts patients from neighbouring vil-
lages such as Simbok and Etoa that are stable, rural, farm-
ing communities with fields irrigated by water from the
Mefou and Biyeme Rivers. Inhabitants of this region are of
the Ewondo tribe and part of the Bantu ethnic group.

The South Western and Littoral regions have a
Cameroonian-type equatorial climate characterized by
fairly constant temperatures and two seasons: a short dry
season (November — March) and a long rainy season
(March - November) with abundant precipitation (2,000—
10,000 mm) [28]. In the Mt Cameroon region of the South
West, the mean annual rainfall is 2625 mm, relative hu-
midity is constantly high (75%—80%), and the temperature
varies from 18°C in August to 35°C in March [31]. Human
malaria is meso-endemic during the dry season but be-
comes hyper-endemic in the rainy season, with incidence
peaking in July—October. The prevalence of malaria para-
sitaemia in the low-altitude areas ranges from 30% in the
dry season to 84% in the rainy season [32,33]. Plasmodium
falciparum accounts for up to 96% of malaria infections in
this area [34], with Anopheles gambiae s.s. the dominant
vector [31].

Study design and population

The study conducted between 2003/05 and 2007/08 in-
volved malaria diagnosed children (aged 1 month -
13 years) admitted in nine health facilities in the Centre,
Littoral and South West regions of Cameroon [35]. The
971 unrelated sick children sampled included severe and
uncomplicated malaria cases, mainly from the Bantu and
Semi-Bantu ethnic groups, recruited from the paediat-
ric wards of the hospitals or health centres (Figure 1).
In line with WHO guidelines [36], severe malaria was
defined by the presence of asexual Plasmodium
parasitaemia and at least one of the following condi-
tions: cerebral malaria (CM) [impaired consciousness or
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unrousable coma (Blantyre coma score < 2) and no record
of recent severe head trauma, neurological disease or
any other cause of coma]; severe malaria anaemia
(SMA) [haemoglobin<5 g/dL or haematocrit < 15%,
no cases of severe bleeding or observed convulsions];
hyperpyrexia (axillary temperature > 40°C); hyperpara-
sitaemia (>250,000 parasites/pL); convulsions before/
during admission; respiratory distress (RD) (presence of
alar flaring, intercostals or subcostal chest recession, use of
accessory muscles of respiration, or abnormally deep res-
piration) and hypoglycaemia (blood glucose <2.2 mmol/L/
40 mg/dl). Participants with co-existing severe or chronic
medical conditions (e.g. bacterial pneumonia, kwashiorkor)
unrelated to a severe malarial infection were excluded.
UM was defined as a clinical illness characterized by
an axillary temperature >37.5°C associated with a
Plasmodium positive blood film, haemoglobin = 8 g/dL
and full consciousness, in the absence of clinical signs and
symptoms of severe malaria and/or evidence of vital organ
dysfunction.

Controls (n = 891) consisted of apparently healthy chil-
dren (aged 1-14 years, afebrile and free from any obvious
illness) and adults (aged 17-52 years, asymptomatic,
from the community) also belonging primarily to the
Bantu and Semi-Bantu ethnic groups (Figure 1). Chil-
dren were recruited during malaria cross-sectional sur-
veys from primary schools located in the South West
region (Buea Metropolis) between 2004-2005 and 2007-
2008. Children with parasitaemia and a temperature of
37.5°C or above were not recruited as controls. Adults
were identified from a blood bank in the Centre region
(Mother and Child Hospital - Yaounde) between July
and August 2007. These controls were thought to ap-
proximate a random sample of the population thus,
reflecting the true allele frequency. Data on the Foulbe
ethnic group who constitute a significant proportion of
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Figure 1 Basic demographic characteristics of the cases (n=971) and controls (n=891) in the study.
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the ethno-demographics of Cameroon were not included
in the final analysis because of their small sample size in
the study population.

Ethical approvals

Ethical and administrative clearance for the study was
obtained from the University of Buea Institutional Re-
view Board and the South West Regional Delegation
of Public Health respectively. Authorization to conduct
the surveys in designated primary schools was obtained
from the Regional Delegation of Basic Education or the
Catholic Education Secretariat of the South West Region.
Individuals who fulfilled the specific inclusion criteria and
volunteered to participate after adequate sensitisation on
the project objectives, methods and possible benefits/risks
were enrolled in to the study. A health facility or school
was only investigated with the approval of its Director or
Head Teacher and study participants were only enrolled if
they or their caregivers/guardians gave written informed
consent/assent.

Malaria parasitaemia determination

Thick and thin blood smears were prepared following
standard procedures and stained with 5% Giemsa
(Sigma, St. Louis, USA). The malaria parasitaemia status
and density were determined under oil immersion with
the 100x objective, 10x eyepiece of a binocular Olympus
microscope (Olympus Optical Co., Ltd, Japan) while the
Plasmodium species was identified on the thin blood
smear. A smear was only considered negative if no mal-
aria parasites were seen in 50 high power fields. With
each positive smear, the level of parasitaemia was esti-
mated by counting the parasites against at least 200 leu-
cocytes and using the corresponding leucocyte count to
calculate the number of parasites/pl blood [37].

Cytokine measurement

Plasma levels of IL-10 and TGEF-B were measured in
cases and controls by Enzyme-Linked Immunosorbent
Assay (ELISA), according to the manufacturer’s instruc-
tions (Quantikine R&D systems). Samples were obtained
at the time of admission (CM/SMA), outpatient treat-
ment (UM), or enrollment (Controls). The results were
expressed in pg/ml by reference to standard curves pre-
pared in each plate with recombinant cytokines. In all,
the ELISAs, standards/samples were run in duplicates,
and tested 10 non-immune Swedish & British sera were
used as negative controls to check that the response was
specific to malaria infection.

Selection of SNPs and genotyping

Genomic DNA was extracted from whole blood or packed
cells using the Promega Wizard (Promega Corporation,
Madison, USA) or Nucleon™ BACC Genomic DNA
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Extraction (Gen-Probe Life Sciences, Manchester, UK) kits
and quantified by the picogreen assay. The DNA samples
were whole-genome amplified by Primer Extension Pre-
amplification [38] before genotyping on the Sequenom
IPLEX genotyping platform (Sequenom Inc., San Diego,
USA) [39]. Polymorphism sequence information was
downloaded from Ensembl (http://www.ensembl.org)
and reformatted for the assay design process (www.
sequenom.com). Multiplex design for the iPLEX meth-
odology was then undertaken using the MassARRAY®
Assay Design v3.1 Software and the resulting multiplexes
tested using a panel of CEPH and YRI HapMap DNAs.
Thirty-four malaria candidate polymorphisms in various
genes including GBP7, DARC, CRI1, C6, CTL4, NODI,
CD36, CFTR, ABO, HBB, HbC, TRIMS5, RTN3, SPTB,
ADCYY9, ADORA2B, NOS2, EMRI, ICAMI, GNAS,
DERL3, CD40LG and G6PD were genotyped in 971 cases
and 891 controls. The SNPs were compiled on the basis
of a review of reports of associations with severe malaria
or association with other infectious diseases. The haemo-
globin variant S (HbS) polymorphism, known to be
strongly associated with severe malaria [25,40] was also
genotyped. Genotype calling was performed using the
Sequenom Spectro-typer software, an automated algo-
rithm, followed by a careful visual inspection of the geno-
type cluster plots to assess quality. All the assays were
quality filtered (call rate > 90%) and assessed for evidence
of genotypic deviation from Hardy—Weinberg equilib-
rium (HWE) in the controls (P <0.001), indicative of
genotyping error [41].

Data analyses

Statistical analyses were performed using IBM SPSS
Statistics 17.0 (IBM Corporation, NY, USA) and the R
software package (http://www.r-project.org). Genotypic
deviations from HWE were assessed using a Chi-square
statistical test. Case—control association analysis of SNP
alleles and genotypes was undertaken by logistic regres-
sion with self-reported ethnicity age, sex and the HbS
polymorphism included as covariates. Adjustment for
self-reported ethnicity has been found to be a robust ap-
proach to controlling the potentially confounding effects
of population structure [25]. Performing multiple statis-
tical tests can lead to an increased chance of false posi-
tives. Also, as there are multiple polymorphisms in some
genes, some statistical tests will be correlated. Thus, for
the genetic results, a simulation was performed by per-
muting the phenotypes 10000 times to establish a signifi-
cance cut-off, and found a threshold of p<0.01 to be
equivalent to a nominal false positive rate of 5%.

Results
A total of 971 cases and 891 controls were enrolled into
the study. The mean age (+standard deviation) of the
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cases and control children was 55.4+37.9 and 87.7 £
22.9 months respectively. The basic demographic char-
acteristics of the study population (Figure 1) indicates a
fairly gender balanced distribution in the cases [453
(46.7%) females vs. 516 (53.3%) males] that were enrolled
mainly from the South West region [515 (53.3%)] and
from the Semi-Bantu [416 (50.0%)] and Bantu [385
(46.3%)] ethnic groups. The most prevalent clinical phe-
notypes included severe malaria anaemia [n (%), 248
(21.8)], uncomplicated malaria [252 (22.1)], hyperpyrexia
[116 (15)], hyperparasitaemia [58 (6.5)] and cerebral
malaria [51 (5.4)].

Three polymorphisms were removed from the ana-
lysis because they were monomorphic (7:080302110,
rs33950507, rs1799969) while two of the assays did
not pass the quality filters (call rate > 90%, rs8176719,
rs33930165), leaving 30 SNPs that could be analysed
for their association with malaria phenotype (Table 1).
There was no evidence of genotypic deviation from HWE
in the controls (p>0.06). Additional file 1 shows the
minimum p-values from allelic/genotypic tests applied to
the autosomal SNPs, and confirms that the sickle cell
(HbS) polymorphism (rs334) was significantly associated
with protection from malaria infection [AT vs. AA/TT,
odds ratio (OR) = 0.29, 95%CI 0.21-0.42, p = 4.95 x 10%]
and from SMA [AT vs. AA/TT, OR =0.34, 95%CI 0.13-
0.93, p = 0.024] (Table 2).

The presence of the rs2297518 SNP in the gene en-
coding NOS2 was associated with protection from mal-
aria infection (GG vs. AG vs. AA, OR=0.52, 95%CI
0.36-0.75, p =0.0005) (Additional file 1). In addition,
individuals with the AG genotype of this SNP were
protected from anaemia (OR =0.49, 95%CI 0.35-0.70,
p=6.32 x 10) and UM (OR = 0.50, 95%CI 0.29-0.84,
p=0.007) (Table 2). Furthermore, individuals with the
rs10775349 SNP of ADCY9 were protected from hyper-
pyrexia (CC vs. CG vs. GG, OR =0.02, 95%CI 0.01-0.04,
p=1.35 x 10®) while heterozygosity for the rs8176746
SNP in the ABO locus was associated with protection
against hyperparasitaemia (AC vs. AA/CC, OR =041,
95%CI 0.18-0.93, p=0.019) (Table 2 and Additional
file 2). Nevertheless, a number of marginal protective
genotype associations were also observed between specific
gene mutations and anaemia (CFTR, GNAS), hyperparasi-
taemia (DERL3, GBP?), hyperpyrexia (GBP7, ABO) and
SMA (HbS, ADCY9) (Table 2).

Male hemizygotes of G6PD rs1050828 (OR = 3.01, 95%
CI 1.26-7.18, p=0.009) and females with rs1050828
(CT/TT vs. CC, OR=2.47, 95%CI 1.34-4.56, p =0.003)
and rs1050829 (CT/TT vs. CC, OR =1.88, 95%CI 1.20-
2.93, p = 0.005) SNPs of G6PD were more susceptible to
anaemia (Table 2). Heterozygous GT and CT individ-
uals for the rs373533 (GT vs. GG/TT, OR = 1.86, 95%
CI 1.22-2.84, p=0.003) and rs461645 (CT vs. CC/TT,

Page 5 of 11

OR =1.75, 95%CI 1.15-2.67, p = 0.008) SNPs respectively
in the EMRI1 gene were more likely to develop hyper-
pyrexia. Furthermore, individuals with the RTN3
rs542998 SNP (additive C, OR =1.47, 95%CI 1.09-1.99,
p =0.011) were also independently associated with suscep-
tibility to hyperpyrexia (Table 2, Additional file 2). Even
so, a number of marginal susceptibility genotype associa-
tions were also observed between specific gene mutations
and anaemia (GBP7), CM (CD40LG), hyperparasitaemia
(NOS2), hyperpyrexia (CD36, CD40LG, G6PD), SMA
(EMRI) and UM (NOS2, EMRI) (Table 2).

Additional file 2 shows that some polymorphisms were
associated with severe malaria only in individuals from
the Semi-Bantu ethnic group. The sickle cell trait was
significantly associated with protection from SMA [AT
vs. AA/TT, OR=0.33, 95%CI 0.16-0.72, p =0.003] while
individuals with the EMRI rs461645 TT and NOS2
rs8078340 CT genotypes were more susceptible to SMA
(OR =2.79, 95%CI 1.30-6.02, p =0.007) and hyperparasi-
taemia (OR =2.91, 95%CI 1.24-6.83, p = 0.012) respectively.
Conversely, the association between G6PD rs1050828 with
anaemia in females (OR=4.77, 95%CI 1.80-14.21, p =
0.003) was only observed in the Bantu ethnic group.

Plasma TGEF-f levels were strongly correlated with het-
erozygosity for the ADCY9 rs2230739 (p=0.039) and
HBB rs334 (p =0.002) SNPs (Figure 2). Individuals with
the AG genotype of the ADCY9 gene had significantly
higher levels of TGF- compared to their AA and GG
counterparts. Similarly, levels of the cytokine were higher
in the AT heterozygotes of rs334 compared to their AA
counterparts. Plasma IL-10 levels were also correlated
with heterozygosity for the ABO rs8176746 (p =0.011),
with AC genotypes, however, having lower levels of the
cytokine compared to their AA and CC counterparts.
Nevertheless, no other SNPs were associated with levels
of these cytokines.

Discussion

The clinical outcome of human malaria infection is
highly variable and heterogeneous, depending on many
factors including age, transmission intensity, parasite
strain virulence, co-infections with other pathogens,
socio-economic status as well as the genetic back-
ground of the human host [40]. The human genome
has, therefore, evolved under selective pressure exerted
by pathogens, with human genetics thought to explain
25% of the inter-individual variation in susceptibility to
and manifestation of malaria attributable to various host
factors [3]. This natural selection process is epitomized
in the historical exposure to falciparum malaria and its
association with the -globin SNP underlying the haemo-
globin S sickle-cell trait [42]. This mutant allele, the
strongest known resistance genetic factor, can reach a
frequency of 25% in some populations in Sub-Saharan
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Table 1 Minor allele frequencies and test of Hardy-Weinberg equilibrium in selected candidate SNPs
Gene Alternate SNP name SNP Location Minor allele frequency HWE!
Maj/Min Cases Controls (P value)
(n=971) (n=891)

HBB HbS rs334 Genic AT 0.054 0.088 0.189
GBP7 rs1803632 P /G 0474 0497 0.074
DARC 152814778 UTR A/G 0.006 0.003 1.000

CR1 rs17047660 UTR A/G 0.283 0301 0.409

CR1 rs17047661 Genic G/A 0277 0272 0379

(€5) rs1801033 Genic A/C 0415 0417 0.515
CTL4 152242665 Genic A/G 0319 0.324 0642
NOD1 rs2075820 P G/A 0401 0397 0.170
CD36 rs3211938 Genic T/G 0.144 0.148 0409
CFTR rs17140229 Genic T 0401 0408 0.129

ABO rs8176746 Genic C/A 0.166 0.170 0173
TRIMS5 1s7935564 Genic G/A 0486 0486 0.273
RTN3 rs542998 Genic [@2) 0379 0.384 0.375
SPTB rs229587 Genic T/C 0.290 0.291 0669

ADCY9 152230739 Genic A/G 0.092 0.104 0434
ADCY9 rs10775349 Genic c/G 0.151 0.169 0462
ADORA2B rs2535611 Genic T/C 0.099 0.110 0.715
NOS2 152297518 Genic G/A 0.105 0.139 0.552
NOS2 NOS2-954 rs1800482 UTR G/C 0.082 0.080 0.812
NOS2 rs9282799 UTR arT 0.040 0.036 0.076
NOS2 NOS2-1659 rs8078340 UTR (2] 0.270 0.280 0.200
EMR1 rs373533 Genic G/T 0444 0463 0.942
EMRT rs461645 Genic aT 0446 0468 1.000
ICAM1 ICAM-1codon469 1s5498 Genic A/G 0.119 0.141 0.238
GNAS GNAS_8386 rs8386 Genic arT 0.159 0.154 0224
DERL3 rs1128127 Genic A/G 0464 0457 0481
CD40LG rs3092945 P T/C 0.295 0.269 0.359
CD40LGy 1s3092945 P T/C 0.295 0.257 < 0.001
CDA40LGr rs1126535 Genic T/C 0.188 0.161 0.190
CD40LGy rs1126535 Genic T/C 0.159 0216 < 0.001
G6PDf, rs1050829 P T/C 0.360 0333 0.342
G6PDy rs1050829 P T/C 0360 0341 < 0001
G6PD, rs1050828 P (2] 0.031 0.089 0.711
G6PDy) rs1050828 P T 0.120 0.106 < 0.001

UTR 3'untranslated region, P promoter, Maj/Min = Major/Minor allele, M = male, F = Female TOne degree of freedom x2 test of HWE applied to the 891 controls.

Africa [40] yet explains only 2% of the total variation [3].
Many unknown protective genes thus exist, each presum-
ably individually having small population effects.

Genetic association studies utilising polymorphic markers
in candidate genes have been successful in identifying a
number of genes that are associated with susceptibility to

malaria, or severe malaria. A large case—control study of se-
vere malaria in children across different regions and major
ethnic groups in Cameroon has the potential to confirm
previously reported malaria/genetic associations or permit
the identification of new ones following the assessment
of association of SNPs of human genes with clinical
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Table 2 Genotype associations between selected SNP and syndromes of malaria
Phenotype Gene SNPs Model Genotypes OR 95%ClI P value*
Anemia hHbS rs334 Heterozygous AT vs. AA/TT 0.50 031 0.80 0.004
GBP7 rs1803632 Heterozygous CG vs. GG/CC 142 1.05 1.91 0.023
CFTR rs17140229 Additive TT vs. CT vs. CC 0.78 062 097 0.026
NOS2 152297518 Heterozygous AG vs. AA/GG 049 035 0.70 6.32%10°
GNAS 158386 Heterozygous CT vs. TT/CC 0.67 047 0.95 0.024
G6PD rs1050828 Dominant CT/TT vs. CC 247 1.34 4.56 0.003
G6PDv) rs1050828 Recessive CCvs. CT/TT 3.01 1.26 7.8 0.009
G6PD rs1050829 Dominant CT/TT vs. CC 1.88 1.20 293 0.005
™M CD40LG rs3092945 Additive TT vs. CT vs. CC 4.03 1.19 13.79 0.021
CD40LGyy rs3092945 Additive TT vs. CT vs. CC 4.03 118 13.79 0.021
Hyperparasitaemia GBP7 rs1803632 Dominant CG/CC vs. GG 0.53 0.29 0.96 0.041
ABO 158176746 Heterozygous AC vs. AA/CC 041 0.18 093 0.019
NOS2 rs8078340 Heterozygous CT vs. CC/TT 1.80 1.01 321 0.046
DERL3 rs1128127 Recessive AA vs. GA/GG 045 0.21 0.98 0.029
Hyperpyrexia GBP7 rs1803632 Additive GG vs. CGvs. CC 0.73 0.55 0.99 0.042
CD36 rs3211938 Recessive GG vs. GT/TT 2.80 1.20 6.51 0.027
ABO 158176746 Heterozygous AC vs. AA/CC 061 037 1.01 0.045
RTN3 rs542998 Additive TT vs. CT vs. CC 147 1.09 1.99 0.011
ADCY9 rs10775349 Additive CCvs. CG vs. GG 0.02 0.01 0.04 135 x 10%
EMR1 rs373533 Heterozygous GT vs. GG/TT 1.86 1.22 2.84 0.003
EMR1 15461645 Heterozygous CT vs. CC/TT 1.75 1.15 267 0.008
CD40LG rs3092945 Dominant CT/CCvs. TT 1.96 1.01 3.83 0.044
G6PDv) rs1050829 Recessive CCvs. CT/TT 1.84 1.06 3.20 0.033
SMA hHbS rs334 Heterozygous AT vs. TT/AA 0.34 0.13 0.93 0.024
ADCY9 rs2230739 Heterozygous AG vs. GG/AA 048 0.23 1.02 0.050
EMR1 rs461645 Recessive TT vs. CT/CC 205 1.12 3.75 0.020
UM NOS2 rs2297518 Heterozygous GA vs. GG/AA 0.50 0.29 0.84 0.007
NOS2 rs1800482 Recessive GG vs. GC/CC 794 1.06 59.50 0.043
EMR1 rs461645 Additive CCvs. CTvs. TT 142 1.04 193 0.025

*Additive, dominant, recessive and heterozygous advantage genotypic tests were performed, adjusted for age, sex, ethnicity and HbS, but only the most

statistically significant result is presented. UM = uncomplicated malaria.

phenotypes. This study focused on genes whose associ-
ation with malaria remain controversial as well as those
reportedly associated with susceptibility to other infec-
tious diseases. This study suggests that the protective
effect of the sickle cell trait may be linked to the raised
level of TGF-8 and provides additional support for a
role of ABO and RTN3 against severe malaria. It further
provides the first evidence that polymorphisms in
NOS2 and EMRI may be associated with mild malaria,
G6PD with anaemia while SNPs in ADCY9 and EMRI
may be linked with severe malaria in the Cameroonian
population. Data reported here provide additional un-
derstanding on human candidate genes that may con-
tribute to malaria susceptibility, help define the basis of
individual and population variation in susceptibility to

the disease and thus eventually facilitate efforts to de-
velop vaccines and treatments to fight this infectious
disease. However, it is possible that an apparent associ-
ation with malaria can arise from linkage disequilib-
rium between the typed SNP and a primarily associated
polymorphism. Constructing a detailed map of poly-
morphisms around these candidate genes and describ-
ing a profile of linkage disequilibrium among them will
be helpful to identify the causal variant(s). In addition,
an appropriately designed family-based study may pro-
vide useful linkage information, have more power to detect
association and allow haplotypes to be constructed with
more confidence.

Although the CCTTT pentanucleotide microsatellite
repeat in iNOS promoter is thought to play a key role in
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Figure 2 Association between human cytokine genetic polymorphisms and plasma cytokine levels (pg/ml). A=TGF-3 and B =IL-10.

the pathogenesis of severe malaria [43], the protective
effects for NOS2 SNP is quite interesting since, no previ-
ous associations between rs2297518 and malaria have
been reported. The SNP has, however, been linked with
non-Hodgkin lymphoma [44] and inflammatory bowel
disease [45]. It is possible that the SNP may increase the
binding affinity to the mutant relative to the wild-type
sequence thereby increasing the basal NOS activity and
subsequent parasite killing by NO [15]. Parasites are
thought to invade the liver, provoking a cytokine (e.g.
IEN-y) response that will induce NOS2 to produce NO.
The constitutively high NOS activity in children with the
rs2297518 A allele will provide an advantage in resisting
hepatic parasite stages without the need for additional
stimuli. Nitric oxide is also thought to be effective in
reducing blood-stage parasite density by antibody-
dependent cellular inhibition [15] triggered by the in-
gestion of opsonised merozoites by activated mono-
cytes. The latter may then release toxic products and NO
acting on maturing intracellular and cytoadherent para-
sites to limit parasitaemia density.

Adenylate cyclase (AC) type 9 gene (ADCY?9) is an in-
teresting candidate gene since it is critical in neuronal
signalling [46] and thus may be relevant in the patho-
genesis of cerebral malaria. However, Toyota and col-
leagues reported only a weak association of ADCY9
gene variation with mood disorders. Although the gene
has polymorphisms with large allele frequency differ-
ences (Fs7) between HapMap YRI and CEPH, the re-
ported rs10775349 association with hyperpyrexia is very
interesting. Nevertheless, further work is needed to
strengthen these findings.

The observed association between Epidermal growth
factor-like module containing, mucin-like, hormone
receptor-like (EMR)1 polymorphisms and hyperpyrexia,
severe malaria anaemia and uncomplicated malaria is
quite interesting. EMRI is a macrophage marker and
also a transmembrane glycoprotein present in peripheral
blood mononuclear cells and presumably involved in

cell-cell interactions and activation of consecutive messen-
ger cascades [47]. Gene expression of EMRI is increased in
lipoatrophic subcutaneous abdominal adipose tissue of
HIV patients with HAART-associated lipodystrophy com-
pared to those without [48] but no genetic associations
with malaria have previously been reported. There is a
need to explore further the possible role of this gene in
malaria pathogenesis.

Polymorphisms in the ABO blood group were associ-
ated with hyperparasitaemia and hyperpyrexia (albert
marginal) but not with the other more prevalent pheno-
types. Previous studies have shown that cerebral malaria
cases are less likely to be of blood group O [49,50] but
more likely to be of group AB in Sri Lanka [51] and type
A and B in India [50] while reports from Gabon indi-
cated reduced risk of severe malaria of blood group A
individuals [52]. How, the heterozygotes remain refrac-
tory to extremely high parasitaemia and temperature
levels is unclear. Further studies are required to eluci-
date the functional relevance of ABO variants on cyto-
kines level.

Functional studies have demonstrated that a host
erythrocyte G protein signal pathway may be a critical
component in parasite invasion and that erythrocyte
G-alpha-s protein and the malaria parasite interact at a
cellular level [53]. It however remains unclear whether
this interaction would impact on disease progression.
The protective effect of rs8386 with anaemia observed in
this study is in line with recent reports of an association
between G-alpha-s gene (GNAS) polymorphisms with se-
vere malaria [54], although the SNP was only significant
in multi-locus associations.

Reticulon is thought to be involved in malaria patho-
genesis since its gene expression significantly increases
in malaria and other infections [11] while chloroquine
affects its expression [55]. However, the association of
rs542998 with hyperpyrexia is quite interesting since the
SNP has recently been associated with malaria in a
Tanzanian population [27]. Further studies are required
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to elucidate the role of this polymorphism with this and
other syndromes of malaria.

Cytokine polymorphisms have previously been linked
with their differential production and expression in mal-
aria [5,6], with variation in promoter sequences thought
to alter specific transcription factor recognition sites,
transcriptional activation and cytokine production [5].
However, the association between HbS rs334 and ADCY9
rs2230739 with plasma levels of transforming growth
factor-beta as well as ABO rs8176746 with interleukin-10
is quite interesting since resistance to severe malaria has
been linked to the ability to produce these immuno-
regulatory cytokines [21,23]. How rs334 and rs8176746
affect TGF-p and IL-10 expression respectively is un-
clear. Nonetheless, ADCY9 rs2230739 may act to up-
regulate TGFp transcription, with the heterozygotes
providing some selective advantage since the raised
TGE-P levels will down-regulate proinflammatory cy-
tokines, such as TNF, and protect against severe mal-
aria [22,23]. This, to our knowledge is the first report
of such associations and thus needs to be explored fur-
ther in different settings and with larger sample num-
bers. It should be noted that individual differences in
the levels of the TGF-f measured at a specific moment
may not only result from host genetic factors predis-
posing to high or low production, but also for a great
part from the physiological condition at that time, as
well as from global immunity.

Conclusions

This study suggests that the protective effect of the
sickle cell trait may be linked to the raised level of
Transforming Growth Factor beta and provides add-
itional support for a role of ABO and RTN3 against se-
vere malaria. It also provides the first evidence that
polymorphisms in NOS2 and EMRI may be associated
with mild malaria, G6PD with anaemia while SNPs in
ADCY9 and EMRI may be linked with severe malaria in
the Cameroonian population. Polymorphisms in human
genes have important implications for the outcome of
paediatric malaria in Cameroon. Moreover using mild
malaria clinical phenotypes may permit the identification
of novel pathways in the early development of disease.
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