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Abstract

Background: Since helminths and malaria parasites are often co-endemic, it is important to clarify the
immunoregulatory mechanism that occurs during the process of co-infection. A previous study confirmed that
dendritic cells (DCs) are involved in the establishment and regulation of the T-cell-mediated immune response to
malaria infection. In the current study, distinct response profiles for splenic DCs and regulatory T cell (Treg)
responses were assessed to evaluate the effects of a pre-existing Schistosoma japonicum infection on malaria
infection.

Methods: Malaria parasitaemia, survival rate, brain histopathology and clinical experimental cerebral malaria (ECM)
were assessed in both Plasmodium berghei ANKA-mono-infected and S. japonicum-P. berghei ANKA-co-infected
mice. Cell surface/intracellular staining and flow cytometry were used to analyse the level of splenic DC
subpopulations, toll-like receptors (TLRs), DC surface molecules, Tregs (CD4*CD25 Foxp3™), IFN-y/IL-10-secreting
Tregs, and IFN-y*/IL-10"-Foxp3 CD4™ T cells. IFN-y, IL-4, IL-5, IL-10 and IL-13 levels were determined in splenocyte
supernatants using enzyme-linked immunosorbent assay (ELISA).

Results: The co-infected mice had significantly higher malaria parasitaemia, compared with the mono-infected
mice, on days 2, 3, 7 and 8 after P. berghei ANKA infection. Mono-infected mice had a slightly lower survival rate,
while clinical ECM symptoms, and brain pathology, were significantly more severe during the period of
susceptibility to ECM. On days 5 and 8 post P. berghei ANKA infection, co-infected mice had significantly lower
levels of CD11¢"CD11b", CD11¢"CD45R/B220", CD11c TLR4", CD11¢" LR, CD11¢c MHCIIT, CD11¢*CD86",
IFN-y-secreting Tregs, and IFN-y"Foxp3'CD4" T cells in single-cell suspensions of splenocytes when compared with
P. berghei ANKA-mono-infected mice. Co-infected mice also had significantly lower levels of IFN-y and higher levels
of IL-4, IL-5, and IL-13 in splenocyte supernatants compared to mono-infected mice. There were no differences in
the levels of IL-10-secreting Tregs or IL-10"Foxp3'CD4™ T cells between co-infected and mono-infected mice.
Conclusions: A Tregs-associated Th2 response plays an important role in protecting against ECM pathology.
Pre-existing S. japonicum infection suppressed TLR ligand-induced DC maturation and had an anti-inflammatory
effect during malaria infection not only by virtue of its ability to induce Th2 responses, but also by directly
suppressing the ability of DC to produce pro-inflammatory mediators.
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Background

Malaria is an infectious disease caused by the Plasmodium
parasite that continues to be a health issue for humans. It
is one of the most common pathogenic factors of mor-
bidity and mortality in sub-Saharan Africa [1]. More than
one million children are dying each year as a result of mal-
aria infection [2]. Experimental cerebral malaria (ECM),
caused by infection with Plasmodium berghei, can result
in cerebral inflammation and is a form of malaria that is
life threatening in humans. The prominent pathogenesis
of cerebral malaria (CM) is adherence and sequestration
of parasitized red blood cells (pRBCs), immune cells
and platelets to the vascular endothelial cells lining the
small blood vessels of the brain. This leads to micro-
haemorrhages and oedema in the brain [3,4].

Immunity to malaria has been studied extensively, how-
ever it is still not fully understood. It is generally thought
that the balance between pro- and anti-inflammatory
cytokines plays a very important role in the regulation of
the immune response and pathogenesis [5]. A strong Thl
immune response to intracellular Plasmodium could pre-
vent multiplication by this organism during the early
stages of malaria infection, thus impacting the course of
the disease. However, the body may then be exposed to
severe immunopathology due to excessive production of
pro-inflammatory cytokines (e g, interferon-y, IFN-y),
combined with inadequate production of others (e g,
interleukin-10, IL-10), constituting a passive effect. It is
possible though, that the course of Plasmodium infec-
tion could be changed, if the balance of pro- and anti-
inflammatory cytokines were broken, such as with a
concomitant helminth infection.

Schistosome infections are common in many tropical
regions of the world, ranking second only to malaria [4,6].
Three main Schistosoma species, Schistosoma mansoni,
Schistosoma japonicum, and Schistosoma haematobium
[7], frequently infect humans and these infections signifi-
cantly impact public health. Recently, there has been an
increasing awareness that helminth infections can amelior-
ate pro-inflammatory conditions due to their inherent
ability to induce Th2 responses to various cytokines and
pathways [8,9]. Kane et al. demonstrated that helminths
had direct anti-inflammatory effects on innate immune re-
sponses. In that study, it was reported that the eggs of S.
mansoni could suppress LPS-induced activation of imma-
ture murine dendritic cells (DCs) [10].

As helminths and malaria parasites are often co-
endemic, schistosomiasis and malaria are frequently
observed concomitantly. The existence of shared antigens
and cross-reactive antibodies to different components of
the two parasites has been confirmed in a previous report
[6]. In the past few years more and more studies have been
conducted to elucidate the immune mechanism(s) in-
volved in worm and malaria co-infections. However, many
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of these studies have produced conflicting results, which
has made it difficult to clearly understand the outcomes of
these co-infections [11]. Some studies have reported an in-
creased incidence of falciparum malaria in hosts with S.
mansoni [12] while other studies have indicated that S.
haematobium provides some protection from malaria (e g,
lower parasitaemia, and lower incidence) [13,14]. These
contradictory results may be caused by differences be-
tween different helminths and the infection stage of the
parasites [5,15-17]. Currently, S. mansoni is the most
widely used schistosome species for evaluating host im-
mune responses [18]. To date, no reports on co-infections
with S. japonicum and Plasmodium have been found.
According to a previous report, S. japonicum infection was
associated with more severe hepatic disease in humans
than compared with S. mansoni infection [19]. It was sug-
gested that there was a significant immunological differ-
ence between S. japonicum and S. mansoni [19].

In the present study, S. japonicum, along with the P.
berghei ANKA strain were used to produce a co-
infection model in C57BL/6 mice. This model is likely a
better fit for investigating the immunomodulatory mech-
anism of this co-infection in Southern Chinese popula-
tions since S. japonicum is the only schistosome species
present in South China.

It has previously been demonstrated that Tregs can
suppress Thl responses to malaria infection by modi-
fying DCs [20]. In the current study, pre-existing S.
japonicum infection strengthened the Tregs-associated
Th2 response to the malaria infection and this Th2 re-
sponse played an important role in protecting against
ECM pathology. In addition, S. japonicum infection
suppressed the proliferation of DC subpopulations and
weakened DC maturation and cytokine secretion. This
indicated that pre-existing S. japonicum infection had
anti-inflammatory effects during the malaria infection,
not only by virtue of its ability to induce Th2 responses,
but also by directly suppressing the ability of DCs to
produce pro-inflammatory mediators.

Methods

Mice, parasites, and experimental infection

Female C57BL/6 mice, four weeks old, were purchased
from the Beijing Animal Institute (Beijing, China).
They were kept in the animal facility at China Medical
University. Mice were maintained in individually ven-
tilated cages and supplied with heat-sterilized food and
distilled water ad libitum. The mice were randomly
assigned to three groups. 25 mice were infected with
P. berghei ANKA (P. berghei ANKA-mono-infection
group), 15 mice were infected with S. japonicum. (S.
japonicum-mono-infection group), and 25 mice were
infected with both S. japonicum and P. berghei ANKA
(co-infection group).
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The S. japonicum strain was obtained from the
Jiangsu Institute of Parasitic Diseases (Wuxi, China). A
total of 50 cercariae of S. japonicum were administered
percutaneously to C57BL/6 mice when the mice were
five weeks of age.

Plasmodium berghei ANKA strain was provided by
Dr Motomi Torii (Department of Molecular Para-
sitology, Ehime University Graduate School of Medi-
cine, Ehime, Japan). Parasites were stored as frozen
stabilates at —80°C. To obtain experimental inocula of
P. berghei ANKA, pRBCs were sequentially passaged
through three homologous donor mice. Infections were
initiated in C57BL/6 mice by intraperitoneal (ip) injec-
tion of 1x10° P. berghei ANKA-pRBCs eight weeks
after infection with S. japonicum.

Three mice each from the P. berghei ANKA-mono-in-
fection group, the S. japonicum-mono-infection group,
and the co-infection group were euthanized at 0, 3, 5,
and 8 day post-P. berghei ANKA infection.

The current study has been reviewed and approved by
China Medical University Institute of Medical Research
Animal Ethics Committee.

Confirmation of helminth infection

Helminth infection was confirmed by the presence of
worms and liver granulomas upon necropsy. Worms were
obtained by portal perfusion [21], and livers were examined
for the presence of granulomas under a stereomicroscope.

Malaria parasitaemia, survival rates and

disease assessment

Parasitaemia was determined by light microscopy of
Giemsa-stained, thin (tail) blood smears. Slides were
coded and pRBCs were counted microscopically in at
least five microscopic fields, each containing approxi-
mately 300 cells.

Mice were monitored for mortality daily, post-P. berghei
ANKA infection, to evaluate the survival rate of P. berghei
ANKA-mono-infected and the co-infected mice. Clinical
ECM was also assessed and was defined by the presence
of the following signs [22]: ruffled fur, hunching, wobbly
gait, limb paralysis, convulsions, and coma. Each sign was
given a score of 1. Animals with scores >4 were consi-
dered to have severe ECM.

Spleen cell culture

Spleen cell culture was prepared as previously described
[22,23]. Briefly, the spleen was aseptically removed from
each mouse and pressed through a sterile fine-wire mesh
with 10 ml of RPMI-1640 (Life Technologies, Shanghai,
China) supplemented with 5% heat-inactivated fetal calf
serum (FCS; Hyclone Laboratories, Inc, South Logan, Utah,
USA), 25 mM Hepes (Life Technologies, Shanghai, China),
0.12% gentamicin (Schering-Plough, Kenny Worth, New
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Jersey, USA), and 2 mM glutamine (Life Technologies,
Shanghai, China). Cell suspensions were centrifuged at 350
g for 10 min at room temperature (RT). Erythrocytes were
lysed with cold 0.17 M NH4Cl and the cells were
washed twice with fresh medium. The viability of the
spleen cells was determined by trypan blue exclusion
and was always >90%. Spleen cells were adjusted to a
final concentration of 10° cells/ml in RPMI-1640 sup-
plemented with 10% heat-inactivated FCS. Aliquots (500
pl/well) of the cell suspension were incubated in 24-well flat
bottom culture plates (Falcon®, Corning Life Sciences, CA,
USA) in triplicate for 48 hr at 37°C in a humidified 5% CO,
incubator. The 24-well plates were then centrifuged at 350
g for 10 min at RT and the supernatants were collected and
stored at —80°C until assayed for cytokine levels.

Cytokine analysis

IEN-y, IL-4, IL-5, IL-10 and IL-13 levels in splenocyte
supernatants were measured using commercial enzyme-
linked immunosorbent assay (ELISA) kits according to
the manufacturer's protocol (R&D Systems, Minneapolis,
MN, USA). The OD values were read in a microplate
reader at 450 nm. The concentrations of cytokines in
samples were calculated against the standard curve gen-
erated using recombinant cytokines.

Cell surface/intracytoplasmic staining and flow cytometry
All flow cytometry analyses were performed on a FACS
Calibur (BD Biosciences, San Diego, CA, USA) and
analysed with Cell Quest software (version 3.3; BD Bio-
sciences, CA, USA). All antibodies for FACS were pur-
chased from BD Biosciences or e Bioscience, unless
otherwise indicated.

For analysis of spleen DCs, single-cell suspensions of
splenocytes were first pre-incubated with anti-mouse
CD16/32 (2.4G2) monoclone antibody (mAb) to block
Fc receptors and then stained with a combination
of FITC-conjugated anti-mouse CDIllc (clone HL3)
mAb, PE-conjugated anti-mouse CD11b (clone M1/70)
mAb, PerCP-conjugated anti-mouse CD45R/B220 (clone
RA3-6B2) mAb, PE-conjugated anti-mouse MHC class II
(clone M5/115.15.2) mAb, and PE-conjugated anti-mouse
CD86 (clone GL1) mAb. Isotype-matched Abs were used
as staining controls.

DC cell surface TLRs were also evaluated. For TLR4
analysis, splenocytes were harvested, blocked with anti-
CD16 / CD32, and then stained using a combination of
FITC-conjugated anti-mouse CD1lc (clone HL3) and
PE-conjugated anti-mouse TLR4 (MTS510).

For intracellular TLR9 staining of DCs, splenocytes were
blocked with anti-CD16CD32 after harvesting and then
stained using FITC-conjugated anti-mouse CD11c (clone
HL3). After fixation and permeabilization using staining
buffer reagents as instructed by the manufacturer, cells
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were incubated with biotinylated anti-mouse TLR9
(clone 5G5, Hycult Biotechnology (HBT), Uden, The
Netherlands) followed by PE-conjugated streptavidin
(Biolegend, San Diego, CA, USA).

Spleen cells that were previously collected from C57BL/
6 mice at different time points after infection and stimu-
lated with ConA (5-10 ug/ml) for 48 hr and trypsinized
during the final 8 hr were used to analyse Tregs and IL-
10-secreting Tregs in the spleen CD4" T cell population
and to analyse the IL-10 levels produced by Foxp3 CD4"T
cells. Cell concentration was then adjusted to 2x10°/ml,
followed by a 4 hr stimulation with plate-bound anti-
mouse CD3 (1 pg/ml) and anti-mouse CD28 (0.2 pg/ml),
combined with Golgi Stop (Cat no 554724). After contin-
ued co-culture at 37°C for 4 hr, cells were washed with 3%
FCS and re-suspended in 100 pl of 3% FCS. FITC-
conjugated anti-mouse CD4 and PE- conjugated anti-
mouse CD25 (clone 3C7) were added for surface staining.
The cells were then fixed, permeabilized, and intracyt-
oplasmic staining was performed using APC-conjugated
anti-Foxp3 (clone FJK16s) and PerCP-Cy5.5-conjugated
anti-IL-10 (clone JES5-16E3). FITC-conjugated rat IgG2b
was used as the isotype control.

To analyse IFN-y-secreting Tregs in the spleen CD4" T
cell population and to analyse IFN-y produced by Foxp3~
CD4'T cells, spleen cells, that had been previously col-
lected from C57BL/6 mice at different time points after
infection and stimulated with PMA and ionomycin for 2
hr at 37°C and then Golgi Stop (Cat no 554724), were
added to each reaction (1:500 [v/v]). The next steps (co-
culture, washing with FCS, re-suspending, surface staining
with FITC-conjugated anti-CD4 and PE- conjugated anti-
CD25) were carried out as described above. The cells were
then fixed, permeabilized, and intracytoplasmic staining
was performed using APC-conjugated anti- Foxp3 (clone
FJK16s) and PerCP-Cy5.5-conjugated anti-IFN-y. FITC-
conjugated rat IgG2b was used as the isotype control.

Histopathology

Immediately after death, the brains of the mice were re-
moved and fixed in 1% buffered formalin for 48 hr. The
brain tissue was then dehydrated using graded alcohols
and xylene, and then embedded in paraffin. Continuous
coronal sections of the tissue were made using a micro-
tome. Five randomly selected sections were made into
slides and stained with hemalaun eosin. The haemor-
rhage and the infiltration of immune cells were then ex-
amined in sections from the co-infected, P. berghei
ANKA -mono-infected, and the normal control mice.

Statistical analysis

Data were analysed using Prism (GraphPad, La Jolla,
CA). Independent-samples t-tests were performed. All
tests were considered significant when P <0.05.
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Figure 1 Parasitaemia (A), survival rate (B), and clinical disease
assessment by clinical score (C) in C57BL/6 mice infected with
Schistosoma japonicum and then inoculated with 1x10°
Plasmodium berghei ANKA-pRBCs eight weeks later
(co-infection) and were analysed together with P. berghei
ANKA-mono-infected mice (P. berghei ANKA). For monitoring the
malaria parasitaemia, a Giemsa-stained thin smear was made daily.
The open box indicates the susceptible period for CM. Values
represent the means with SD (n=3 mice per group). Student t test
by comparisons between the two groups was performed with *
indicating P<0.01.
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Results

Parasitaemia, survival rate and disease assessment

of ECM

Malaria parasitaemia (Figure 1A), mortality (Figure 1B)
and ECM scores (Figure 1C) were recorded daily in the
P. berghei ANKA-mono-infection mice and the co-
infection group mice and comparisons of these were
made between the 2 groups. During the challenge, the
mean parasitaemia of the mice in both groups increased
except for a transient decline that was observed on day
7 post-infection (pi). The co-infected mice had a signi-
ficantly higher level of parasitaemia than P. berghei
ANKA-mono-infected mice on day 2, 3, 7 and 8 pi. Be-
tween day 6 and day 8 (the period of susceptibility to
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CM), most of the mice presented clinical signs of ECM
and subsequently died. Mice in the P. berghei ANKA
group had significantly higher scores, based on the clinical
scores used for assessment of clinical ECM symptoms,
than mice in the co-infection group on day 6, 7, and 8.
This indicated that P. berghei ANKA-mono-infected
mice had more severe cerebral pathology than did
the co-infected mice. The survival rate of mice in the
co-infection group was slightly higher than that in
the P. berghei ANKA mono-infection group during
the period of susceptibility to CM, but this was not
significant. All animals died on day 9 and day 11 for
P. berghei ANKA-mono-infected and the co-infected
group, respectively.
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Figure 2 C57BL/6 mice infected with Schistosoma japonicum and then inoculated with 1x10° Plasmodium berghei ANKA-pRBCs eight
weeks later (co-infection) and were analysed together with P. berghei ANKA-mono-infected mice (P. berghei ANKA). The mice were
dissected on days 0, 3, 5, 8 post-P. berghei ANKA infection and splenocytes were cultured. Cytokines in the splenocyte culture supernatants were
measured in duplicated wells using ELISA kits (R&D Systems, Minneapolis, MN, USA) according to the manufacturer's instructions. The bar charts
represent the level of splenic IFN-y (A), IL-10 (B), IL-4 (C), IL-5 (D), and IL-13 (E) from at least three mice per group. Bars represent the mean
values + SD. Student ¢ test by comparisons between the two groups was performed with * indicating P<0.01.
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(See figure on previous page.)

groups was performed with * indicating P<0.05 and # indicating P<0.01.

Figure 3 Mice in Plasmodium berghei ANKA-mono-infection group and Schistosoma japonicum-P. berghei ANKA-co-infection group
were compared at different time points according to data obtained by flow cytometry. Proportion of splenic DCs subpopulation,
CD11c"CD11b" and CD11c"CD45R/ B2207, were analysed in A and B, with absolute number of these DCs present in € and D. Proportion of
splenic CD11c*™ DCs expressing TLR4 , TLR9, MHC class Il, and CD86 of the two groups were compared in E, F, G, H, respectively. MFI of TLR4,
TLRY, MHC class I, and CD86, which were expressed on CD11¢"CD11b" DCs and CD11¢"CD45R/ B220* DCs were present in | and J. At each time
point, at least three mice per group were sacrificed. Bars represent the mean values + SD. Student ¢ test by comparisons between the two

All mice in the S. japonicum-mono-infected group sur-
vived until day 11.

Cytokine concentrations

As this study aims to evaluate the effect of a pre-existing
S. japonicum infection on a following malaria infection,
changes in corresponding cytokines were monitored on
days 0, 3, 5 and 8, post-P. berghei ANKA infection, in the
co-infected, P. berghei ANKA-mono-infected, and in the
S. japonicum-mono-infected mice. Because the mice in
the S. japonicum-mono-infected group were not received
any other treatments during this period, no changes were
observed in the levels of the cytokines that were mea-
sured. Data from S. japonicum-mono-infected mice are
presented in the following diagrams, however data was
only compared between co-infected and P. berghei
ANKA-mono-infected mice.

One pro-inflammatory cytokine (IFN-y) and four
anti-inflammatory cytokines (IL-4, IL-5, IL-10, and IL-
13) that were present in the supernatants of cultured
splenocytes were measured by ELISA assay. This was
done to evaluate the relationship between the levels
of pro- and anti-inflammatory cytokines in the co-
infected and P. berghei ANKA-mono-infected mice and
to compare the levels between the two groups. Both the
pro-inflammatory cytokine and the anti-inflammatory
cytokines began to increase post- P. berghei ANKA in-
fection, peaking on day 5 pi and then declining on day
8 pi. Compared with P. berghei ANKA-mono-infection
group, the co-infection group showed a significantly
lower level of IFN-y on day 5 and day 8 pi and signifi-
cantly higher levels of IL-4, IL-5 and IL-13 on day 3, 5,
8 pi. No difference in the level of IL-10 was found when
comparing the two groups (Figure 2).

DC subpopulations were defined as CD11c*CD11b"
and CD11c¢"CD45R/ B220" cells by flow cytometry and
the change in subpopulations of splenic DCs in the co-
infected mice vs P. berghei ANKA mono-infected mice
were compared. Both the proportion/absolute cell
numbers of CD11¢"CD11b" and CD11c¢*CD45R/B220*
began to increase post-P. berghei ANKA infection,
peaking on day 5 pi. and then declining on day 8 pi.
The co-infected mice had significantly lower per-
centages/cell numbers of both CD11c'CD11b*and
CD11c"CD45R/B220" on day 5 and day 8 pi, respectively

when compared with P. berghei ANKA-mono-infected
mice (Figure 3).

The percentage of splenic DCs expressing TLR4,
TLR9, MHC class II, and CD86 in the co-infected vs P.
berghei ANKA-mono-infected mice was also compared.
Both the proportion of CD11¢"TLR4", CD11c"TLRY",
CD11c¢*MHCII* and CD11c*CD86" began to increase
post-P. berghei ANKA infection, peaking on day 5 pi
and then declining on day 8 pi. The percentage of CD11c"
TLR4*,CD11c*TLR9", CD11c*MHCII*and CD11c*CD86"
were both significantly lower in the co-infected mice on
day 5 and day 8 pi when compared with P. berghei ANKA-
mono-infected mice (Figure 3). In addition, MFI of TLR4,
TLR9, MHC class II, and CD86, which were expressed on
CD11¢'CD11b"DCs and CD11c" CD45R/B220" DCs were
shown on Figure 3.

The kinetics of Tregs in both groups of mice was
followed by flow cytometry to evaluate the role of
Tregs in the response to malaria infection and to com-
pare of the proportion/absolute number of Tregs
between co-infected and P. berghei ANKA-mono-
infected mice. Tregs in the spleen CD4" T-cell popula-
tion increased after P. berghei ANKA infection with
peaks appearing on day 5 pi and then declining. Also,
the proportion/absolute number of Tregs on day 5 pi
and day 8 pi was significantly higher in the co-infected
mice than in the P. berghei ANKA-mono-infected
mice (Figure 4).

Cytokine-secreting-Tregs in co-infected and P. berghei
ANKA-mono-infected mice were also compared. The
proportion/absolute number of IL-10-secreting-Tregs
was slightly higher on day 5 pi, but then slightly lower
on day 8 pi in the co-infected mice than in the P.
berghei ANKA-mono-infected mice, however these dif-
ferences were not significant. The proportion/absolute
number of IFN-y-secreting Tregs was significantly
lower in co-infected mice than in P. berghei ANKA-
mono-infected mice on day 5 pi and day 8 pi (Figure 4).

Finally, the IEN-y and IL-10 produced by the Foxp3
CD4" T cells in co-infected and P. berghei ANKA-mono-
infected mice were compared. There was a significantly
higher level of IFN-y"Foxp3'CD4" in the co-infected
mice when compared with P. berghei ANKA-mono-
infected mice, while the level of IL-10"Foxp3 CD4"
remained unchanged in both groups (Figure 5).
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Figure 4 Mice in Plasmodium berghei ANKA-mono-infection group and Schistosoma japonicum-P. berghei ANKA-co-infection group
were compared at different time points according to data obtained by flow cytometry. Proportion and absolute number of CD4*
CD25"Foxp3*Tregs, IL-10-secreting Tregs, and IFN-y-secreting Tregs were analysed in A, B, C, D, E, F, respectively. Gating strategy for identifying
splenic Tregs were shown on G and H by representative dot plots. At each time point, at least three mice per group were sacrificed. Bars
represent the mean values + SD. Student t test by comparisons between the two groups was performed with * indicating P<0.05 and #

indicating P<0.01.

Histopathology

Histopathology sections from co-infected and P. berghei
ANKA-mono-infected mice, that had been euthanized
on day 6, 7, and 8 post-infection, were analysed to
evaluate the effect of pre-existing S. japonicum infection
on P. berghei ANKA induced brain histology. Two nor-
mal animals were also euthanized to serve as a control.
Conspicuous haemorrhage and mononuclear cell accu-
mulation was observed in all of the P. berghei ANKA-
mono-infected mice (Figure 6A). In contrast, most of
the co-infected mice exhibited no signs of brain pa-
thology (similar to the normal controls). The brain vessel
wall was intact and no immune cells were seen beside
the vessel (Figure 6B). Mild vessel wall oedema was
observed in two co-infected mice (Figure 6C).

Discussion

Many studies have been carried out to examine the im-
pact of helminths on malaria infection, both in mouse
models and in humans, yet the results are limited and
often conflicting. Immune responses to parasitic infec-
tions are complex with many cytokines potentially
playing crucial roles in the Thl-like or Th2-like re-
sponses. It is well known that helminth infections can
ameliorate pro-inflammatory conditions, partly due to
an inherent ability to induce Th2 responses [8-10]. In
the current study, pre-existing S. japonicum infection
enhanced Th2 responses to malaria infection, as
evidenced by higher levels of IL-4, IL-5 and IL-13 that
were present in the co-infected mice. Also, the co-

infected mice had lower levels of IFN-y, which indicates a
suppressed Th1 response to malaria infection. These cyto-
kine changes may suggest a polarized Th2 response to
malaria infection when concomitant with S. japonicum.
The histopathology findings supported this point as well
since no changes, or only mild brain pathology, developed
in the co-infected mice.

It is generally considered that Tregs are involved in
the regulation of the immune response to malaria in-
fections while the potential to determine disease out-
come remains unclear. A previous report demonstrated
that Tregs were required to limit pro-inflammatory im-
mune responses in BALB/c mice in order to prevent
ECM during secondary infections [24]. It has also been
reported that Tregs can inhibit the Thl immune re-
sponse via modifying DCs and inducing the production
of IL-10 during P. yoelii 17XL infection [25,26]. It has
also been confirmed that the occurrence of Tregs dur-
ing P. berghei ANKA infection is negatively associated
with the production of IFN-y [22]. Induced and/or acti-
vated Tregs may be beneficial to the host in malaria (when
parasitaemia is well-controlled) by down-regulating the
inflammatory response and thereby preventing immune-
mediated pathology. On the other hand, Tregs could
hamper the responses required for initial control of
parasitaemia, permitting unbridled parasite growth if
Tregs exerts its suppressive effects too soon, leading to
severe disease [27]. In the current study, up-regulation
of Tregs in the co-infected mice, indicated a pre-
existing S. japomicum infection had strengthened the

O P berghei ANKA
Co-infection
B S japonicum

o
<
]

1]
[L1]

IL-10"Foxp3 CD4* T cells(x10°)
=
S
1

[

=]

I
RNNNNNNNNNNSY
0 TANNNNNNNY

0 3
Days post P. b ANKA infection

FB
=
3 »
= 40 r
E. 204
-}
£
g o
0 3 5 8

Days post P. b ANKA infection

Figure 5 Absolute number of IL-10*Foxp3'CD4" T cells (A) and IFN-y*Foxp3'CD4* T cells (B) were compared between the Plasmodium
berghei ANKA-mono-infection group and Schistosoma japonicum-P. berghei ANKA-co-infection group at different time points. At each
time point, at least three mice per group were sacrificed. Bars represent the mean values + SD. Student t test by comparisons between the two
groups was performed with * indicating P<0.01.
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Figure 6 Brain sections were obtained from Plasmodium
berghei ANKA-mono-infected and Schistosoma japonicum-P.
berghei ANKA-co-infected mice on day 8 post-P. berghei ANKA
infection. Conspicuous haemorrhage and mononuclear cell
accumulation was observed in the P.b ANKA-mono-infected mice
(A). In contrast, the co-infected mice exhibited intact brain vessels
(B) or only mild vessel wall oedema (C). Sections stained with H&E.

Th2 responses to malaria infection; this may protect
against immunopathological impairment caused by
Th1 responses. It is possible that the increased Tregs in
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the co-infected mice caused an enhanced Th2 response,
which impeded the clearance of protozoan since signifi-
cantly higher malaria parasitaemia (on day 7 and 8
post-P. berghei ANKA infection) existed in the co-
infected mice and there was no significant difference in
survival between S. japonicum-P. berghei ANKA-co-
infected and P. berghei ANKA-mono-infected mice on
day 6 - day 8 pi. Thus, it appears that there was a bal-
ance between both positive and negative effects, on the
malaria infection, due to the increased Tregs.

Immune activity of Tregs can be mediated by a cell-
contact-dependent mechanism and through the secre-
tion of suppressive cytokines such as IL-10 [28,29] and
promoting cytokines such as IFN-y. It has been previ-
ously demonstrated that the proportion of IL-10-secret-
ing Tregs is consistent with the Tregs population in P. y
infected mice and that the immune-suppressive activity
of Tregs can be mediated through the secretion of IL-10
[25]. In the current study, the lower level of IFN-y-se-
creting Tregs found in the co-infected mice indicated a
weakened Thl response to malaria infection. As the ma-
jority of the IL-10/ IFN-y-producing T cells appear to be
Foxp3’, and thus constitute inducible Treg cells, the level
of IL-10"/IFN-y"-Foxp3"CD4" was further analysed and
these results also indicated a suppressed Thl response
in the co-infected mice.

Recent studies have indicated that helminths also have
direct anti-inflammatory effects on innate immune
responses. Kane et al. [10] confirmed that the eggs of S.
mansoni could suppress LPS-induced activation of im-
mature murine DCs, including MHC class II. As specia-
lized antigen-presenting cells (APCs), DCs play an
important role in the activation of T cells and con-
sequently in the induction of adaptive immune re-
sponses [30]. These cells are classified into two main
subpopulations [31]: myeloid DCs (CD11¢"CD11b") and
plasmacytoid DCs (CD11c¢"CD45R/B220"). Various pat-
terns of proliferation may be manifested by these DCs
when stimulated by different pathogens. TLRs are
expressed on or within innate immune cells, including
DCs, and recognize pathogen-associated molecular pat-
terns from different microorganisms [32]. Accumulating
evidence suggests that TLRs are also involved in im-
mune responses to protozoan parasites [33-35]. It has
been reported that TLR9 responds to haemozoin [33,34]
and that TLR4 responds to the putative toxin gly-
cosylphosphatidylinisitol (GPI) from Plasmodium falcip-
arum [36], resulting in the production of cytokines and
chemokines, as well as up-regulation of co-stimulatory
molecules [33]. Polymorphisms in TLR9 and TLR4 are
associated with disease manifestation [37,38]. Stimula-
tion of T-cell responses and more importantly, induc-
tion of Th1/Th2 cell development, is associated with
maturation of DCs as well as production of Th1/Th2
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cytokines [39-41]. Up-regulation of MHC class II and
co-stimulatory molecules (i e CD80, CD86) are charac-
teristic of the maturation of DCs [39-41]. High expres-
sion of MHC class II molecules is crucial for DCs to
present antigens to CD4" Th cells. A previous report
has confirmed that the bulk of Th1/Th2 responses are
present when the CD80/CD86 signaling pathway is
blocked [42].

Ing et al. [43] demonstrated that DCs selectively
phagocytose Plasmodium- pRBCs and present pRBC-
derived antigens to CD4" T cells in vitro, suggesting that
DCs may play a primary role as APCs in malaria infec-
tions. It has been shown that DCs are involved in the
establishment and regulation of T-cell-mediated im-
munity in mice infected with malaria [20] and that
blood-stage P. yoelii 17XL infection induced increased
numbers of splenic CD11¢"DCs positive for MHC class
II, CD80 and CD86, which is consistent with the estab-
lishment of the Thl immune response [20]. In the
current study, the effect of pre-existing S. japonicum infec-
tion on malaria infection was further evaluated by analysing
distinct DC responses. Results indicated that pre-existing S.
japonicum infection had an anti-inflammatory effect during
the following malaria infection by directly suppressing the
ability of DCs to produce pro-inflammatory mediators.

Bucher et al. [5] and Waknine-Grinberg et al. [4] found
that a concomitant S. mansoni infection conferred protec-
tion against brain pathology caused by ECM, which is con-
sistent with results from the current study. Tregs and the
associated cytokines were further examined in the current
study to investigate the immunomodulatory mechanism
involved in the process of co-infections since these cy-
tokines are important for establishing Th2 responses.
In addition, assessment of DC responses during co-
infection facilitated a better understanding of the
direct anti-inflammatory effects a pre-existing schisto-
some infection has on the innate immune responses to
malaria infection.

Study limitations

This was an acute study, conducted over an eight-day
period, in mice that had been exposed to plasmodium
infection after being infected eight weeks prior with
S. japonicum. This means that the immune responses to
S. japonicum would the strongest, before modulating to
the chronic phase around week 12 post-infection.

Conclusions

The immune responses to malaria infection in P. berghei
ANKA-S. japonicum co-infected mice were assessed and
the changes in the cytokines, caused by pre-existing
S. japonicum infection, were analysed. A Tregs-associated
Th2 response played an important role in protecting
ECM pathology. Pre-existing S. japonicum infection
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suppressed TLR ligand-induced DC maturation and had
anti-inflammatory effects during malaria infection, not
only by virtue of its ability to induce Th2 responses, but
also by directly suppressing the ability of DCs to pro-
duce pro-inflammatory mediators.
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