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Abstract

Background: Recent whole cell in vitro screening campaigns identified thousands of compounds that are active
against asexual blood stages of Plasmodium falciparum at submicromolar concentrations. These hits have been
made available to the public, providing many novel chemical starting points for anti-malarial drug discovery
programmes. Knowing which of these hits are fast-acting compounds is of great interest. Firstly, a fast action will
ensure rapid relief of symptoms for the patient. Secondly, by rapidly reducing the parasitaemia, this could minimize
the occurrence of mutations leading to new drug resistance mechanisms.
An in vitro assay that provides information about the speed of action of test compounds has been developed by
researchers at GlaxoSmithKline (GSK) in Spain. This assay also provides an in vitro measure for the ratio between
parasitaemia at the onset of drug treatment and after one intra-erythrocytic cycle (parasite reduction ratio, PRR).
Both parameters are needed to determine in vitro killing rates of anti-malarial compounds. A drawback of the killing
rate assay is that it takes a month to obtain first results.

Methods: The approach described in the present study is focused only on the speed of action of anti-malarials. This
has the advantage that initial results can be achieved within 4–7 working days, which helps to distinguish between
fast and slow-acting compounds relatively quickly. It is expected that this new assay can be used as a filter in
the early drug discovery phase, which will reduce the number of compounds progressing to secondary, more
time-consuming assays like the killing rate assay.

Results: The speed of action of a selection of seven anti-malarial compounds was measured with two independent
experimental procedures using modifications of the standard [3H]hypoxanthine incorporation assay. Depending on
the outcome of both assays, the tested compounds were classified as either fast or non-fast-acting.

Conclusion: The results obtained for the anti-malarials chloroquine, artesunate, atovaquone, and pyrimethamine
are consistent with previous observations, suggesting the methodology is a valid way to rapidly identify fast-acting
anti-malarial compounds. Another advantage of the approach is its ability to discriminate between static or cidal
compound effects.
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Background
Malaria is one of the most devastating infectious diseases in
the world and is responsible for an estimated 544,700-
904,000 deaths each year [1]. It annually affects hundreds
of millions of people, principally in sub-Saharan Africa,
Asia and South America, with young children and pregnant
women being particularly at risk. The fight against malaria
remains a constant challenge as parasites manage to adapt
and develop resistance mechanisms, making them less sen-
sitive to the latest drugs. A critical example of the latter is
the observed delay in parasite clearance time following
arteminisin-based combination therapy (ACT) in Southeast
Asia [2,3]. Since ACT has been adopted worldwide as first-
line treatment, the rise of resistance to these drugs could
lead to a malaria resurgence. The development of new anti-
malarial agents is thus urgently needed to counter the
spread of drug-resistant malaria.
The last few years have seen the development of in-

novative high-throughput screening that allowed testing
of millions of compounds from diverse libraries against
whole parasites [4]. GlaxoSmithKline [5] (GSK), Novartis
[6] and St Jude’s [7] have screened their collections against
the erythrocytic stages of Plasmodium falciparum. More
than 20,000 hits that inhibit or kill the parasite at a
concentration of less than 1 μM were identified. As a
result, an explosion of numbers of active new chemotypes
that can potentially be developed as anti-malarial drugs
have been reported [8-10].
However, one of the main current challenges is to be

able to assess the potential of these chemotypes early in
the drug discovery process. New drugs should ideally have
a rapid onset of action to relieve patient symptoms as fast
as possible and so that a minimal number of parasites sur-
vive after exposure to the drug, thereby minimizing the re-
sistance selection risk [9-11]. In this prospect, researchers
at GSK in Spain have developed a killing rate assay that al-
lows measuring the effect of a compound on parasite via-
bility over time by determining its killing rate and speed
of action [12]. A drawback of this method is that first re-
sults cannot be expected before four weeks.
In order to get a quicker evaluation of the speed of ac-

tion of a compound and to solve the lack of filters in the
early stage of the drug discovery testing cascade, a method
based on modifications to the standard [3H]hypoxanthine
Figure 1 Structures of compounds 1, 2 and 3.
incorporation assay was developed. The first results were
achieved within a week.
The method was validated with the anti-malarial stan-

dards chloroquine, artesunate, atovaquone, and pyri-
methamine and was also used to determine the speed of
action of three novel compounds (1 [13], 2 [14] and 3)
(Figure 1), derived from different series identified during
screening of Biofocus libraries [15].

Methods
Chemicals and materials
Chloroquine (MW: 516), artesunate (MW: 384), atova-
quone (MW: 367) and pyrimethamine (MW: 249) were
obtained from Sigma Aldrich (Switzerland).
Compounds 1 and 2 were synthesized using the experi-

mental procedures previously described [13,14]. Compound
3 was obtained from a 7-step synthesis from commercially
available reagent 4 (Figure 2). Reaction of 4 with trichloroa-
cetyl isocyanate in THF, followed by bromination gave
compound 5 in 91% yield. Subsequent treatment with am-
monia in methanol afforded intermediate 6, which cyclized
under basic conditions. Subsequent chlorination with
POCl3 gave key dichloro intermediate 7. Two consecutive
N-substitution reactions with 3-dimethylaminopropylamine
under basic conditions and methyl amine respectively gave
intermediate 8, which underwent a final Suzuki cross-
coupling reaction with phenylboronic acid to give the de-
sired compound 3 as a white solid (Gonzalez Cabrera D
et al.: 2,4-Diamino-thienopyrimidines as orally active anti-
malarial agents. Manuscript submitted). All three com-
pounds were analysed by HPLC prior to biological
experiments and were found to be >98% pure.
[3H]hypoxanthine was purchased from ANAWATrading

SA (Wangen, Switzerland). Anti-malarial compounds were
dissolved in DMSO at 10 mg/mL. The stock solutions were
kept at 4°C for not more than six months. Dilutions were
prepared from stock solution immediately before use. The
DMSO concentration (<0.5%) in the experiments had no
inhibitory effect on parasite cultures.

Parasite cultivation
The drug-sensitive Plasmodium falciparum strain NF54
(airport strain from the Netherlands) was provided by F
Hoffmann-La Roche Ltd (Basel, Switzerland). The parasites
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Figure 2 Synthetic route for compound 3. Reagents and Conditions: (i) trichloroacetyl isocyanate (1 eq), THF, 0°C to r.t, 2 h, 91%; (ii) bromine
(3.8 eq), acetic acid, 0°C to 80°C, 14 h, 65%; (iii) ammonia, CH3OH, 0°C to r.t., 30 min, 76%; (iv) t-BuOK, DMF, RT, 14 h, 99%; (v) POCl3, N,N-dimethyl
aniline (0.5 eq), 130°C, 14 h 88%; (vi) 3-dimethylaminopropylamine (1 eq), Na2CO3 (2 eq), EtOH, r.t., 14 h, 72%; (vii) 2 M methyl amine in THF
(10 eq), dioxane, sealed tube, 100°C, 14 h, 83%; (viii) phenylboronic acid (1.1 eq), Pd(PPh3)2Cl2 (0.05 eq), aq. 1 M K2CO3 (1.05 eq), DMF, 90°C,
14 h, 63%.
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were cultivated at 37°C as has been described [16]. Briefly,
the medium consisted of RPMI 1640 supplemented with
0.5% ALBUMAX II, 25 mM Hepes, 25 mM NaHCO3
(pH 7.3), 0.36 mM hypoxanthine, and 100 g/ml neomycin.
Human erythrocytes served as host cells. Cultures were
maintained at 37°C in an atmosphere of 3% O2, 4% CO2,
and 93% N2 in humidified modular chambers.
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Figure 3 Schematic representation of the two in vitro assays. The “IC50
unsynchronized and synchronized parasite cultures, respectively. R, rings; S,
IC50 speed assay
A schematic representation of the IC50 speed assay is
shown in Figure 3. Briefly, parasite growth in the pres-
ence of anti-malarial compounds was assessed using the
[3H]hypoxanthine incorporation assay and expressed as
IC50 values [17]. For each compound, three incubation
times were employed: 72 (standard assay time), 48 and
Time
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speed assay” and “stage-specificity analysis” are performed with
schizonts.
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24 hours. In the case of the 72- and 48-hour assays, radio-
active hypoxanthine was added for the last 24 hours. In
the case of the 24-hour assay, [3H]hypoxanthine was
added during the last eight hours. IC50 values in the stand-
ard 72-hour assay for chloroquine, artesunate, atova-
quone, pyrimethamine, 1, 2 and 3 were previously found
to be 5.1 ± 0.8 [14], 1.6 ± 0.1 [14], 0.38 ± 0.04 [18], 5.6 ± 0.5
[18], 18 ± 1 [13], 26 ± 4 [14] and 9.5 ± 2.6 [16] ng/mL.

Stage-specificity analysis
Using synchronized cultures of NF54, the concentration-
dependent growth of ring and schizont forms in the
presence of anti-malarial compounds was measured as
previously described [18].
As depicted in Figure 3, NF54 cultures were synchro-

nized twice with 5% D-sorbitol. To obtain early schizont
stages, the second sorbitol treatment was done six to eight
hours after the first. This procedure provided initially a
parasite culture containing ≥80% young trophozoites (up
to 20 hours old), which after cultivation of another 16 hours
resulted in early schizont stages (up to 36 hours old).
To obtain ring forms, the second sorbitol treatment

was performed 31 hours after the first, yielding a para-
site culture with ≥80% rings (up to three hours old).
One 96-well microtitre plate for each of the two syn-

chronous stages was then incubated for 24 hours with
two-fold serial dilutions of anti-malarial compounds. In-
vestigated concentrations ranged from 1.6-100 × the
previously determined IC50 of each compound in a
standard 72-hour assay. Following incubation, the plates
were washed 4x resulting in a >1,000-fold dilution of
free compound followed by another incubation period of
24 hours at 37°C in the presence of [3H]hypoxanthine.
The plates were then frozen at −20°C or directly proc-
essed as described [17].

Results
The herein described methodology consists of two inde-
pendent experimental approaches. The first assay was
named “IC50 speed assay” and is performed with unsyn-
chronized cultures, and the second one “stage specificity
analysis” (Figure 3).
In the IC50 speed assay, IC50 values were determined

side-by-side for the four anti-malarial standards chloro-
quine, artesunate, atovaquone, and pyrimethamine as well
as the three novel compounds 1, 2 and 3 (Figure 1) after
total incubation times of unsynchronized parasite cul-
tures for 24, 48 and 72 hours (Figure 4, Additional file 1:
Table S1). The 24-hours assay with chloroquine, artesu-
nate, 2 or 3 resulted in very similar IC50 values com-
pared to the standard 72-hour assay (ratio of IC50

24 hours/IC50 72 hours was 1.1, 1.1, 1.6 and 1.2). The
IC50s of atovaquone, pyrimethamine and 1 were 3.6-,
8.3- and 4.3-fold higher at the 24-hour time point
compared to the those generated at the 72-hour time
point (Figure 4, Additional file 1: Table S1). These data,
obtained after three working days, constituted the first
indication that the latter compounds were not fast-
acting molecules (Table 1).
The stage-specificity assay was performed with either

young rings or young schizonts, which were incubated
for 24 hours with serial dilutions (concentrations ran-
ging from 1.6-100× of the previously determined IC50

values) of the above-mentioned seven anti-malarial com-
pounds. Subsequently free compounds were removed
and plates again incubated in the presence of radioactive
hypoxanthine for 24 hours. Initial results from this test
can be obtained within four working days.
The rationale to perform the stage-specificity assay

was to challenge the data from the IC50 speed assay. As-
suming, for instance, that the IC50 speed assay would
categorize a compound as non-fast-acting, and the
stage-specificity assay would indicate a preferred action
on young schizonts, then the latter data could provide
an explanation as to why a compound is acting slowly. A
comparable scenario turned out to be the case for pyri-
methamine. The above mentioned 8.3-fold IC50 24 hour/
IC50 72 hour shift in the IC50 speed assay (Figure 4)
could be explained by the minor activity against rings
(Figure 5). The observation that pyrimethamine acts
only on older forms (Figure 5) is not unexpected, since
similar data have been published previously [19].
Atovaquone data from the IC50 speed assay suggests

that this drug has a slow action. This was also supported
by the data from the stage-specificity assay, showing not
more than 70 and 90% action against rings and schizonts
(Figure 5). Those observations are in line with recent re-
ports from 2 groups [20,21], who indicate that atova-
quone has weak inhibitory activity against the rings and
schizonts for the lines tested.
It is likely that the inhibitory effect of compounds acting

even slower than atovaquone or pyrimethamine would be
poorly represented in the here described methodology,



Table 1 Data overview of IC50 speed assay and stage specificity analysis

Compound Assay 1 (A1): Conclusion A1 Assay 2 (A2): Conclusion A2 Concluded speed of action

IC50 speed assay Stage specificity analysis

(ratio of IC50 24 h/IC50 72 h)a (at 6-100x IC50)

Chloroquine 1.1 Fast >95% action on Rb Fast (cidal) Fast (cidal)

>95% action on Sb

Artesunate 1.1 Fast >95% action on R Fast (cidal) Fast (cidal)

>95% action on S

Atovaquone 3.6 Not fast ~50-70% action on R Not fast (cidal) Not fast (cidal)

~75-90% action on S

Pyrimethamine 8.3 Not fast ~5% action on R Not fast (cidal) Not fast (cidal)

~90% action on S

1 4.3 Not fast ~0-75% action on R Not fast (cidal) Not fast (cidal)

>95% action on S

2 1.6 Fast/Not fast ~40- >95% action on R Not fast (cidal) Not fast

>95% action on S

3 1.2 Fast >95% action on R Fast (cidal) Fast (cidal)

>95% action on S
aRatios are means from ≥ 3 independent experiments performed with P. falciparum strain NF54.
bR and S are abbreviations for the ring and schizont stages, respectively.
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Figure 5 Stage-dependent effects of chloroquine, artesunate, atovaquone, pyrimethamine and compounds 1, 2 and 3 on synchronous
cultures of Plasmodium falciparum strain NF54. Cultures were exposed to 7 different concentrations of the compound for 24 h. After removal
of the compounds, parasites were incubated for another 24 h in the presence of [3H]hypoxanthine. Compound effects are expressed as the
percentage of growth of the respective development stage relative to an untreated control. The open bar is the ring stage and the filled bar is
the schizont stage. Each bar represents the mean ± SD of n = ≥3 independent experiments. CHQ, chloroquine; ART, artemisinin; ATO, atovaquone;
PYR, pyrimethamine.
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since the maximum drug incubation time is 72 h. For in-
stance in the case of azithromycin, a drug with a so-called
delayed death phenotype above 72 h, it has been described
previously that significant parasite growth reduction can
only be observed by extending the drug exposure time to
at least 96 h [12,22]. The prolongation of the total incuba-
tion times of the here described assays should help to ad-
dress this fact.
Chloroquine and artesunate were found to be fast-

acting compounds (Figure 4) and showed similar activity
against rings and schizonts (Figure 5). These observa-
tions fit with what is known from the literature about
those compounds [12,18,23].
Similarly, in the case of two of the three novel com-

pounds, there was a good match between the two assays.
Compound 1 showed a similar stage-specific profile like
pyrimethamine, with predominantly strong action
against young schizonts. The activity against young ring
forms was <20% at concentrations up to 13× the IC50

and only ~60-75% in the higher concentration range. Com-
pound 3 showed high activity against both blood stages
(>95% on rings and schizonts in the 6-100× IC50 range),
which suggests it is a fast-acting compound, similarly to
what the IC50 speed assay had already demonstrated.
The only molecule showing contradictory results be-

tween the assays was compound 2. The data from the
IC50 speed assay suggests a relatively fast action (1.6-
fold IC50 24 hour/IC50 72 hour shift). However, the
stage-specificity assay proposes a slow action on rings
(~40-60% activity at concentrations up to 13× the IC50
and >95% activity only at the two highest concentra-
tions). Theoretically it should indeed be possible to see
different outcomes, e g, it can be expected that due to
the constant presence of compound during the assay
incubation time of the IC50 speed assay, the latter
would likely not be the right assay to detect if a com-
pound is acting in a static or a cidal manner, because a
viable but metabolically inactive parasite would be
measured as dead. The stage-specificity assay, however,
should have the potential to discriminate between static
and cidal compounds, because of the washing proce-
dure implemented after the compound incubation
period. The washing is expected to remove the com-
pound during the time when the metabolic activity is
being determined. Since the data from both assays were
in agreement in the case of all compounds except for
molecule 2, it can be expected that they should have
cidal activities (Table 1).
The lack of correlation between the two assays in the

case of compound 2 suggests that performing only one
of them might not be acceptable. An exception could be
anti-malarial compounds with certain defined pheno-
types. There the assays could be interchangeable. How-
ever, in the absence of such knowledge, and until the
assays are further validated with compounds of more
chemical diversity, we do not recommend this approach.

Conclusions
The results obtained for the anti-malarials chloroquine,
artesunate, atovaquone, and pyrimethamine are consist-
ent with previous observations [12,18-21,23]. This sug-
gests that the assays described here are valid to rapidly
discriminate between fast- and slow-acting anti-malarial
compounds, providing valuable information to guide
and accelerate the development of new classes of anti-
malarial compounds.

Additional file

Additional file 1: Table S1. IC50s (ng/ml) of all speed assays
(NF54 unsynchronized culture).
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