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Abstract

Background: Heterogeneous patterns of malaria transmission are thought to be driven by factors including host
genetics, distance to mosquito breeding sites, housing construction, and socio-behavioural characteristics. Evaluation of
local transmission epidemiology to characterize malaria risk is essential for planning malaria control and elimination
programmes. The use of geographical information systems (GIS) techniques has been a major asset to this approach.
To assess time and space distribution of malaria disease in Bandiagara, Mali, within a transmission season, data were
used from an ongoing malaria incidence study that enrolled 300 participants aged under six years old”.

Methods: Children’s households were georeferenced using a handheld global position system. Clinical malaria was
defined as a positive blood slide for Plasmodium falciparum asexual stages associated with at least one of the following
signs: headache, body aches, fever, chills and weakness. Daily rainfall was measured at the local weather station.
Landscape features of Bandiagara were obtained from satellite images and field survey. QGIS™ software was used to
map malaria cases, affected and non-affected children, and the number of malaria episodes per child in each block of
Bandiagara. Clusters of high or low risk were identified under SaTScanW software according to a Bernoulli model.

Results: From June 2009 to May 2010, 296 clinical malaria cases were recorded. Though clearly temporally related to
the rains, Plasmodium falciparum occurrence persisted late in the dry season. Two “hot spots” of malaria transmission
also found, notably along the Yamé River, characterized by higher than expected numbers of malaria cases, and high
numbers of clinical episodes per child. Conversely, the north-eastern sector of the town had fewer cases despite its
proximity to a large body of standing water which was mosquito habitat.

Conclusion: These results confirm the existence of a marked spatial heterogeneity of malaria transmission in
Bandiagara, providing support for implementation of targeted interventions.
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Background
Malaria is one of the leading causes of morbidity and
mortality in the world, with an estimated 3.3 billion
people at risk of malaria [1]. The incidence of malaria
worldwide is estimated to be 216 million cases per year,
with 81% of these cases occurring in sub-Saharan Africa.
Malaria kills approximately 655,000 people per year; 91%
of deaths occur in sub-Saharan Africa [1], mostly in
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children under five years of age. In Mali, West Africa,
malaria represents 36.5% of consultation motives in
health center, it is a leading cause of morbidity and mor-
tality children of less than five years of age and the first
reason of anaemia in pregnant women [2]. Malaria
transmission is seasonal.
Malaria parasite transmission and clinical disease are

characterized by important microgeographic variation,
often between adjacent villages, households or families
[3-8]. This local heterogeneity is driven by a variety of
factors including human genetics [9,10], distance to po-
tential breeding sites [11,12], housing construction
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[2,13-16], presence of domestic animals near the house-
hold [17,18], and socio-behavioural characteristics
[6,12,19,20]. WHO recommends the geographic stratifi-
cation of malaria risk. An analysis of the local epidemio-
logical situation is therefore essential, and such analyses
formed one of the priorities of the 18th WHO Report
[21], reiterated in the 20th WHO Report [22]. This in-
volves an analysis of local variations, making it possible
to define high-risk zones on a fine geographical scale,
with the aim of increasing the efficacy of anti-malaria
measures [23]. Setting up anti-malaria programmes
targeting specific zones is therefore a priority. The devel-
opment of Geographical Information Systems (GIS) has
been an indispensable asset to this approach [24].
While seldom prioritized in the planning of malaria

control by national programmes, the understanding of
the microepidemiology of malaria is important to the de-
sign of effective small-area interventions [3,18], particu-
larly in areas of unstable or very low transmission. To
assess space-time local heterogeneity of disease, statistics
that detect the presence of significant small-area disease
clusters are often useful [2,7,25]. The space-time cluster-
ing of malaria has also been described, mainly in moder-
ate to high transmission settings [2,13,26-30]. A few
studies showed a difference of malaria risk at the re-
gional or local level [27,31]. A precise knowledge of the
geographic zones at risk, the levels of risk, the various
risk factors, and the exposed populations, is required
particularly in sites where malaria vaccines are tested. In
order to assess space and time distribution of malaria
disease in children in Bandiagara, Mali, within a trans-
mission season, the data from a malaria incidence study
have been used.

Methods
Study area
This space-time description of malaria distribution among
children in Bandiagara, Mali is part of a multi-year cohort
survey conducted by the Malaria Research and Training
Center (MRTC) as part of the Bandiagara Malaria Project
(BMP). This survey measures the age-specific incidence
rates of clinical malaria episodes at a site dedicated to mal-
aria clinical trials. Auxiliary parts of the project include
molecular epidemiology studies, as well as Plasmodium
falciparum genomic and transcriptomic analyses and sero-
logical investigations.
Bandiagara is a town, of approximately 13,364 inhabi-

tants, situated in north-eastern Mali in West Africa
(Figure 1) on a rocky plain above the Dogon escarpment
and receiving a mean annual rainfall of 600 mm. The rainy
season spans from June to October and the dry season
from November to May. Bandiagara has a small river, the
Yamé, a minor tributary of the Niger which stops flowing
during the dry season, and transient post rainfall standing
water body during the rainy season. Anopheles gambiae is
the principal malaria vector and malaria transmission is
highly seasonal meso- to hyperendemic [32].
With less than one infecting bite per person per month

at the height of the dry season in March, the transmission
season starts in June, peaks at up to 60 infected mosquito
bites per person per month in August or September, and
ends in December Following transmission fluctuations,
malaria incidence is seasonal too, with an intense peak in
September to October. In 1999, the clinical malaria inci-
dence was 1.7 episodes per transmission season in chil-
dren less than 10 years [33,34]. Plasmodium falciparum
represents 97% of malaria infections, Plasmodium
malariae 3%, and rare infections are due to Plasmodium
ovale.

Cohort description
This study was approved by institutional review boards of
the Faculty of Medicine, Pharmacy and Dentistry of the
University of Mali and of the University of Maryland
School of Medicine. After obtaining permission to work in
the community from local officials, elders, and traditional
healers as described by Diallo et al. [35], the study was
publicized by local radio broadcast, and parents were in-
vited to accompany children aged up to six years to the
BMP research clinic to be screened for eligibility. Children
in the target age group were eligible for inclusion in the
study if they met each of the following inclusion criteria:
below six years of age at the time of screening, resident in
Bandiagara town, good general health based on clinical
evaluation, written informed consent obtained from the
parent/guardian, and participation feasible through the
48-month follow up. Exclusion criteria were: simultaneous
participation in an interventional clinical trial, chronic
medication with known anti-malarial activity (such as
trimethoprim-sulphamethoxazole for prevention of AIDS-
associated opportunistic infections), or any condition
that in the opinion of the principal investigator would
jeopardize the safety or rights of a participant in the trial
or would render the participant unable to comply with the
protocol.
Active and passive surveillance were conducted to cap-

ture the incidence of malaria infection and disease. Active
surveillance consisted of scheduled monthly visits aimed
at detecting asymptomatic malaria infection and anaemia.
Clinical examination of the participants was performed by
the study physician at enrolment and on a quarterly basis.
Following standard protocols, finger-prick blood samples
were collected monthly for malaria smears, measurement
of haemoglobin level, and parasite genotyping from filter
paper. Venous blood was collected quarterly for molecular
and immunological analyses. Passive surveillance con-
sisted of continuous availability of free, expeditious, high
quality, basic medical care at the BMP research clinic and



Figure 1 Map of Mali with the location of Bandiagara.
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Bandiagara District Hospital, where parents/guardians
were instructed to consult whenever their child was sick.
Children were then examined by a physician, and axillary
temperature was checked (fever was defined as axillary
temperature ≥37.5°C). Blood samples were collected for
microscopic examination (thick blood film), haemoglobin
level determination, and parasite genotyping. Malaria was
treated with artemisinin combination therapy (artesunate
+ amodiaquine or artemether + lumefantrine) according to
the guidelines of the Mali malaria control programme.

Malaria data, rainfall data, and Bandiagara GIS
This open cohort was enrolled in June 2009 and will be
followed up until July 2014. For the purpose of this
study, the analysis was focus on the new malaria infec-
tions recorded during the first year of follow up (June
2009 to May 2010). Clinical malaria was defined as the
association of a new positive thick blood smear with
asexual P. falciparum parasitaemia and symptoms gener-
ally consistent with malaria (headache, body aches, fever,
chills, or weakness, irrespective of body temperature at
the time of examination). After aggregation on a weekly
time scale, time series of the number of malaria episodes
was plotted together with rainfalls measured at the local
weather station in Bandiagara. By segregating the first
and second parts of the rainy and dry seasons, the global
time series was then divided into successive periods.
At inclusion and in case of relocation, the household

of each child (i e, the place where the child slept) was
georeferenced using a handheld global position system
(GarminW Personal Navigator; accuracy approximately
within 10 m).
Children household and malaria episodes occurrence

were mapped and a Geographical Information System
was developed for the study area that also included the
Bandiagara house blocks and the water bodies of the
area based on a satellite image (Quick Bird, August
2004) and field surveys (2010).
With the demographic expansion of the town and a

flood in July 2007 that destroyed many houses in quar-
ters 1, 2, and 5 on the right bank of the Yame River, new
neighbourhoods have been built in the north and east.
Because no updated satellite image was available at the
time of the present study, house blocks of arbitrary
shape and size were drawn for the few included children
living in these new quarters.

Case mapping and spatial statistical analysis
Using Quantum GIS™ software (QGIS™) version 1.7.3
[36], children households were plotted according to their
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geographic coordinates. Numerous children, likely sib-
lings of the same family, shared the same location. For
each corrected location, data were subsequently aggre-
gated, and several variables were calculated: initial num-
ber of study participant, total and daily number of
recorded malaria episodes, daily number of susceptible
children (taking into account the excluded children and
a three-week refractory period after a malaria episode).
After aggregating data at the house block level, the mean
number of malaria episodes per child was calculated for
each block over the entire year. The mean number of
malaria episodes per child-week was also calculated for
each successive period.
Using QGIS™, the numbers of included children asnd

malaria episodes were mapped using proportional circles.
The spatial distribution of malaria risk was illustrated by
choropleth mapping at the block level of the mean num-
ber of malaria episodes per child, as described above.
In order to better assess the spatial variability of malaria

risk, a cluster analysis was performed using Kulldorff ’s sta-
tistics through the SaTScanW software [25,37]. This widely
applied method [5,38-40] moves a circular or elliptic scan-
ning window over the study area and compares observed
and expected case numbers inside and outside this win-
dow in order to detect clusters and estimate risk ratios.
Using daily malaria episodes and susceptible children at
each location, a Bernouilli distribution model with 50% of
the population at risk, and elliptic scanning windows, high
or low risk purely spatial clusters were sought over the
whole year and over each study period. The standardized
incidence ratio (SIR) was defined as the ratio of observed
to expected cases. Cluster significance (P-value) was com-
puted with a likelihood ratio test provided by a Monte
Carlo approach using 999 random simulations under the
null hypothesis of no cluster. Statistically significant spatial
clusters (P-value < 0.05) were subsequently mapped on
QGIS™.

Results
Spatial distribution of sampled children and recorded
malaria episodes
Study children lived in 168 locations which have been
were geopositioned. Children habitats were mainly dis-
tributed in the centre and north-eastern blocks of
Bandiagara (Figure 2A).
During the course of the study period, 11 active

surveys were carried out, and a total 296 P. falciparum
clinical episodes were recorded among 178 children.
Fifty-one episodes were documented from active surveys
and 245 episodes from passive survey. Episodes mostly
concentrated along the right banks of the Yamé River
and, to a lesser extent, on the north-eastern blocks of
the city near the brickyard (Figure 2B), exhibiting a
marked spatial heterogeneity.
Malaria episodes and rainfall times series
In order to analyse the temporal distribution of malaria
episodes, data were aggregated by week, and a time series
of malaria episodes was plotted together with locally mea-
sured rainfalls (Figure 3). In 2009, the first malaria clinical
episodes had a lag of four weeks after the onset of the
rainy season. Children continued to experience malaria
episodes late into the 2009–2010 dry season (from
December 2009 to May 2010), a period that accounted
for nearly half of the 296 total episodes. With respect to
the rainfall time distributions, four successive periods
were delimited (Figure 3). Period 1 extended from the
beginning of the study (2009 week 23) until the rainfall
maximum (2009 week 34; 1 June to 23 August 2009).
Period 2 spanned the rest of the rainy season (from
2009 week 35 to week 44; 24 August to 1 November
2009). Period 3 covered the first half of the dry season
(2009 week 45 to 2010 week 5; 2 November 2009 to 24
January 2010). Period 4 extended throughout the second
half of the dry season (2010 week 6 to week 19). Because
this was the start of the next rainy season, the remaining
period in the time series (2010 week 20 to week 23) was
excluded from further period-based analyses.

Malaria episodes per child
In order to better visualize the malaria risk across
Bandiagara and to minimize any sampling bias, the
mean number of malaria episodes recorded per sampled
child was mapped for each block (Figure 4). Over the
entire year of follow up, while the greatest risk of mal-
aria transmission seemed to be located on the western
blocks, along the northern shore of the Yamé River and
on the northern side of the brickyard, the centre of the
town exhibited a patchy yet globally low risk pattern.
For each of the four epidemiological periods, as defined

in Figure 3, a similar choropleth mapping of the mean
number of episodes per child-week was computed, as il-
lustrated in Figure 5. These sequential maps exhibited a
contrasting pattern. While malaria incidence appeared
globally low during the beginning of the rainy season
(Period 1, Figure 5A), especially in the centre of
Bandiagara, malaria incidence was much higher during
the end of the rains (Period 2, Figure 5B), with a patchier
distribution. During the first half of the dry season, inci-
dence became more intense on the edge of the town, par-
ticularly along the Yamé River and just north of the
brickyard (Period 3, Figure 5C). Malaria risk returned to
negligible during the second part of the dry season (Period
4, Figure 5D), except for a few limited foci in the southern
part of the town.

High or low-risk spatial clusters
To statistically confirm this spatial distribution of malaria
risk across Bandiagara, high or low-risk spatial clusters



Figure 2 Corrected spatial distribution of (A) the 300 children sampled, and (B) the 296 malaria episodes recorded between June 2009
and May 2010 in Bandiagara.
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were sought using Kuldorff ’s statistics. In the full year of
study (Figure 4), the first significant cluster was a low-risk
cluster located on the eastern part of the town centre and
separated from the brickyard and the Yamé River by a few
blocks of houses (SIR = 0.3; P-value <10-5). A secondary
significant high-risk cluster covered the western blocks of
Bandiagara located near the bend of the Yamé River
(SIR = 2.36; P-value <0.01). During Period 1 (Figure 5A),
this method didn’t establish any significant cluster, but a
nearly significant low-risk spatial cluster included the
south-east part of the town on both sides of the Yamé
River (SIR = 0.091; P-value = 0.07). During Period 2
(Figure 5B), no area with a significantly higher or lower in-
cidence could be detected. During the first half of the dry
season (Period 3, Figure 5C), a significant low-risk cluster
covered the eastern part of the town centre (C1, SIR = 0.3;
P-value <10-5). A secondary high-risk cluster spanned
most blocks located along the river (C2, SIR = 2.36,



Figure 3 Recorded malaria episodes and measured rainfall weekly time series.
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P-value <0.01). Conversely, no significant low-risk cluster
was detected during Period 4 (Figure 5D).

Discussion
The present work represents the first description of mal-
aria local spatial microepidemiology. It constitutes a crit-
ical step in the temporal and spatial stratification of the
local malaria risk, as recommended by WHO [22].
Following 300 children from June 2009 to May 2010, 296

clinical malaria episodes were recorded among 178 partici-
pants. Their occurrence exhibited a marked seasonal pat-
tern that is typical in Sahelian regions where malaria
transmission is unstable [41]. However, the peak of malaria
Figure 4 Number of malaria episodes per sampled child over the full
spatial clusters computed on SaTScanW.
incidence in Bandiagara, where malaria is meso- to
hyperendemic, occurred several weeks after rainfalls and
persisted late in the dry season. In relation to the dynamics
of Anopheles breeding sites, such a pattern has been previ-
ously described in southern Mali (Doumbo, pers comm).
Breeding site location also likely explains the marked

spatial heterogeneity of malaria incidence observed across
Bandiagara in this year of follow up, similar to that previ-
ously described in Kenya by Midega et al. [42]. Most af-
fected house blocks were located not far from the Yamé
River, especially its bend west of the town, or near the
brickyard. The increased malaria incidence of house blocks
in the northern limit of the study area may have been
one-year period. Localization of the significant high-risk or low-risk



Figure 5 Number of malaria episodes per sampled child-week over each of the four periods. Localization of the significant spatial clusters
computed on SaTScanW.
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related to a small backwater pond located in their vicinity.
Conversely, the centre of Bandiagara appeared protected,
likely thanks to a barrier effect of the households living in
the blocks along the brickyard and the Yamé River such ef-
fect has previously been described by Gaudart [26].
The evolution of the spatial distribution of malaria risk

in subsequent periods of the year may also denote the
changing location of principal breeding sites. During the
beginning of the rainy season, the relatively protected
area in the south-east of Bandiagara could reflect the ab-
sence of breeding sites in the rapidly flowing Yamé River,
while the brickyard fills with water. At the same time,
numerous water holes appear on the rocky plateau north of
the town. The end of the rainy season is thus characterized
by widespread malaria transmission, explaining the absence
of detectable clusters. On the contrary, although
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transmission remains high during the beginning of the dry
season, the north-eastern blocks of the town appear
protected, potentially because of increasing pollution of
urban breeding sites, while transmission concentrates along
the Yamé River, whose lesser flow with standing pools may
allow mosquito breeding, and near the brickyard,
These hypotheses should be confirmed by further studies

with longer time series as well as transmission and ento-
mological surveys. This study proves the feasibility of thor-
ough epidemiological studies in rural African areas. It also
presents valuable tools to better understand malaria dy-
namics in endemic foci like Bandiagara, better target con-
trol interventions, and better design future clinical trials.
The lack of environmental factors, the limited study

period and the time lag between satellite image, the lack of
cut-off for temperature and parasitemia represent the limi-
tations of this study. The implementation of additional in-
vestigations is therefore essential to take in account these
items in an in-depth description of the micro epidemi-
ology of malaria in Bandiagara.

Conclusion
Despite its limitations which are the no taking in account
the environmental factors, the follow up time limitation,
the present work provides valuable information on the
local distribution patterns of malaria in Bandiagara. These
results confirm the existence of a marked spatial hetero-
geneity of malaria transmission, likely related to seasonal
breeding sites.
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