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Abstract

The challenge of controlling and eventually eradicating malaria means that new tools are urgently needed. South
America’s role in this fight spans both ends of the research and development spectrum: both as a continent
capable of discovering and developing new medicines, and also as a continent with significant numbers of malaria
patients. This article reviews the contribution of groups in the South American continent to the research and
development of new medicines over the last decade. Therefore, the current situation of research targeting malaria
control and eradication is discussed, including endemicity, geographical distribution, treatment, drug-resistance and
diagnosis. This sets the scene for a review of efforts within South America to discover and optimize compounds
with anti-malarial activity.

Keywords: South America, Malaria, Plasmodium, Plasmodium vivax, Treatment, Resistance, Drug discovery, Review
Background
Malaria is the tropical disease with the highest global
mortality. In 2010, there were an estimated 216 million
cases of malaria and 655,000 deaths worldwide, with
children under five years and pregnant women the most
vulnerable [1]. Over 81% of cases and 91% of deaths
were in Africa, with the majority of the remaining being
in India, Southeast Asia and South America.
South America includes 13 countries: Argentina, Bolivia,

Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru,
Suriname, Uruguay, Venezuela and French Guiana. Most
malaria cases are concentrated in the Amazon basin, with
580,000 reported in 2010, mainly in Brazil (281,586) [2]
and Colombia (115,000) [3]. In 2010 only 240 deaths were
registered, 0.085% of the global total. This low number
reflected a combination of factors: the higher quality of
health care, and the fact that the majority of cases are
Plasmodium vivax rather than Plasmodium falciparum
(estimated in 70%). Plasmodium vivax mortality is often
assigned to sequelae, such as haemolysis or lung inflam-
mation, rather than the parasite itself [4,5]. Other species
of malaria have been reported. Suriname [6] and French
Guiana [7] report 12% and 6% Plasmodium malariae
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infections respectively, although this may be an underesti-
mate resulting from difficult diagnosis in thick-smear
blood or rapid tests.
Malaria has been a long-term health issue in South

America. Throughout the 20th Century, the continent
underwent a rapid and disorganized development and
settlement process, leading to a population migration. In
the Amazon basin, with increased prospecting for min-
erals and agricultural projects [8,9], work opportunities
surged. This led to an increase in malaria prevalence and
incidence in the 1970s and 1980s [10], a trend that is
only now starting to be reversed [11].
South America, with its large biodiversity, has also

played a key role in the identification of new medicines to
combat malaria. The active cinchona bark, which led to
the purification of quinine was first identified in Peru [12],
and lapachol, the forerunner of atovaquone, also came
from the Amazon basin [13]. This raises the question as to
whether there are other natural products that could be
useful in malaria. In addition, South America has an excel-
lent scientific and clinical base, which can continue to
support the discovery and development of new therapeu-
tics. This review provides an overview of malaria in South
America, focusing on progress in drug discovery, and
highlighting critical future areas where the continent can
support the malaria eradication agenda.
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Malaria in South America
The endemicity of malaria can be divided into three
levels: high risk, if the annual parasite incidence (API) is
higher than 1% of the inhabitants; medium risk, when it
is 0.1 to 1% and low risk where it is less than 0.1% [11],
(see Figure 1).
Of all the South American countries, Uruguay and Chile

are malaria free, with no mosquito-transmitted infections.
Argentina and Paraguay are progressing towards elimin-
ation [1]. The remainder of the continent shows a broad
distribution of cases, with increasing frequency towards
the tropics. Brazil, has an overall API of 0.16%, reaching
0.6 to 0.7% in Amazonas and Acre [2]. On the other hand,
in Colombia and Suriname 15% of the population live in
areas with high transmission, and this number reaches
85% in French Guiana and Guyana where APIs of 35%
have been reported locally [7].
In the rainforest region, the primary vector species that

transmits Plasmodium parasites is Anopheles darlingi
[14-16], with other species such as Anopheles albitarsis,
Anopheles albimanus, Anopheles aquasalis and Anopheles
marajoara playing roles in transmission [17-19]. Anopheles
gambiae was imported into South America from Africa in
the transatlantic slave trade but was eliminated from the
continent in the first half of the 20th Century [20,21].
Figure 1 Incidence and risk of transmission of malaria. A- Risk of trans
delimit the Amazon basin. B- Distribution of malaria cases in the Amazon b
Anopheles darlingi is an efficient vector, preferring humans
over animals, and with a high susceptibility to Plasmodium
infection [16]. Although nets are important, they are not
sufficient, since many vectors have peak-biting hours be-
fore bedtime [22,23] and in addition not all families have
appropriate numbers of bed nets.
The standard treatment for uncomplicated P. falcip-

arum malaria is artemisinin-based combination therapy
(ACT), as recommended by the World Health Or-
ganization (WHO) [24], outlined in Figure 2. Chloroquine
(CQ) is still effective for P. vivax in many countries. How-
ever, the Amazon Network for the Surveillance of Antimal-
arial Drugs Resistance (RAVREDA, Red Amazónica de
Vigilancia de la Resistencia a los Antimaláricos) reported
10% resistance to chloroquine in Amazonas, Brazil [25].
Primaquine is the standard therapy for preventing relapses
of P. vivax, although there are issues with compliance to
the 14-day regimen and a risk of haemolysis in G6PD-
deficient subjects. Studies in Brazil showed that primaquine
failed to prevent relapses in 24.5% of cases [26]. Whether
this is true resistance to the drug or lack of compliance is
not clear. It has been suggested that an increased dosage of
primaquine is required for South America [27], and Brazil
and Peru have recently shifted from 14 days of 0.25 mg/kg/
day to seven days of 0.5 mg/kg/day. G6PD deficiency was
mission of malaria, classified by country, in 2010. The dashed blue lines
asin, in 2010 (based on the WHO World Malaria Report 2011).
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Figure 2 Malaria treatment. Standard treatment of malaria in South America according to the Ministries of Health from each country and to
WHO guidelines for the treatment of various forms of malaria. There is also severe vivax malaria, for which the treatment should be similar to that
used in the treatment of severe malaria caused by Plasmodium falciparum.
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detected at 3% prevalence in Manaus, Brazil [28] and
was predominantly the mild A- form. In Buenaventura,
Colombia, where a higher proportion of the population has
African origins, prevalence of the mild A- form is 12% [29].
An improved version of primaquine, developed originally
by the Walter Reed Army Institute of Research (WRAIR),
called tafenoquine, is under clinical development as a
single-dose anti-relapse agent, but this is not expected to be
launched before 2017. For severe falciparum malaria, most
countries use parenteral quinine, although data from Africa
and Asia support a shift to artesunate for injection [30],
which has already been pioneered by Brazil.
Search methodology
A literature search was conducted in February and
March 2012 to identify studies regarding malaria
research activities in South America. The sources for
published data were SciFinder Scholar®, PubMed® and
LILACS®. The date of publication considered spanned
from January 2000 to February 2012. The following key
words were used for the database search: malaria or
anti-malarial. The search list was refined by country by
means of the affiliation field. All papers describing any
type of drug (based on medicinal chemistry, natural
products or other approaches) were selected. Only re-
search showing either in vitro or in vivo activities of
molecules was considered. In addition, the database
Thomson Pharma® was screened for clinical trials’ proto-
cols conducted within the continent. Papers regarding
drug discovery research were divided into two groups:
those covering natural products (divided into plant ex-
tracts and isolated substances) and those covering stud-
ies of new synthetic drug compounds.
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Results
Natural products
Pharmacognosy is the study of naturally occurring mole-
cules with medicinal properties. Plant-derived com-
pounds have been the backbone of the anti-malarial
class of drugs over the last centuries, and two emerged
from South America. Quinine is the active ingredient in
cinchona tree bark in Peru and was purified in 1820, be-
coming the first disclosed compound with known anti-
malarial activity. Lapachol, belonging to the chemical
class of naphthoquinones, was first isolated from
Tabebuia avellanedae in 1882 and used to treat fever
and malaria in the 19th Century in South America. A
third natural product, artemisinin, was isolated by
Chinese scientists from Artemisia annua. These natural
products have served as starting points for medicinal
chemistry optimization. Chloroquine was designed based
on quinine, massively reducing the frequency of admin-
istration, and paving the way for a whole new generation
of aminoquinolines and amino-alcohols. The chemical
optimization from lapachol to atovaquone gave new
molecules with more reliable oral bio-availability, allowing
them to be used in prophylaxis. Modifying artemisinin to
artesunate massively improved solubility (Figure 3), but
has also led to the design of new improved endoperoxides
such as OZ439 which is currently in Phase II trial to
evaluate its efficacy and stability in malaria patients [31].
These improved molecules have been used to treat hun-
dreds of millions of patients over the last century.
South America has a long tradition of studies of natural

products based on two approaches: the biological evalu-
ation of traditional medicines and the identification of
plants (or organisms) with differences in secondary metab-
olism [32]. The natural products identified (pharmacog-
nosy) are shown on Table 1. A cut-off of approximately
EC50 of 1 μg/mL (1 μM where the active ingredient is well
characterized) was used based on the experience that
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Figure 3 Structures of lapachol, atovaquone, artemisinin, artesunate
compounds that originated anti-malarial compounds. Changes on these co
OZ439 was inspired by artemisinin.
almost 0.5% of chemical diversity is active at this level
[33]. The structures of molecules are shown in Figure 4.
Thus, only five purified compounds (Figure 4) have been

identified from these efforts. Studies of Bowdichia
virgiloides, a plant used by the Tacana indigenous group as
a traditional medicine for the relief of high fever, produced
alkaloid 1 (ormosanine), having an EC50 = 5 μg/mL against
F32. In vivo, the extract showed 51% suppression of para-
sites in mice at 100 mg/kg, but was toxic at 250 mg/kg.
Baccharis dracunculifolia is broadly used in traditional
medicine in Brazil, in inflammatory and gastrointestinal
diseases. Although the total extract was inactive, the iso-
lated the triterpenoid 2 showed anti-malarial and anti-
leishmanial activity. In vitro screening of substances iso-
lated from the Brazilian folk medicines identified
neosergeolide 3, from Picrolemma spruce, which inhibits
K1 with an impressive EC50 = 2 nM; and, the aryltetralone
4 from Holostylis reniformis, with an EC50 = 20 nM; both
are claimed to have good therapeutic window against he-
patocytes. Further testing of these compounds would be
needed to assess their strengths and weaknesses. The 4-
nerolidylcatechol 5 was isolated from another traditional
Amazonian treatment of malaria, Piper peltatum and
shown to have an EC50 between 50 and 830 ng/ml. Cat-
echol 5 was also independently isolated from Pothomorphe
peltata as shown in Table 1.

Medicinal chemistry
Medicinal chemistry approaches start from the knowledge
of a structure combined with biological activity. Such
starting points can be found from screening efforts (for
example, pharmaceutical diversity or natural products
against a biochemical target or whole cell), de novo design
or from a published active, which can then act as a starting
point for optimization. The molecules that have been
identified from various sources against malaria with rele-
vant endpoints and published within the South American
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and OZ439. Lapachol and artemisinin are examples of plant-derived
mpounds gave atovaquone and artesunate, respectively. Additionally,



Table 1 Summary of pharmacognosy studies

Compound Authors Plant with the lowest IC50 Type IC50 (P. falciparum strain)

1 Bravo et al. [34] Bowdichia virgiloides Extracts 1.0 μg/mL

Isolated substances 5 μg/mL (F32 and Indo)

- Deharo et al. [35] Bowdichia virgiloides Extracts 1 μg/mL (F32)

2 da Silva Filho et al. [36] Baccharis dracunculifolia Extracts 13 μg/mL

Isolated substances 0.8 μg/mL (W2 e D6)

3 de Andrade-Neto et al. [37] Picrolemma spruce Isolated substances 0.002 μM (K1)

4 de Andrade-Neto et al. [38] Holostylis reniformis Isolated substances 0.20 μM (field isolate)

- Kayano et al. [39] Caesalpina pluviosa Extracts 0.59 μg/mL (3D7)

5 Rocha e Silva et al. [40] Piper peltatum Isolated substances 0.05–2.11 μg/mL (M1)

5 Pinto et al. [41] Pothomorphe peltata Isolated substances 0.67 μM (K1)

- Garavito et al. [42] Remijia peruviana Extracts 0.85 μg/mL (FcB2)

- Debenedetti et al. [43] Buddleja globosa Extracts 8.9 μg/mL (K1)

- Baelmans et al. [44] Caesalpina pluviosa Extracts 8 μg/mL (D2)

- Flores et al. [45] Caesalpina pluviosa Extracts 3.4 μg/mL

Isolated substances Inactive (F32)

- Ibáñez-Calero et al. [46] Rumex obtusifolius Isolated substances 71 μg/mLi

- Muñoz et al. [47] Sparanttanthelium amazonum Extracts 2 μg/mL (F32)

- Muñoz et al. [48] Swietenia macrophylla Extracts 73%ii

- Muñoz et al. [49] Tripodanthus acutifolis Extracts 98%iii

- Costa et al. [50] Montrichardia linifera Extracts 11.7 μg/mL (W2)

- da Silva Filho et al. [51] Nectandra megapotamica Extracts 28 μg/mL

Isolated substances 3.8 μg/mL (D6)

- de Andrade-Neto et al. [52] Bidens pilosa Extracts 3.1 μg/mL (D6)

- de Andrade-Neto et al. [53] Remijia ferruginea Extracts 48%iv

- de Mesquita et al. [54] Matayba guianensis Isolated substances 2.5 μg/mL (FcB1)

- Dolabela et al. [55] Esenbeckia febrifuga Extracts 15.5 μg/mL

Isolated substances 75.3 μg/mL (W2)

- Estevam et al. [56] Ouratea nitida Extracts 51.04%v

- Fischer et al. [57] Xylopia emarginata Extracts 3.3 μg/mL (PA)

- Morais et al. [58] Pentacalia desiderabilis Isolated substances 7.82 μg/mL (K1)

- Oliveira et al. [59] Bidens pilosa Extracts 38%vi

- Sá et al. [60] Physalis angulata Isolated substances 2.2 μM (W2)

- Uchôa et al. [61] Cecropia pachystachya Extracts 66%4

Isolated substances 58%vii

- Loyola et al. [62] Azorella compacta Isolated substances 60%viii

- Pabón et al. [63] Solanum nudum Isolated substances 21 μM (FcB2)

- Céline et al. [64] Siparuna aspera Extracts 6.4 μg/mL (FCR-3)

- Ruiz et al. [65] Minquartia guianensis Extracts 4.2 μg/mL (FCR-3)
i Inhibition of biocrystallization of ferriprotoporphyrin IX.
ii Percentage of inhibition of parasite growing (dose: 250 mg/kg).
iii Percentage of inhibition of parasite growing (at 10 μg/mL).
iv Reduction of parasitaemia (dose: 1000 mg/kg).
v Activity tested against Plasmodium berghei in mice (dose: 1000 mg/kg).
vi Reduction of parasitaemia at day 5 (dose: 250 mg/kg).
vii Percentage inhibition of parasitaemia in relation to untreated infected mice on day 8 after malaria infection (doses: 250 and 15 mg/kg respectively).
viii Activity in mice measured by the growth of inhibition (dose: 10 mg/kg/day).
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medicinal chemistry community are summarized in
Table 2, and in addition, their structures are presented in
Figure 5. Studies characterizing the spectroscopy of previ-
ously described molecules, or studies on marketed anti-
malarials have not been included.
Those compounds having EC50 values less than 1 μg/ml

(with a square box around) are discussed further as this is
the typical potency cut-off required for “Validated Hits” –
the starting points for drug discovery projects, as consid-
ered by the Medicines for Malaria Venture [98,99].
New pyrazolylnaphthoquinones (heterocyclic naphtho-

quinones, building on the atovaquone template bearing 3-
aminopyrazole rings) and 5-aminoisoxazole analogues
showed activity against P. falciparum, Trypanosoma cruzi
and Trypanosoma brucei. The 5-aminoisoxazole analogue
6 showed an EC50 of 110 ng/mL and an independent
naphthoquinone, 7, demonstrated an EC50 of 30 nM against
FcB1. A novel piperazinyl/steroidal analogue, 11, also
inhibited FcB1 with an EC50 of 0.08 μM. Pinheiro et al. used
a multivariate and quantum mechanical method to analyse
15 dihydroartemisinin derivatives and the most
potent compound, 13, showed an EC50 of 0.05 ng/mL, over
10-fold more potent than the reported values for
dihydroartemisinin. Two papers describe chalcone deriva-
tives: the electrophilic chloro-vinyl sulphone 21 showed an
EC50 of 0.025 μM against W2 and the sulphonamide
chalcone 22 showed an EC50 of 0.48 μM. Finally, approaches
to aminoquinolines identified the derivative 24 with an EC50

of 48 nM, against the 3D7 strain; and new heterocyclic hy-
brids based on the chloroquine and thiazolidinone scaffolds
such as 25 have an EC50 of 0.25 μM.

Discussion
In South America, the morbidity and mortality due to
malaria is much less significant than in Africa. However,
the continent has historically been the source of two of
the major classes of drugs against malaria, and the com-
bination of both biodiversity and skilled medicinal
chemists could position the continent in a leading pos-
ition in the search for the new medicines needed for
malaria eradication. The current biggest threat in the
fight against malaria is the emerging resistance to arte-
misinin derivatives [100,101]. Artemisinin derivatives
within ACT are the most widely used anti-malarials. Even
though there has been a concerted attempt to protect
them against resistance by banning artesunate monother-
apy for uncomplicated disease, the first signs of artemisi-
nin resistance or insensitivity have been described in
Cambodia [102] and more recently in Thailand [103].
There is a great need for new combination therapy, re-
placing the three days’ dosing of ACT with a single dose
that also prevents transmission and relapse (in the case of
P. vivax or Plasmodium ovale) [104].
Pharmacognosy has continued to identify new active

structures [105]. However, the progress in bringing for-
ward new medicines from these structures and extracts
is extremely difficult. Where such molecules are
reported to have interesting properties from observa-
tional studies, then it is important to confirm these ob-
servations in carefully controlled human clinical studies
[106]. Also, it is possible that the active principle is a
metabolite from the original extract, and so analysis of
plasma samples is also important in understanding and
identifying the active species [33]. Secondary metabo-
lites are usually thought to play a key role in protection
against predators, and therefore could be expected to be
cytotoxic. Screening for activity in early safety assays is
therefore of paramount concern here. Ultimately the
goal of such experiments is to identify new starting
points for medicines, similar to the way that quinine



Table 2 Summary of medicinal chemistry studies

Compound Authors Target Chemical class Lowest IC50 (strain)

6 Sperandeo and Brun [66] - Pyrazolylnaphthoquinones, 5-
aminoisoxazole

0.11 μg/mL (K1)

7 Silva et al. [67] - 1,4-naphthoquinones 0.03 μM (FcB1)

8 Charris et al. [68] β-haematin Thieno(2,3-b)quinoline 74.42%1

9 Cunico et al. [69] Aspartyl protease Hydroxyethylpiperazines 4.6 μM (3D7)

10 Cunico et al. [70] Aspartyl protease Hydroxyethyylpiperazines 5.1 μg/mL (W2)

11 Gnoatto et al. [71] β-haematin Piperazine, 3-acetylursolic acid 0.08 μM (FcB1)

12 de Sá et al. [72] Betulinic acid 5.99 μM (W2)

13 Pinheiro et al. [73] - Sesquiterpenes 0.05 ng/mL (P. falciparum
mefloquine resistant)

14 Barbosa et al. [74] - Ozonides 13.6 μg/mL

15 Oliveira et al. [75] Cysteine proteases Semicarbazone, Thiosemicarbazone 7.2 μM (W2)

16 Camacho et al. [76] β-haematin Benzimidazole-5-carbohydrazides 8.43 μM

17 Corrales et al. [77] Hypoxanthine-guanine
phosphoribosyltransferase

6-thiopurine Steroids 82%1

18 Barazarte et al. [78] β-haematin Pyrazolo and pyrimido benzothiazine
dioxide

92.32%2

19 Barazarte et al. [79] β-haematin Benzothiazines 78.17%2

20 Vellasco Junior et al. [80] Aspartyl protease Thioetherhydroxyethyl, Sulfonamides 15 μM (W2)

21 Dominguez et al. [81] β-haematin Chlorovinyl sulfones 0.025 μM (W2)

22 Dominguez et al. [82] β-haematin Sulfonamide chalcones 0.48 μM (W2)

23 León et al. [83] Glucose metabolism β-
haematin

Sulfonylureas 1.2 μM (W2)

24 Arancibia et al. [84] β-haematin Rhenium bioorganometalics,
Aminoquinoline

0.048 μM (3D7)

25 Rojas Ruiz et al. [85] β-haematin Aminoquinolines, thiazolidinone 0.25 μM (3D7)

26 Charris et al. [86] β-haematin E-2-quinolinylbenzo-cycloalcanones 90%3

27 Vashist et al. [87] β-haematin Quinolone, 6-thiopurine inactive

28 de Souza et al. [88] β-haematin 4-aminoquinolines, platinum (II) complexes 84 %4

29 Cunico et al. [89] β-haematin 4-aminoquinolines 1.39 μg/mL (W2)

30 Rodrigues et al. [90] β-haematin Quinoline Active

31 Domínguez et al. [91] Cysteine protease falcipain Quinolinyl chalcones 19 μM (FcB1)

32 Ferrer et al. [92] β-haematin Chloroquinolines 94.93%3

33 Navarro et al. [93] β-haematin Gold-chloroquine complexes −5

34 Domínguez et al. [94] Cysteine protease β-haematin Phenylurenyl chalcones 1.76 μM

35 de Andrade-Neto et al.
[95]

- Naphthoquinones, Phenazines 1.67 μM (W2)

36 Hilário et al. [96] - 3-alkylpyridines alkaloids <3.38 μM (W2)

37 Rodrigues et al. [97] β-haematin Bisquinoline 56.76 %2

1 Percentage of inhibition of parasite growth (P. berghei in mice) at day 9 (dose: 10 mg/kg).
2 Inhibition of globin proteolysis (IGP) expressed as percentage.
3 Inhibition of β-haematin synthesis (IβHS) expressed as percentage.
4 Inhibition of parasite multiplication on days (dose: 25 mg/kg).
5 Activity expressed as IC50(CQDP)/IC50(complex).
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and lapachol opened up new fields in previous centur-
ies. Such approaches require long-term commitment,
and hence the need to verify the original clinical
observations.
The other approach to discover new drugs is to use
medicinal chemistry, either with scaffolds already known
to be effective against the parasite, or a target-based ap-
proach based on structural biology. The results of this
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survey show that molecules coming from South American
programmes are able to demonstrate innovative and active
new structures. However over the last five years, the bar
has been raised and a new challenge has been set as a re-
sult of the success of phenotypic screening. With over
20,000 structures of compounds active against the parasite
deposited in the public domain [107,108], it is important
to benchmark the successes found in South America
against these results. Clearly the prize no longer goes to
compounds that simply kill the parasite in vitro, but to mol-
ecules that have good properties supporting excellent oral
administration in patients, or perhaps equal artemisinins in
speed of killing parasites [109], or have a very low propen-
sity to resistance generation [110]. In the light of the mal-
aria eradication agenda, it will be important also to know
how these new molecules work in the different stages of
the parasite lifecycle [111]. A molecule that could be shown
to inhibit the dormant liver stages of P. vivax would clearly
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stand out from the crowd [112]. All of the tools are avail-
able to enable South American anti-malarial drug research
to make these steps forward over the next five years, the
challenge will be to put these together, and focus the
agenda to the needs of the South American community.

Conclusion
Malaria continues to be a health issue, particularly P. vivax
in the Amazon basin, and P. falciparum and mixed infec-
tions in northern countries. The natural diversity along
with the indigenous folk medicines allows a great potential
in the treatment and identification of new anti-malarial
drugs, as happened with the South American compounds,
lapachol and quinine. New molecules are being identified
but their optimization for in vivo activity has been slow,
arguing that more resource needs to be focused in these
areas. In addition, the new assays for transmission and re-
lapse of dormant liver stages need to be put into routine
practice. If all this is put together, then South America can
again play a leading role in the discovery of the next
generation of therapeutics against malaria.
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