Staehli Hodel et al. Malaria Journal 2013, 12:235
http://www.malariajournal.com/content/12/1/235

MALARIA
JOURNAL

RESEARCH Open Access

Population pharmacokinetics of mefloquine,
piperaquine and artemether-lumefantrine in
Cambodian and Tanzanian malaria patients

Eva Maria Staehli Hodel', Monia Guidi®?, Boris Zanolari®, Thomas Mercier®, Socheat Duong”,
Abdunoor M Kabanywanyi®, Frédéric Ariey®, Thierry Buclin®, Hans-Peter Beck', Laurent A Decosterd®,
Piero Olliaro’, Blaise Genton'®™" and Chantal Csajka®*""

Abstract

Background: Inter-individual variability in plasma concentration-time profiles might contribute to differences in
anti-malarial treatment response. This study investigated the pharmacokinetics of three different forms of
artemisinin combination therapy (ACT) in Tanzania and Cambodia to quantify and identify potential sources of
variability.

Methods: Drug concentrations were measured in 143 patients in Tanzania (artemether, dihydroartemisinin,
lumefantrine and desbutyl-lumefantrine), and in 63 (artesunate, dihydroartemisinin and mefloquine) and 60
(dihydroartemisinin and piperaquine) patients in Cambodia. Inter- and intra-individual variabilities in the
pharmacokinetic parameters were assessed and the contribution of demographic and other covariates was
quantified using a nonlinear mixed-effects modelling approach (NONMEM®).

Results: A one-compartment model with first-order absorption from the gastrointestinal tract fitted the data for all
drugs except piperaquine (two-compartment). Inter-individual variability in concentration exposure was about 40%
and 12% for mefloquine. From all the covariates tested, only body weight (for all antimalarials) and concomitant
treatment (for artemether only) showed a significant influence on these drugs’ pharmacokinetic profiles. Artesunate
and dihydroartemisinin could not be studied in the Cambodian patients due to insufficient data-points. Modeled
lumefantrine kinetics showed that the target day 7 concentrations may not be achieved in a substantial proportion
of patients.

Conclusion: The marked variability in the disposition of different forms of ACT remained largely unexplained by the
available covariates. Dosing on body weight appears justified. The concomitance of unregulated drug use (residual
levels found on admission) and sub-optimal exposure (variability) could generate low plasma levels that contribute
to selecting for drug-resistant parasites.
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Background

Artemisinin-based combination therapy (ACT) is the
current first-line treatment of malaria [1]. At present, the
forms of ACT recommended by the World Health Orga-
nization (WHO) contain artemether (AM) plus lume-
fantrine (LF), artesunate (AS) plus either amodiaquine
(AQ), mefloquine (MQ), pyronaridine (PN) or sulphadoxine-
pyrimethamine (SP), and dihydroartemisinin (DHA) plus
piperaquine (PPQ) [1]. While hundreds of thousand
courses of ACT are deployed each year [2], there is a
limited number of studies measuring levels of drug ex-
posure and relating it to treatment efficacy and safety.

Acquiring this information is paramount in order to
optimize treatment and, especially, prevent resistance
which may result from inadequate dosing. One of the
main questions is to know if giving the recommended
dose produces the same level of exposure in all, or other-
wise what proportion or categories of subjects, and under
which circumstances, would be systematically over- or
under-dosed.

In other words, one needs to know if dosing regimens
are adequate or if there are systematic dosing errors in
which populations, especially on account of inter-subject
variability and special groups like children and pregnant
women. There is evidence that SP was systematically
under-dosed in children and that the lower drug levels
have contributed to the emergence of parasite resistance
to this drug [3,4]. The situation is further complicated
by the fact that the target doses and therapeutic windows
have been established based mostly on data in adults, and
assume all patients require the same level of exposure,
while, for instance, the contribution of immunity to parasite
clearance will change with age and malaria transmission.

In this respect, one will need to know how the
pharmacokinetics contributes to efficacy or safety out-
comes. Examples of proposed surrogate efficacy corre-
lates are day 7 drug plasma concentrations for LF [5-7]
and the time for drug plasma concentrations to fall
below 500 pg/l (the minimal inhibitory concentration,
MIC) for MQ [8].

Treating with a wrong dose may have both individual
and general consequences. Over-exposure increases the
risk of toxicity; under-dosing may lead to treatment fail-
ure, but also carries the risk of selecting for drug-
resistant parasites, which can spread to the rest of the
population [9-12].

Two clinical trials found that AM-LF was highly effica-
cious in Tanzania, but much less effective (71% cure
rate) in Cambodia [13,14]. The cure rate in Cambodia
increased to 86.5% in the subsequent years when 250 ml
milk and coconut biscuits were provided with each dose
of the study medication to increase drug absorption
[13]. These findings raised the question of the factors
that could have contributed to the lower efficacy of AM-

Page 2 of 17

LF in the Cambodian population. Parasite susceptibility
is indeed a potential explanation [15-24], although no
known molecular marker exists at the moment. Another
possibility is that differences in drug levels induced by
genetic or other factors could explain the difference in
drug response between these two populations.

The objectives of this paper were to characterize the
population pharmacokinetics of AS, DHA, MQ and PPQ
in Cambodian patients and AM and LF in Tanzanian pa-
tients and to identify demographic and other factors that
could explain variability in drug levels. In addition, day 7
concentrations have been shown to be a good surrogate
marker of treatment success and model based-simulations
of LF were performed to predict the proportion of patients
with concentrations below the proposed day 7 cut-off
values.

Methods

Study area, patients and data

Three studies have been conducted, one in Tanzania and
two in Cambodia. The study profiles are described in
Figure 1. The first study was performed during March to
May 2008 at the Kibaoni Health Centre, Kilombero
district, Morogoro region, Tanzania. A total of 1,672 pa-
tients with suspected malaria were screened by rapid
diagnostic test (Paracheck, Orchid Biomedical Systems,
India) and 389 (23%) had parasitologically-proven Plas-
modium falciparum malaria (confirmed and quantified
by microscopy). After giving their informed consent to
participate, patients were included in the study if they
did not present signs of complicated malaria or any
other severe concomitant illness. Six AM-LF (Coartem®,
Novartis Pharma, Switzerland) doses were administered
at time 0, 8, 20, 32, 44 and 56 h according to body
weight (see Table 1); patients were either admitted for
three days or asked to come back to the health facility
for each drug administration. Mothers of breastfed pa-
tients were encouraged to feed their children and pa-
tients admitted were provided with food. Patients who
reported that they have not eaten within two hours to
prior dose intake were instructed to eat as soon as pos-
sible. Patients were seen by the clinical officer on days
0,1,2,3,7, 14, 28, and 42. A blood sample for pharma-
cokinetic measurement was taken at baseline (pre-dose
on day 0) and on days 1, 2, and 7 at pre-defined random
times after the last dosing. At each visit, a filter paper
sample and a thin and thick smear were taken, in
addition to axillary temperature, respiratory rate and
haemoglobin measurements (only on days 0, 28 and 42)
as well as evaluation of symptoms (e.g. headache,
vomiting, and diarrhea). The exact dose and time of last
drug intake, body weight, height, age, sex, food intake
and concomitant medications were carefully recorded.
If patients suffered from concomitant illnesses they
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Tanzania Cambodia Phnom Dék Cambodia Pramcy
screened 234 287
confirmedP.falciparum 389 67 82
(23%) (29%) (29%)
enrolled in the study 150 64 61
(39%) (96%) (74%)
LF/ \AM M’n/ \AS % PPQ/\—\DHA
excluded from analysis
various * 7 7 1 1 1 1
undetectable levels 8 4
in the analysis 143 | 135 | | e | [ 63 | | 60 |
losses post-treatment 23 9 7
drop-out 16 6 6
removed due to failure (unadjusted) *** 7 3 1
Figure 1 Study profiles. * Tanzania: hemoglobin <5.0 g/dL (2 patients), unable to swallow drug (1 patient), withdrawal of consent (2 patients),
blood withdrawal not possible (1 patient), >9'999 parasites per 200 white blood cells (1 patient). Cambodia: withdrawal of consent (1 patient in
each study). ** In 4 patients only DHA but no AS could be detected. *** Tanzania: 4 late clinical failures, 3 late parasitological failures and 1 late
clinical and parasitological failure. Cambodia: 3 late parasitological failures in Phnom Dék and 1 late clinical failure in Pramoy. AM: artemether; AS:
artesunate; DHA: dihydroartemisinin; LF: lumefantrine; MQ: mefloquine; PPQ: piperaquine.

were provided with additional treatment (paracetamol,
mebendazole, metronidazole, cloxacillin, amoxicillin).

The second study was conducted during October 2007
to February 2008 at the Phnom Dék Health Centre,
Rovieng district, Preah Vihear province, Cambodia. Entry
criteria and study procedures were identical as in the
Tanzanian study with minor adaptations described below.
In total, 234 suspected malaria cases were screened by mi-
croscopy, of whom 67 (29%) were found to be infected
with P. falciparum and 74 (32%) with Plasmodium vivax
(no mixed infections were detected). Pregnant or lactating
women were excluded. Three doses of AS (Arsumax®,
Sanofi-Aventis, France) and MQ (Eloquine®, Medochemie
Ltd, Cyprus) were given according to body weight on
three consecutive days (see Table 1). Patients were seen by
the clinical officer on days 1, 2, 3, 7, 14, 21, 28, 35 and 42.
Sampling for the pharmacokinetic study was done at pre-
dose and approximately 1 h after first dose intake on day
0, and on days 1, 2, 7 and 14 at pre-defined random times
after drug intake.

The third study was performed during July to October
2008 at Pramoy Health Centre, Veal Veng district,
Pursat province, Cambodia. A total of 287 suspected
malaria cases were screened by microscopy, of whom 82
(29%) were infected with P. falciparum and 50 (17%)
with P. vivax (no mixed infections). Children younger
than six years of age and pregnant or lactating women
were excluded. Three doses of DHA-PPQ (Duo-Cotecxin®,
Zhejiang Holley Nanhu Pharmaceutical Co., Ltd, China)
were given according to age (as per national guidelines)

on three consecutive days (see Table 1). Same follow-up
and blood sampling as at Phnom Dék were performed.

Laboratory methods

Samples of 2 ml of venous blood were collected on an
EDTA Vacutainer and kept on ice for no longer than 6 h
after withdrawal and then aliquoted into whole blood,
plasma and pellet and immediately stored in liquid
nitrogen or a —80°C freezer. Plasma concentrations of
14 antimalarial drugs and their metabolites, i.e. AM, AS,
DHA, amodiaquine, N-desethyl-amodiaquine, LF, desbutyl-
lumefantrine (DLF), PPQ, PN, MQ, chloroquine, quinine
and SP, were determined simultaneously using a liquid
chromatography—tandem mass spectrometry method
(LC-MS/MS) previously reported [25]. The method was
validated according to FDA recommendations, includ-
ing assessment of extraction yield, matrix effect varia-
bility, overall process efficiency, standard addition
experiments as well as anti-malarials short- and long-
term stability in plasma. The method is precise (inter-
day coefficient of variation: 3.1-12.6%) and sensitive
(lower limits of quantification 0.15-3.0 for basic/neutral
anti-malarials and 0.75-5 ng/ml for artemisinin deriva-
tives, respectively). The laboratory is part of the quality
control system of the World-Wide Antimalarial Resist-
ance Network (WWARN).

Pharmacogenetic profiles of the patients were gener-
ated using a sequencing strategy [26]. Detailed results
of the population genetic analysis are presented else-
where [27].
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Table 1 Dosing regimens of the study drugs
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Drug Body weight [kg] Age [years] Day 0 Day 1 Day 2
AM-LF 5-14 AM: 2% 20 mg AM: 2 x 20 mg AM: 2 x 20 mg
LF: 2% 120 mg LF:2x120 mg LF:2x120 mg
15-24 AM: 2 x40 mg AM: 2 x40 mg AM: 2 x40 mg
LF: 2 x 240 mg LF: 2240 mg LF: 2% 240 mg
25-34 AM: 2 X 60 mg AM: 2 X 60 mg AM: 2x 60 mg
LF: 2% 360 mg LF: 2% 360 mg LF: 2x 360 mg
235 AM: 2 x 80 mg AM: 2 x 80 mg AM: 2 x 80 mg
LF: 2480 mg LF: 2x480 mg LF: 2x480 mg
AS-MQ 10-125 AS: 50 mg AS: 50 mg AS: 50 mg
MQ: 125 mg MQ: 125 mg
13-155 AS: 50 mg AS: 50 mg AS: 50 mg
MQ: 125 mg MQ: 125 mg MQ: 125 mg
16-24.5 AS: 100 mg AS: 100 mg AS: 100 mg
MQ: 250 mg MQ: 250 mg
25-34.5 AS: 150 mg AS: 150 mg AS: 150 mg
MQ: 250 mg MQ: 250 mg MQ: 250 mg
35-37 AS: 200 mg AS: 200 mg AS: 200 mg
MQ: 250 mg MQ: 250 mg MQ: 250 mg
38-57 AS: 200 mg AS: 200 mg AS: 200 mg
MQ: 500 mg MQ: 500 mg MQ: 250 mg
58-76 AS: 200 mg AS: 200 mg AS: 200 mg
MQ: 500 mg MQ: 500 mg MQ: 500 mg
DHA-PPQ 6-11 DHA: 60 mg DHA: 60 mg DHA: 40 mg
PPQ: 480 mg PPQ: 480 mg PPQ: 320 mg
11-16 DHA: 80 mg DHA: 80 mg DHA: 80 mg
PPQ: 640 mg PPQ: 640 mg PPQ: 640 mg
>16 DHA: 120 mg DHA: 120 mg DHA: 80 mg
PPQ: 960 mg PPQ: 960 mg PPQ: 640 mg

Abbreviations: AM artemether, AS artesunate, DHA dihydroartemisinin, LF lumefantrine, MQ mefloquine, PPQ piperaquine.

Model-based pharmacokinetic analysis

The pharmacokinetic analysis for each drug taken
separately was performed using the NONMEM com-
puter program [28] Version 6 (NM-TRAN version II). It
uses mixed (fixed and random) effects regression to esti-
mate population means and variances of the pharmaco-
kinetic parameters and to identify factors that influence
them.

Structural model

One-, two- and three-compartment pharmacokinetic
models with first-order absorption, with and without ab-
sorption lag times, were compared. Additional one or
two-compartments were used for anti-malarials present-
ing metabolite concentrations (AM and LF). The final
parameters estimated were systemic clearance (CL/F),
inter-compartmental clearance (Q/F), central volume of
distribution (V/F), peripheral volume of distribution

(Vp/F) and absorption rate constant (k,). Since no intra-
venous drug concentration data were available, these pa-
rameters represent apparent values. Where available,
metabolite data were included into the model and metab-
olism rate constant from drug compartment to metabolite
compartment (k,3) and metabolite clearance (CL,,.,) were
also estimated. Owing to identifiability problems, the vol-
ume of distribution of the metabolites (V},) DLF and
DHA were assumed to equal LF and AM V, respectively.
Analysis of baseline plasma samples (i.e. day O prior treat-
ment) showed that some patients had non-zero concen-
tration of the drug, probably resulting from the treatment
of the previous malaria episode or intake of non-declared
drugs [29,30]. The observed baseline residual plasma con-
centrations were fitted by estimating a factor (F) that pro-
vided an estimation of the residual doses from previous
treatment. A schematic representation of the models is
presented in Figure 2.
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PPQ two-compartment model

DEPOT
k.
Dummy l a
Dose
PERIPHERAL CENTRAL METABOLITE
Q Fo\‘ Kes
Vr | ——= Co Ve| =—> | Wy
l cL lCLmef

MQ one-compartment model

Figure 2 Models used to describe AM, LF, MQ and PPQ and active metabolites DHA and DLF. For AM and LF, CL = (kxp — k»3) X V¢, with
ko= CL/V¢. Because of problems of identification of k3, Vi, and Cliyen Vin Was assumed to equal V. The concentration at baseline (Cp) was fitted
by using a dummy dose of 1 mg times the estimated parameter £, (see text). AM: artemether; AS: artesunate; DHA: dihydroartemisinin; DLF:
desbutyl-lumefantrine; LF: lumefantrine; MQ: mefloquine; PPQ: piperaquine.

AM and LF two-compartment model
for drug and metabolite data

Statistical model

Exponential errors following a log-normal distribution
were assumed for the description of inter-patient variability
of the pharmacokinetic parameters and were of the form:
0; = 0 x € where 6; is the individual pharmacokinetic
parameter value in the /* individual, 6 is the population
parameter estimate, and #; is the random effect value,

Table 2 Concomitant medications included in the models

which is independently and normally distributed with a
mean of 0 and variance w”. Proportional and combined
proportional-and-additive error models were compared to
describe intra-patient (residual) variability for the mother
compound, and if available for its metabolite using C,;
(1 + 1) + &5 or C,,,;(1 + €3) + €45 where C,,; are the corre-
sponding predicted /™ drug plasma concentration and Comij

Drug Metabolism Concomitant medications taken by study patients  Effectt %*
Artemether CYP2B6 + [33,34] 0%
CYP2C9% [33,34] Ibuprofen, pyrimethamine and quinine Strong to moderate inhibitor 22%
CYP2CT9% [34] 0%
CYP3A4 [32-35] Caffeine, doxycycline, erythromycine and Moderate inhibitors 10%
metronidazole
CYP3A5 [32,34] 0%
Dihydroartemisinin  Glucuronidation [36] -
Lumefantrine CYP3A4 [32,35] Caffeine, doxycycline, erythromycine and Moderate inhibitors 10%
metronidazole
Mefloguine CYP3A4 [37-39] Clarithromycine, caffeine, metronidazole Strong to moderate inhibitor 8%
and tetracycline
CYP3A5 [37] 0%
Piperaquine Unknown [31] Chloroquine, ibuprofen and quinine Strong to moderate inhibitor of CYP2C8,  45%
CYP2C9

and / or CYP2D6

* Percentage of patients in the study taking the respective inhibitor.

1 From UpToDate Online 17.1 (http://www.uptodateonline.com/online/index.do).

F Only in vitro, not seen in healthy volunteers [40].
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are the predicted metabolite concentration for the /™ indi-
vidual, and &, €5 €35 €5 are independent normally
distributed residual error terms with a mean of zero and a

variance of 03, 03, 03, 03.

Covariate model

Available covariates were body weight, height, age, sex,
smoking status, pregnancy (for Tanzanians patients), and
concomitant medications. Reported concomitant medi-
cations were coded as moderate to strong inhibitors or
inducers of the cytochrome P450 isoenzymes (CYP)
mostly involved in the metabolism of the anti-malarials
(Table 2) [31-40]. This information was based on report
of self-medication prior inclusion and prescription dur-
ing the study.

The covariate analysis was performed using a stepwise
insertion/deletion approach. Visual inspection of the
correlation between post hoc individual estimates of the
pharmacokinetic parameters and the available covariates
was first conducted by graphical exploration. Potentially
influential covariates were then incorporated sequen-
tially into the pharmacokinetic model. The typical value
of a given parameter 6 (e.g., CL) was modeled to depend
on the covariate (X) either linearly 0=0, x [1 + 6, x X],
exponentially =6, or as an allometric power function
0 = 6, x X%, with 6, representing the population value
of the pharmacokinetic parameter and 6, the contribu-
tion of the covariate X, centered on the mean value;
categorical covariates were coded as O or 1. In the allo-
metric power models, 6, was either estimated or fixed to
literature values, i.e. 0.75 for CL and 1 for V. [41]. At
the end of the analysis, all patient characteristics show-
ing an influence on the parameters were again con-
firmed by comparing the full model (with all factors
included) to models from which each of the factors was
removed sequentially.

Model selection and parameter estimation

NONMEM?® [28] (version 6.0, NM-TRAN, version II)
was used with the FOCE INTERACTION method to fit
the data. The difference in the minimum objective func-
tion value (AOFV) provided by NONMEM’, (-2 log
likelihood, approximate y* distribution) was used to dis-
criminate between models using the likelihood ratio test.
A model was considered superior to another nested
model when the OF value was reduced by at least 3.84
points (p <0.05). Covariate analysis comprised forward
selection of influential factors followed by backward de-
letion. Covariates were retained in the final model at the
statistical level of p <0.01. Model assessment was based
on diagnostic plots (goodness-of-fit plots) along with
standard errors and correlation matrix of parameter esti-
mates, size of residual errors and eta-shrinkage.

Page 6 of 17

Model validation

The stability and the performance of the final population
pharmacokinetic model were validated by the bootstrap
method. Two hundred data sets were reconstructed by
re-sampling from the original data using the Perl-speaks
-NONMEM (PsN) Toolkit Version 3.2.4 [42,43]. The
final population pharmacokinetic model was fitted re-
peatedly to the 200 bootstrapped samples and pharma-
cokinetic parameters were calculated for each dataset.
The mean, standard error and 95% confidence interval
of each parameter obtained from the bootstrap analysis
were then compared to the corresponding parameters
obtained with the original dataset. The statistical analysis
was performed using PsN version 3.2.4 [44]. The final
model was also validated using visual predictive check
(VPC) obtained by simulation of data for 1’000 individ-
uals based on the final model and generating 2.5, 50
and 97.5™ percentiles. The observed concentrations were
plotted against the 95% prediction interval (P.Lgse) of the
simulated dataset at each time point and visually com-
pared. Figures were generated using GraphPad Prism
(Version 4.00 for Windows, GraphPad Software, San
Diego California USA [45]).

Model-based simulations for lumefantrine
Concentration-time profiles of lumefantrine in 1’000 in-
dividuals receiving two different 6-dose regimens over
3 days (doses at 0, 8, 20, 32, 44 and 56 h) and 5 days
(doses at 0, 8, 24, 48, 72, 96 h) were performed based on
the final model including inter-patient variability. These
simulations served to purpose of quantifying the per-
centage of patients at day 7 below the different cut-off
thresholds of 50 ng/ml, 175 ng/ml, 280 ng/ml and
600 ng/ml associated with treatment outcome [6]. In
addition, the simulation-based predicted median time
(95% P.1), estimated from time of last dose to 168 h
(day 7), at which patients would exhibit concentrations
below the cut-off values of 50 ng/ml, 175 ng/ml and
280 ng/ml was derived.

Results

Population pharmacokinetic analyses

Patients’ baseline characteristics are summarized in
Table 3. The median (range) of samples available per
subject was 3 (2—4) for LF, 3 (1-4) for DLF, 2 (1-3) for
AM and 2 (1-3) for DHA in Tanzania, 5 (3—-6) for MQ,
1 for AS and 1 for DHA in Phnom Dék and 5 (4-6) for
PPQ and 1 for DHA in Pramoy. The number of mea-
sured samples per time point is presented in Additional
file 1.

Artemether
A one-compartment model with first-order absorption
from the gastrointestinal tract adequately described the
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Table 3 Patients’ characteristics at inclusion

Kibaoni (Tanzania)*

Characteristic AM / DHAYT LF / DLFt
Total patients 135 143

Sex male / female (%) 56 (41) /79 (59) 62 (43) / 81 (57)
Age median (range) [years] 10 (1-78) 9 (1-78)
Body weight median (range) [kg] 20 (6.5-150) 20 (6.5-150)
Height median (range) [cm] 126 (52-181) 126 (52-181)
Pregnancy (%) 3(2) 3(2)
Smokers (%) 1(1) 1(1)
Median time sick (range) [days] 3(1-14) 3(1-14)

Median body temperature (range) [°C]

375 (35.2-404)

376 (35.2-404)

Median asexual parasites (range) [pL'W]

15,360 (120~ > 399,960)°

15,360 (120~ > 399,960)°

Median respiratory rate (range) min™] 24 (16-38) 24 (16-38)
Median hematrocrit (range) [%] N.A. N.A.
Median haemoglobin (range) [g/dL] 10.5 (5.1-16.3) 104 (5.1-16.3)
Phnom Dék (Cambodia)

Characteristic AS / DHAt and MQ
Total patients 63
Sex male / female (%) 37 (59) / 26 (41)
Age median (range) [years] 18 (2-57)
Body weight median (range) [kg] 43 (10.5-66)
Height median (range) [cm] 153 (73-172)
Pregnancy (%) N.A.
Smokers (%) 17 27)
Median time sick (range) [days] 2 (2-3)
Median body temperature (range) [°C] 38.6 (37.9-404)
Median asexual parasites (range) [uL’W] 19,600 (1,200-160,000)
Median respiratory rate (range) [min™'] 28 (20-38)
Median hematrocrit (range) [%] 30 (24-37)
Median haemoglobin (range) [g/dL] N.A.

Pramoy (Cambodia)*
Characteristic DHA PPQ
Total patients 56 60
Sex male / female (%) 34 (61) /22 (39) 38 (63) / 22 (37)
Age median (range) [years] 18 (7-53) 18 (7-53)
Body weight median (range) [kg] 42 (15-67) 42 (15-67)
Height median (range) [cm] 151 (105-171) 152 (105-171)
Pregnancy (%) N.A. N.A.
Smokers (%) 12 (21) 14 (23)
Median time sick (range) [days] 2 (1-3) 2 (1-3)

Median body temperature (range) [°C]

384 (37.8-39.8)

384 (37.8-39.8)

Median asexual parasites (range) [uUL™']

16,858 (1038-219,333)

17,229 (1038-219,333)

Median respiratory rate (range) [min™'] 28 (20-40) 28 (20-40)
Median hematrocrit (range) [%] 41 (30-50) 41 (30-50)
Median haemoglobin (range) [g/dL] N.A. N.A.

Abbreviations: AM artemether, AS artesunate, DHA dihydroartemisinin, LF lumefantrine, MQ mefloquine, PPQ piperaquine.
* The number of patients included for the final analysis was not equal for the artemisinin-derivative and the partner drug.

1 Parent drug / metabolite.

@ Asexual parasites were counted against 200 white blood cells and converted to parasites/uL by assuming a density of 8,000 white blood cells/pL.
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data; no improvement was obtained with a two-
compartment model (difference in the objective function
(AOFV) =0). For this drug, no baseline residual plasma
concentrations were measured. In addition to CL, the as-
signment of an inter-patient variability on k, (but on no
other parameter) significantly improved the description of
the data (AOFV =-63). Univariate analyses showed that
body weight (AOFV < -45.1), age (AOFV < -49.0), height
(AOFV<-427) and sex (AOFV <-13.3) significantly
influenced CL. In multivariate analyses, only body weight
remained significant since all other variables were corre-
lated to body weight. Linear and allometric power func-
tions described the effect of body weight on CL similarly
well (no statistical difference was observed between the
two models (AOFV = -2)); the latter was finally chosen
based on goodness of fit plots. The exponent of the
allometric power function was estimated to be 0.66 and fi-
nally fixed to the literature value (0.75), since statistically
not different (AOFV =1). Inhibitors of CYP2C9 and/or
CYP3A4 significantly influenced CL as well (AOFV = -7),
indicating a 70% decrease in CL in patients exposed to ei-
ther a CYP2C9 or CYP3A4 inhibitor. Multivariate analysis
showed an additive influence of body weight and CYP in-
hibitors on CL (AOFV = -61 relative to the model without
covariates).

Metabolite concentrations (DHA) were included in the
model using an additional compartment, assuming linear
metabolism and elimination. The assignment of an
inter-patient variability on the metabolism rate constant
koz yielded a better fit of the data (AOFV =-81), while
no improvement was observed when assigning variability
to the metabolite clearance CL,,.; (AOFV =0). Finally,
none of the available covariates significantly affected
DHA pharmacokinetics. A proportional error model for
drug and metabolite provided the best description of
intra-patient variability. The parameter estimates for the
final model and derived parameters are in Table 4. The
concentration-time plots of AM and DHA in the 135
patients included in the analysis with average population
predictions and 95% prediction intervals is presented in
Figure 3.

Lumefantrine

A one-compartment model with first-order absorption
from the gastrointestinal tract and linear metabolism into
DLF described adequately the data; a two-compartment
model for LF or for DLF did not improve the model fit
(AOFV =0). The average estimated residual dose from pre-
vious treatments (Fp) was 1.6 mg, which corresponds to
0.3-1.3% of the recommended LF first dose (120-480 mg).
Adding an inter-patient variability on V¢ (AOFV = -75),
ka3 (AOFV = -199) and Fy (AOFV = -17) in addition to CL
improved the description of the data, but no variability on
the other parameters was significant. A proportional error
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model best described the residual intra-patient variability
for LF and an additive one for DLF. Inclusion of age, height
and body weight on both CL and V¢ improved the fit
(AOFV < -30). Since age, height and body weight were
correlated, only body weight was retained for further
testing. Linear and allometric power functions ad-
equately described its influence on CL and V¢ equally
well (AOFV < -34); the latter was selected based on vis-
ual inspection of graphical analysis. The estimations of
the exponents of the allometric power functions were
0.52 and 0.35 for CL and V, respectively, and provided
a better fit than the fixed literature values (AOFV < -17).
Sex, smoking status, pregnancy and concomitant medica-
tions did not affect CL or V- (AOFV > -0.2). The param-
eter estimates for the final model and derived parameters
are given in Table 4. Figure 4 shows the concentration-
time plots of LF and DLF in the 143 patients included in
the analysis with average population predictions and 95%
prediction intervals.

Mefloquine

A one-compartment model with first-order absorption
from the gastrointestinal tract appropriately described
the data, with no improvement using a two-compartment
model (AOFV =0). For this drug, the residual dose from
previous treatments (Fp) was estimated to be 33.1 mg, cor-
responding to 6.7-26.7% of an initial dose of 125-500 mg.
A better fit was obtained by assigning an inter-patient
variability on V¢ (AOFV = -172) and F, (AOFV = -211) in
addition to CL. The use of a proportional error model for
the residual intra-patient variability fitted the data well.
Again, inclusion of age, height, body weight and sex im-
proved the fit in univariate analyses (AOFV < -136). Plots
of CL and V as a function of body weight suggested that
an allometric power function, with exponent fixed to lit-
erature values, should be preferred to a linear relationship.
The addition of smoking status and concomitant medi-
cations on CL and V¢ did not improve the model
significantly (AOFV 2 -1.2). Multivariate analysis indi-
cated that body weight remained the unique significant
covariate on both CL and V. The parameter estimates
for the final model and derived parameters are given
in Table 4. Figure 5 depicts the simulated plasma
concentration-time plot of MQ in the 63 patients in-
cluded in the analysis with average population predic-
tions and 95% prediction intervals.

Piperaquine

A two-compartment model with first-order absorption
from the gastrointestinal tract described the data better
than a one-compartment model (AOFV =-97), but no
additional benefit was seen with a three-compartment
model (AOFV =0). The residual dose of PPQ was esti-
mated to be 123 mg, which corresponds to 12.8-25.6%
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Table 4 Final population parameter estimates of artemether, lumefantrine, mefloquine and piperaquine and estimates
from the bootstrap evaluation in 200 replicates

Population analysis Bootstrap evaluation

Parameter Estimate SE? nve SES Mean of 200 S.E. 95% C.1.¢
Artemether

CL [L/h/kg] 247 x BWO7® 10% 44% 17% 244 x BW®7® 10% 19-29

Oy -03 45% -027 60% 0.5-1.1

Ve [L/kg) 129 20% 133 26% 88-232

Vi [L Fixed to V-

ky h™] 027 11% 119% 1% 027 14% 0.21-035
kos (] 586 21% 68% 9% 583 25% 36-9.7
Cliet [L/N] 419 30% 440 42% 213-927

oc (CV%) 74% 99% © 73% 119% © 599%-86%
oy (CV%) 119% 1% © 116% 9% © 88%-149%
Lumefantrine

CL [L/h/kg]) 0.84 x BWOent 28% 38% 14% 0.87 x Bt 24% 0.51-137
Oswer 052 19% 051 14% 0.36-0.65
Ve [L/kg] 59.9 x Bwdarc 28% 33% 1% 59.5 x Bwone 24% 35.1-919
Osuyc 035 28% 034 19% 0.19-045
Vi [L] Fixed to V-

k, h'] 0.54 31% 048 43% 0.11-0.88
Fo [mg] 253 14% 103% 14% 245 15% 1.58-3.28
ks ] 37 x 10" 12% 38% 15% 3.7 x 10 9% (3.0-44) x 107
Clipe [L/N] 48 10% 46 13% 34-57

oc (CV%) 60% 9% © 61% 31% 55%—77%
oy [umolL ] 0013 49 © 0013 45% 0.010-0.016
Mefloquine

CL [L/h/kg) 0.10 x BW7 5% 12% 88% 0.10 x BW*"® 5% (0.09-0.11)
Ve [L/kg] 893 X BW 6% 19% 9% 901 x BW 6% (8.04-10.20)
ky [h] 0.15 14% 0.15 14% 0.12-0.19
Fo [mg] 33.1 56% 175% 48% 310 43% 11.8-48.1
oc [umolL™] 43% 6% © 43% 6% © 0.14-0.22
Piperaquine

CL [L/h/kg]) 450 x BWO"® 13% 45% 61% 426 x BWO" 22% (3.24-5.76)
Ve [L/kg) 346 X BW 12% 65% 48% 347 x BW 13% (260-432)
Q [L/h] 122 13% 126 13% 86-158

Vo [L] 18,600 22% 50% 77% 20,053 37% 8,778-28422
ky Ih1 093 28% 1.00 34% 0.35-1.52
Fo [mg] 123 18% 125 18% 75-171

oc [umolL"] 41% 10% © 41% 6% © 0.14-0.21

Abbreviations: CL clearance, BW body weight, 6,y inhibitors effect (CYP3A4 and/or CYP2C19) on CL expressed as (71- Oy X INH), Vc central volume of distribution,
Q inter-compartment clearance, V, volume of distribution of the metabolite, V, peripheral volume of distribution, k, first-order absorption rate constant, Fy
residual amount from the previous treatment, k3 metabolism rate constant, CL,,,.; metabolite clearance, o exponential residual error for the central

compartment, oy exponential residual error for the metabolite compartment.
@ Standard error (S.E.) of the estimate 6; defined as S.E estimate/estimate, expressed as a percentage.

® Inter-individual variability.
< Standard error (S.E.) of the coefficient of variation defined as v/S.E estimate/estimate, expressed as a percentage.
9 95% confidence interval (C.I.).

of an initial dose of 480—960 mg. Assigning an inter-patient
variability on V¢ (AOFV =-129) and Vp (AOFV = -17) in
addition to CL improved the fit and the use of a

proportional error model for the residual intra-patient
variability fitted the data adequately. CL and V. were
again influenced by body weight (AOFV = -14 and -27,
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Figure 3 Observed plasma concentrations of artemether (left panels) and dihydroartemisinin (right panels) after administration of 6 x
20 =120 mg (children) and 6 x 80 =480 mg (adults) artemether in 135 Tanzanian patients. The solid lines represent the mean population
prediction and the dotted lines 95% prediction intervals. Triangles and squares represent residual plasma concentrations of lumefantrine and
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respectively); the relationship was best described using
an allometric power function with exponents fixed to
the literature values, and was not statistically different
from estimated values (AOFV > -2). Addition of sex or
smoking status as covariates of CL did not improve the
model fit (AOFV >-2). As the metabolizing CYP of
PPQ are not known and few concomitant treatments
were reported, this variable was not included in the
model. The parameter estimates for the final model and
derived parameters are given in Table 4. Figure 6 shows
the simulated plasma concentration-time plot of PPQ in
the 60 patients included in the analysis with average
population predictions and 95% prediction intervals.

Concentration-time simulations of lumefantrine

The day 7 predicted median concentrations of lumefantrine
after administration of a 6 dose-regimen over 3 days were
300.9 ng/ml (P.lgsey 12.2-2015.0 ng/ml). Considering the
large inter-patient variability in LF kinetics, 11% of
the patients would exhibit day 7 concentrations below
the cut-off of 50 ng/ml, 33% below 175 ng/ml, 48%
below 280 ng/ml and 71% below 600 ng/ml. Prolonging

the time of drug administration over 5 days would pro-
vide median concentrations of 608.7 ng/ml (P.l.gse
69.5-3515 ng/ml), with 1%, 10%, 21% and 49% of pa-
tients with concentrations below the cut-off of 50 ng/ml,
175 ng/ml, 280 ng/ml and 600 ng/ml, respectively. In
addition, simulations predicted that patients would exhibit
concentrations below the cut-off values of 50 ng/ml,
175 ng/ml and 280 ng/ml in a median (95% P.I.) of
152 h (126.8-176.3 h), 142 h (108.7-175.3 h) 136 h
(99.7-172.3 h), respectively after a standard dosing
regimen of 6 doses over 3 days. Increasing the 6-dose
regimen over 5 days would increase the median time
to 160 h (147.2-173.4 h), to 156 h (137.3-174.3 h) and
to 152 h (128.2-174.9 h) for the 3 proposed cut-off
values, respectively (Figure 7).

Discussion

This study describes the disposition of three widely used
forms of ACT (namely; AM-LF, AS-MQ and DHA-PPQ)
and explores factors potentially influencing the marked
variability in drug exposure. The estimated values of
clearance and volume of distribution for AM (including



Staehli Hodel et al. Malaria Journal 2013, 12:235
http://www.malariajournal.com/content/12/1/235

Page 11 of 17

10000

1000

100

Concentration [ng/mL]

0.1

Time [h]

10000

1000

Concentration [ng/mL]

0.1

0 48 96 144 192 240
Time [h]

Figure 4 Observed plasma concentrations of lumefantrine (left panels) and desbutyl-lumefantrine (right panels) after administration of
6 x 120 =720 mg (children) and 6 x 480 = 2880 mg (adults) lumefantrine in 135 Tanzanian patients. The solid lines represent the mean
population prediction and the dotted lines 95% prediction intervals. Triangles and squares represent residual plasma concentrations of
lumefantrine and desbutyl-lumefantrine found prior treatment initiation.
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its metabolite DHA), LF (including its desbutyl metabol-
ite DLF), MQ and PPQ are in line with previously pub-
lished results (see Table 5 for review), so are the large
inter-patient and marked intra-individual variability 8,32,
46-55]. Below some of the key findings are discussed.

Prior treatments

Interestingly and worryingly, more than half of the pa-
tients had residual concentrations above the lower limit
of quantification of at least one antimalarial on admis-
sion (74.3% in Tanzania Kibaoni, 51.6% in Cambodia
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Figure 5 Observed mefloquine plasma concentration after administration of a 2 x 125 =250 mg (children) and 3 x 500 = 1500 mg
(adults) dose in 63 Cambodian patients. The solid lines represent the mean population prediction the dotted lines the 95% prediction
intervals. Triangles represent residual plasma concentrations of mefloquine or piperaquine found prior treatment initiation.
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Figure 6 Observed piperaquine plasma concentrations after administration of 2 x 480 + 320 = 1280 mg (children) and 2 x 960 + 640 =
2560 mg (adults) dose in 60 Cambodian patients. The solid lines represent the mean population prediction the dotted lines the 95%
prediction intervals. Triangles represent residual plasma concentrations of mefloquine or piperaquine found prior treatment initiation.
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Phnom Dék and 68.9% in Cambodia Pramoy). Residual
doses were low in Tanzania for LE, but much higher
values were estimated in Cambodia for MQ and PPQ,
with up to approximately one quarter of an initial dose
already present at baseline. The levels reflect the differ-
ent residence times of these drugs; the proportions show
the extent of unregulated drug use and selective pressure
going on in these countries [29,30].

Determinants of exposure — implications for dosing

There was a clear correlation between CL, V- and body
weight for all drugs, which accounted for about 10-30%
of the inter-individual variability in these two parame-
ters. Body weight was highly correlated with age, sex and
height and remained the only significant parameter in
the multivariate analyses. This result supports the use of
antimalarial dosing regimens based on body weight, or
age as a proxy for it. What the model cannot predict is
whether an additional correction to dosing should be
made for children (or naive adults) on account of lack of
immunity.

The scaling factor of 0.75 for CL and 1 for V de-
scribed the relationships with body weight adequately,
with the exception of LF for which the usual allometric
scaling function provided a worse description of the
data. Although a controversy persists regarding the body
weight-dependent allometric exponent in the literature,
it is not clear whether a different scaling between chil-
dren and adults should be expected for this specific
drug, or whether some confounding factors (different
compliance between adult and children, different food
intake) could have contributed to this finding.

Interactions and metabolism
Most of the anti-malarial drugs are metabolized by
CYPs and concomitant treatment with inhibitors or

inducers of these enzymes might, therefore, influence
their elimination. This study detected only an influence
of CYP2C9 and CYP3A4 inhibitors on AM clearance,
which was decreased by 70% in patients with concomi-
tant treatment. The fact that very few co-medications
were reported might explain the lack of interactions for
LE, MQ or PPQ. For the latter, the metabolizing path-
ways are not known. Among other factors, genetic poly-
morphisms in the enzymes responsible for antimalarial
drugs could represent another important source of
variability. A population genetic- and pharmacokinetic-
based analysis was conducted to address this issue and
published elsewhere [27].

Other conditions potentially influencing exposure
Pregnancy is known to lower blood concentrations of AM
and LE thus putting pregnant women at risk of under-
dosing [31]. This study enrolled only three pregnant
women in Tanzania, which prevented estimating the influ-
ence of pregnancy on LF or AM drug levels.

Food intake has been shown to affect strongly the
bioavailability of LF, MQ and PPQ [56-59]. In prac-
tice, this is a source of systematic under-dosing; in a
study of the adherence to treatment regimens in
Tanzania, only 0.4% of patients were reported to take
their antimalarials with food [60]. While in the
present study patients admitted to the health facility
were provided with food, outpatients were advised to
eat directly before or after supervised drug-intake but
adherence to this recommendation was based on self-
reporting only, which, against the background of the
above-mentioned adherence study, made it unreliable
to have food effect included in the analysis. The ab-
sence of food information represents, however, a clear
limitation of this study.
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Figure 7 Concentration-time simulations of lumefantrine. A: Predicted median concentration of lumefantrine after administration of 6 x
480 mg (adults) regimen over 3 (continuous line) and 5 days (dotted line). Day 7 (168 h) median predicted concentrations (circles) with their 95%
prediction intervals are shown for the two dosage regimens. B: Predicted mean (95% C.) time (estimated from time of last dose to 168 h) at
which concentrations lie below the cut-off values of 50 ng/ml (rhombi), 175 ng/ml (triangles) and 280 ng/ml (squares). Full and empty symbols
associated with continuous and dotted lines represent 6-dose regimens over 3 and 5 days respectively.

Structural and variance model

These drugs are known to exhibit multi-compartmental
pharmacokinetics (two- or three-compartment dispos-
ition model) that could not be well captured owing to
the limited duration of sampling compared to other
studies. Although our data could provide a good estima-
tion of CL and variability, appropriate description of ter-
minal elimination phase could not be done. In addition,
due to the very sparse sampling design during the ab-
sorption phase, no estimation of different absorption
model could be performed, neither could the variability
in the absorption quantified for LF, MQ and PPQ, with
the exception of AM that exhibited a large inter-patient
variability in its absorption. This large variability could

result from both inherent characteristics of the drug
[46,61], and practical issues with dosing using crushed
AM-LF pills (the paediatric formulation was not avail-
able for this study) [62]. Another limitation of this study
is that no estimation could be made for AS and DHA
for the AS-MQ and DHA-PPQ treatments.

Simulations for LF

While the notion of concentration-effect relationship for
LF is generally accepted, there is yet no common under-
standing of what the therapeutic target concentration
should be. The published day 7 LF concentrations asso-
ciated with therapeutic response range from 175 ng/ml
to 600 ng/ml [6]. A recent, large pooled analysis of LF
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Table 5 Population estimate of clearance (CL) and steady-state volume of distribution (Vss) of antimalarials for a
person with a median body weight of 70 kg from mixed effects models from the present study and in previous studies

Drug Subjects Median age (range) [years] No. of patients Duration of sampling  CL [L/h] Vss[L]  Ref.

AM Patients 10 (1-78) 135 7 days 598 129 Present study
Patients 22 (14-60) 217 360 h 252° 304° [47]
Patients 4.0 (1-10) 50 72 h 182-700° 364 [46]
Patients 77 £14° 13 28 days 102 1263 [48]
Pregnant women 21 (16-35) 21 10h 10547 26024 [49]

DHA®  Patients 10 (1-78) 135 7 days 419 129 Present study
Patients 22 (14-60) 217 360 h 237° 147° [47]
Pregnant women 21 (16-35) 21 10 h 564 69 [49]

LF Patients 9 (1-78) 143 7 days 77 265 Present study
Patients 22 (14-60) 217 - 21 301 [47]
Patients 23 (13-59) 102 - 7 298 [32]
Patients 20 (5-66) 309 - 76 361 [32]
Pregnant women 24 (15-42) 103 336 h 8.7 257 [50]
Patients 4.0 (1-10) 50 72 h 54 623 [46]
Patients 77+£14° 13 28 days 729 506 [48]

DLFY9  Patients 9 (1-78) 143 7 days 336 265 Present study
Patients 77 +14° 13 28 days 701 119500  [48]

MQ Patients 18 (2-57) 63 14 days 24 625 Present study
Patients 14.8 (8-61) 128 28 days 14 574.7 [8]
Patients 93 (4-15) 74 28 days 3.71 1,089.2 [8]
Prophylaxis 26" (18-55) 1111 26 weeks 175 863 (5]
Patients 19 (2-55) 50 63 days 2.1 767.62 [52]

PPQ Patients 18 (7-53) 60 14 days 109 42,820 Present study
Patients 3-55 9 63 days ogh 61,180 [53]
Patients 6 (2-10) 236 42 days 29 14,972 [54]
Pregnant women 25 (18-43) 24 84 days 90 37,030 [55]
Non-pregnant women  27.5 (18-45) 24 84 days 92 58,030 [55]

Abbreviations: AM artemether, AS artesunate, DBL desbutyl-lumefantrine, DHA dihydroartemisinin, LF lumefantrine, MQ mefloquine, PPQ piperaquine.

@ Fixed parameter at mean value.
® From first to sixth dose.
€ Mean * standard deviation.

9 parameter estimates are weight normalized based on published population mean values divided by the mean weight of subjects.

€ Only as metabolite after administration of AM.

f Fixed to Vss of AM.

9 Only as metabolite after administration of LF.

" Mean.

" Population estimate for a patient with a median body weight of 48 kg.

concentration-efficacy data confirmed that a strong asso-
ciation exists between low day 7 LF concentrations and
an increased risk of recurrence until day 42, and until
day 21 for new infection [7]. However, the authors of the
pooled analysis concluded that there is no clear cut-off
value for the thresholds associated with risk of recrudes-
cence or new infection, but that cut-offs can be defined
based on achieving a proportion of the desirable effect.
For example, in low transmission areas a cut-off of
125 ng/ml gave efficacy rates of 84% and 96% at 42 days,
and in high transmission areas a cut-off of 50 ng/ml gave
efficacy rates of 80% and 95% at 42 days. In the Tanza-
nian sample of this study, 35% of the patients had a

concentration below the cut-off value of 175 ng/ml, but
only one of the 7 patients who had recurrent parasit-
aemia (unadjusted failure rate) was in this group.

Owing to the important variability in LF pharmacokin-
etics, the simulations under the standard 6-dose over
3 days schedule shows that a substantial proportion of
the patients would present concentrations below the
various proposed therapeutic targets at day 7. The con-
siderable inter-individual variability in LF plasma con-
centrations additionally suggests that in some patients
plasma LF concentrations would fall below the proposed
minimal concentrations between the fourth and seventh
day (3" and 4™ cycles) after treatment (i.e. before all the
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parasite had been eradicated). Splitting the same
recommended total dose over 5 days would greatly re-
duce the probability of exhibiting sub-therapeutic drug
concentrations, as already shown by other studies
[32,63]. However, in practice, the potential increased ex-
posure with this 5-day regimen may be impeded by the
possible risk of lower adherence to the treatment. Very
little evidence exists for the other compounds. For MQ,
the time over the MIC seems an important component
associated with treatment efficacy [8]. Our results indi-
cate that this drug exhibits the least variability in its dis-
position and it is thus not expected that differences in
response would be strongly related to variable drug
levels.

Additional file

Additional file 1: Number of samples per time point. The table
provided summarizes the number of patient samples included in the
population pharmacokinetic model of each anti-malarial drug (and its
metabolite where applicable) for every sampling time point.
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