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Abstract

Background: Operational vector sampling methods lack standardization, making quantitative comparisons of
malaria transmission across different settings difficult. Human landing catch (HLC) is considered the research gold
standard for measuring human-mosquito contact, but is unsuitable for large-scale sampling. This study assessed
mosquito catch rates of CDC light trap (CDC-LT), Ifakara tent trap (ITT), window exit trap (WET), pot resting trap
(PRT), and box resting trap (BRT) relative to HLC in western Kenya to 1) identify appropriate methods for operational
sampling in this region, and 2) contribute to a larger, overarching project comparing standardized evaluations of
vector trapping methods across multiple countries.

Methods: Mosquitoes were collected from June to July 2009 in four districts: Rarieda, Kisumu West, Nyando, and
Rachuonyo. In each district, all trapping methods were rotated 10 times through three houses in a 3 × 3 Latin
Square design. Anophelines were identified by morphology and females classified as fed or non-fed. Anopheles
gambiae s.l. were further identified as Anopheles gambiae s.s. or Anopheles arabiensis by PCR. Relative catch rates
were estimated by negative binomial regression.

Results: When data were pooled across all four districts, catch rates (relative to HLC indoor) for An. gambiae s.l
(95.6% An. arabiensis, 4.4% An. gambiae s.s) were high for HLC outdoor (RR = 1.01), CDC-LT (RR = 1.18), and ITT
(RR = 1.39); moderate for WET (RR = 0.52) and PRT outdoor (RR = 0.32); and low for all remaining types of resting
traps (PRT indoor, BRT indoor, and BRT outdoor; RR < 0.08 for all). For Anopheles funestus, relative catch rates were
high for ITT (RR = 1.21); moderate for HLC outdoor (RR = 0.47), CDC-LT (RR = 0.69), and WET (RR = 0.49); and low for
all resting traps (RR < 0.02 for all). At finer geographic scales, however, efficacy of each trap type varied from district
to district.

Conclusions: ITT, CDC-LT, and WET appear to be effective methods for large-scale vector sampling in western
Kenya. Ultimately, choice of collection method for operational surveillance should be driven by trap efficacy and
scalability, rather than fine-scale precision with respect to HLC. When compared with recent, similar trap evaluations
in Tanzania and Zambia, these data suggest that traps which actively lure host-seeking females will be most useful
for surveillance in the face of declining vector densities.
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Background
The entomological inoculation rate (EIR), expressed as the
number of infectious mosquito bites per person per unit
time, is a direct measure of malaria transmission intensity
and, hence, an important metric for malaria surveillance
and control programme evaluation [1,2]. Calculating EIR
requires trapping host-seeking Anopheles vectors to
determine the human biting rate (HBR) and prevalence of
sporozoite infection [1,3,4]. Methods for operational
mosquito sampling currently lack standardization, however,
making it difficult to quantitatively compare EIRs between
different locations or even within one location over time
[2]. The gold standard in research studies for estimating
mosquito-human contact has traditionally been the
human landing catch (HLC), which can be employed
either indoors or outdoors to capture mosquitoes as
they land to feed on a human host [5,6]. Unfortunately,
HLC is a labour-intensive procedure requiring highly
trained collectors and extensive supervision, and results
can be biased due to differences in the skill of collectors
or their attractiveness to mosquitoes [2,7,8]. Furthermore,
use of HLC has declined in recent years due to ethical
concerns about potential exposure of collectors to
mosquito-borne pathogens [5,9]. For all these reasons,
HLC is unsustainable for large-scale operational sampling
of malaria vectors.
Several exposure-free trapping methods have been

evaluated as substitutes for HLC, but their reliability for
estimating HBR and sporozoite prevalence have varied
widely depending on characteristics of the study location
or vector population [9,10]. Centers for Disease Control
and Prevention miniature light traps (CDC-LT) are
commonly used and are most efficient when hung next
to a human host that is protected under a bed net [11,12].
Several studies have demonstrated close correlation
between the numbers of Anopheles mosquitoes caught
by CDC-LT compared to HLC [10-15]. Others researchers,
however, have reported low catch rates [16,17] or inconsist-
ent results using CDC-LT [18]. Also of concern, CDC-LTs
have been found to catch higher numbers of Plasmodium-
infected females compared to HLC [16,19], potentially
resulting in overestimation of EIR.
Window exit traps (WETs) and resting traps are easy

to deploy and do not require a dedicated collector to act
as human bait [6,20]. Neither of these trap types, however,
specifically target host-seeking females. WETs capture
endophagic or endophilic vectors as they leave the house
after feeding and/or resting. Resting traps are particularly
useful for studying mosquito host choice behaviour
because they collect large proportions of fed females
immediately after a blood meal [6]. The efficacy of WETs
and resting traps are strongly affected by environmental
variables, such as the number of alternative exits or resting
sites available for mosquitoes [6,17,21]. The C-design of
the Ifakara tent trap (ITT) was recently developed as an
alternative exposure-free tool to collect host-seeking mal-
aria vectors [22]. While this tent trap has demonstrated
high capture rates for Anopheles in both rural and urban
study sites in Tanzania [22,23], its efficacy is known to
vary depending on local vector density [24] and only one
evaluation outside of Tanzania has been conducted in
neighbouring Zambia [15].
The aim of the present study was to compare mos-

quito catch rates from CDC-LT, ITT, WET, pot resting
trap (PRT), and box resting trap (BRT) against HLC in
four different districts in western Kenya to identify the
most useful tools for operational surveillance in this
region of declining vector density. By employing a study
design similar to recent trap evaluations in Tanzania [17]
and Zambia [15], the secondary goal was to provide
information enabling comparisons of trap efficacy between
countries, an important step toward standardizing vector
collection techniques across multiple sites.

Methods
Study area
This study was conducted in four districts in rural western
Kenya: Rarieda, Kisumu West, Nyando, and Rachuonyo
(Figure 1). Rarieda, located on the north side of the
Winam Gulf of Lake Victoria, is an area of intense
year-round malaria transmission. Several epidemiological,
entomological and immunological studies of malaria have
been conducted in this region [25-29]. EIRs estimated
during the early 1990s ranged from 60 to 300 infectious
bites per person per year [30,31]. From 1997–1999, resi-
dents of Rarieda District (within the Asembo jurisdiction)
were enrolled in a community-wide study to determine
the efficacy of insecticide-treated bed nets (ITNs) for
reducing malaria morbidity and mortality [26]. High ITN
coverage (about 90%) was achieved in the study area and
maintained programmatically for years after the study
[32]. In Rarieda district, EIR estimates have ranged from
five to 15 infectious bites per person per year since 2002
despite nearly universal coverage with bed nets (J Gimnig,
unpublished). Annual malaria parasite prevalence in
children under five years of age reached a low of 25% in
2008, but was over 40% in 2009 and 2012 (M Hamel,
unpublished data). Kisumu West borders Rarieda and
entomological monitoring suggests that malaria transmis-
sion is similar to that of Rarieda.
Nyando and Rachuonyo are on the eastern and southern

sides of the gulf, respectively, where low to moderate
malaria transmission is observed. EIRs have not been
estimated for these areas, but routine entomological
surveys indicate that average mosquito densities are
consistently 75% lower than in Rarieda. Malaria parasite
prevalence in these districts is also lower than in Rarieda;
prevalence across all age groups was estimated to be less



Figure 1 Map of western Kenya. The four study districts are shown in bold. Within each district, the village in which mosquitoes were collected
is marked with a dot and labelled.
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than 10% in May 2008. In August 2009, parasite
prevalence remained under 10% in Rachuonyo District
following two rounds of indoor residual spraying (IRS)
with pyrethroid insecticides, but rose to approximately
16% in neighbouring Nyando District where IRS was not
conducted (J Gimnig, unpublished data).
Previously, bed net ownership and use was highest in

Rarieda due to the ITN study conducted in that district.
However, after a mass campaign in 2006 and several
years of targeted subsidies to pregnant women and
children, household ownership of ITNs in most of
western Kenya approached that of Rarieda [33]. Malaria
vectors in this region include Anopheles gambiae s.s.,
Anopheles arabiensis and Anopheles funestus, with An.
gambiae s.s. predominant through the late 1990s
[30,33]. Following widespread distribution of ITNs,
however, populations of An. gambiae s.s. and An. funestus
declined dramatically, leaving An. arabiensis as the
most abundant vector species at present [33]. Two
rounds of IRS with pyrethroids were carried out in all
houses in Rachuonyo District in July/August 2008
and April/May 2009. No IRS was conducted in
Rarieda, Kisumu West, or Nyando prior to this study
(J Gimnig, unpublished data). Mosquito collections
were conducted from June to July 2009, corresponding to
the end of the long rainy season.
Experimental design
To facilitate comparison with recent trap evaluations in
Tanzania [17] and Zambia [15], a similar study design
was employed. Within each of the four study districts, a
block of three locally representative houses was used to
evaluate vector trapping methods over a 30-day period.
Study houses were selected in areas that either provided
abundant mosquitoes in the past or were in close
proximity to breeding sites. The following paired
combinations of trapping methods were used during
the study: (1) HLC indoor and HLC outdoor; (2)
CDC-LT indoor (hung beside an occupied bed net)
and ITT outdoor (Elastic Products Manufacturing Co,
Dar es Salaam, United Republic of Tanzania); and (3)
WET combined with two PRTs (one indoor and one
outdoor) and two BRTs (one indoor and one outdoor)
(Figure 2). These collection techniques have been
described in detail previously [15,17,20]. The ITT
consisted of a canvas tent fitted with six funnel-shaped
entrances for mosquitoes. To prevent sleepers from being
bitten by mosquitoes, the ITT C-design used in this
study was a modification of the original ITT such that
each mosquito entrance led to one of two screened
compartments [22]. PRTs were locally manufactured
clay pots that have previously been evaluated for
sampling Anopheles in western Kenya [20]. Trap methods



Figure 2 Schematic diagram of experimental set up within one
district. A block of three locally representative houses was used to
evaluate the following combinations of trapping methods: (1) HLC
indoor and HLC outdoor, (2) CDC-LT indoor (placed beside an
occupied bed net) and ITT outdoor, and (3) WET combined with
two PRTs (one indoor and one outdoor) and two BRTs (one indoor
and one outdoor). Trapping methods were rotated through all
houses according to a 3 × 3 Latin Square design. Aside from the
person acting as bait for the CDC-LT, all residents were free to
choose whether or not to sleep under their pre-existing bed nets.
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were rotated 10 times through the three houses every
three nights in a 3 × 3 Latin Square design.
In each district, five adult male volunteers were

recruited to carry out mosquito collections. HLCs were
conducted from 18:00 to 06:00 each night, with 45 min
of collection and a 15 min break per hour. The same
four men conducted HLCs every night, with two men
(one indoor and one outdoor) collecting during the first
shift (18:00 to 00:00) and two men (one indoor and one
outdoor) collecting during the second shift (0:00 to
06:00). The four HLC collectors were rotated between
positions (indoor vs outdoor) and shifts (first vs second)
to account for potential differences in their attractiveness
to host-seeking mosquitoes. The fifth volunteer carried
out collections using the ITT each night.
To utilize representative natural conditions as much as

possible, local houses with their normal occupants were
used as sampling locations. In addition, bed nets already
present in houses (some insecticide-treated and some
untreated) were used in this study and no new nets were
provided. Aside from the person acting as bait for the
CDC-LT (who was required to use their pre-existing
net), residents were free to choose whether or not to
sleep under their bed nets each night. Bed net usage and
insecticide treatment was recorded at the end of the
study. Throughout the entire study, each house was
occupied by at least three adults, of whom at least two
were adult males. All volunteers, notably those conducting
HLCs, were supervised through random spot checks
throughout the study.
For HLCs, each hourly catch from each volunteer was

placed in a separate cup. Mosquitoes were aspirated
from PRTs and BRTs, and collected from the CDC-LT,
ITT, and WET, between 06:00 and 07:00 following each
sampling night.

Mosquito processing
Captured Anopheles mosquitoes were identified to species
morphologically [34,35]. For Anopheles gambiae s.l,
individuals were identified to sibling species level by
PCR [36]. All female anophelines were classified by
abdominal status (fed, unfed, gravid, or half-gravid).
The prevalence of Plasmodium falciparum sporozoites
in collected anophelines was determined by sandwich
ELISA [37]. Culex mosquitoes were classified as male
or female and then discarded.

Data analysis
Data were entered into a Microsoft Access database
(Microsoft, Redmond, WA, USA) and analysed using
SAS version 9.1 (SAS Institute, Cary, NC, USA). Mosquito
catch rates relative to HLC indoor were calculated by
fitting negative binomial regression models using PROC
GENMOD. The number of adult females caught in each
trap on each night was treated as the outcome variable
and separate regression models were fitted for each
species. Models employed an autoregressive correlation
structure allowing for correlation to decline with increasing
time between collections. For all models, house was used
as the repeated subject. Trapping method and district
were included as predictor variables. If any trap method
by district interactions were significant (p < 0.05), relative
catch rates were reported separately for each district.
Characteristics of household bed net usage, including type
of bed net (insecticide-treated or untreated) and whether
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all residents slept under a bed net (yes or no), were also
examined for influence on trap efficacy.
To test for an effect of trapping method on the

proportion of captured females that had recently fed,
logistic regression models were fitted separately to the
An. gambiae s.l and An. funestus catch data. Abdominal
status of females was coded as either fed or non-fed
(unfed, gravid, and half-gravid). Trapping method and
district were included as predictor variables and models
were fitted using an autoregressive correlation structure
with house as the repeated subject to calculate odds ratios
for catching fed females.

Ethical clearance
The study protocol was approved by the Kenya Medical
Research Institute Ethical Review Committee (#1399). The
Centers for Disease Control and Prevention reviewed the
protocol and determined that it did not constitute human
subjects research (#990153). All collectors consented to
participating in the study and were provided mefloquine
on a weekly basis as malaria prophylaxis.

Results
Mosquito populations in western Kenya
Due to unavailability of PRTs and BRTs in some districts
at the beginning of the study, several sampling nights
lacked the full complement of trap types. Those sampling
nights were excluded, resulting in analysis of mosquito
collections from 106 nights with complete trap data
(24 nights from Rarieda, 23 nights from KisumuWest, 30
nights from Nyando, and 29 nights from Rachuonyo).
Of the 15,706 female mosquitoes collected, most were

Culex spp. (92.5% of females; n = 14,525). Anopheles species
captured included An. gambiae s.l (6.4% of females;
n = 1,012), An. funestus (1.1% of females; n = 165),
and Anopheles coustani (<0.1% of females; n = 4).
While An. gambiae s.l and An. funestus were prevalent
across all four districts, An. coustani was found only in
Nyando (n = 2) and Rachuonyo (n = 2). Due to the small
number of An. coustani captured, statistical analyses were
not conducted for this species. Out of 339 successfully
amplified An. gambiae s.l. females, 95.6% were An.
arabiensis (n = 324) and 4.4% were An. gambiae s.s (n = 15).
Thus, the subsequent results for An. gambiae s.l in this
region are generalizable to An. arabiensis.

Relative catch rates for traps compared to HLC indoor
The numbers of females caught by each trapping
method are summarized in Table 1. All 12 households in
the study reported owning at least one bed net. Whether
or not all household residents slept underneath a net had
no impact on trap efficacy (An. gambiae s.l, p = 0.487; An.
funestus, p = 0.275, Culex spp., p = 0.543) and this
factor was excluded from the models. Because only
two households (both in Rachuonyo) reported using
nets that were insecticide-treated (either long-lasting
insecticide-treated nets (LLINs) less than three years
old or nets treated within the last 12 months), potential
impacts of treated vs non-treated nets on trap efficacy
could not be evaluated. The assessment of net treatment
status in this study, however, may have underestimated
the true number of treated nets. A mass LLIN distribution
campaign was conducted during the second half of 2006,
which significantly increased ITN ownership throughout
all of Kenya [38]. LLINs from this campaign had just
exceeded the three-year mark by the end of the trap
evaluation, and thus, were counted as untreated. Further-
more, while large numbers of untreated nets had been
distributed by KEMRI\CDC in the Asembo Bay area
of Rarieda, these nets were treated with the KO-Tab
123 (a long-lasting insecticide formulation) [39] in early
2007. Therefore, it is likely that many of the bed nets used
during this study still exhibited insecticidal activity, but
were reported as untreated to err on the side of caution.
Mosquito collection data were initially pooled across

all districts for analysis. HLC outdoor, CDC-LT, and ITT
performed well, with no differences found in the numbers
of An. gambiae s.l. caught compared to the gold standard
of HLC indoor. WET and PRT outdoor yielded fewer An.
gambiae s.l., but still captured sufficient numbers to be
useful for collection. The remaining types of resting traps
(PRT indoor, BRT indoor, and BRT outdoor) collected
very few An. gambiae s.l. Between districts, more An.
gambiae s.l. were captured in Rarieda compared to
Kisumu West (RR = 0.44, p = 0.018), Nyando (RR = 0.37,
p < 0.001), and Rachuonyo (RR = 0.09, p < 0.001). Several
interaction terms between trap method and district were
statistically significant, indicating that trap efficacy for
capturing An. gambiae s.l. (relative to HLC indoor) varied
by district. Table 2 shows the relative catch rate of each
trapping method stratified by district.
Anopheles funestus were far more abundant in Rarieda

compared to KisumuWest (RR = 0.03, p < 0.001), Nyando
(RR = 0.02, p < 0.001), or Rachuonyo (RR = 0.03, p < 0.001),
so patterns in trap efficacy primarily reflect those in
Rarieda. ITT was the only trap method for which the
number of An. funestus captured was not significantly
different from HLC indoor (Table 1). CDC-LT, WET, and
HLC outdoor caught significantly fewer An. funestus.
Almost no An. funestus were caught in pot or box resting
traps, regardless of location. Due to low catch rates in
three of the four districts, differences in trap efficacy
between the four districts could not be evaluated.
For Culex spp, HLC outdoor captured more adult

females than the gold standard of HLC indoor (Table 1).
CDC-LT and ITT caught fewer Culex spp compared to
HLC indoor, but still yielded appreciable numbers. WET
and all resting traps performed poorly. Compared to



Table 1 Numbers of female mosquitoes caught using different trapping methods

Trapping method Total catch Mean catch per night (95% CI) Relative capture rate (95% CI) p-value

Anopheles gambiae s.l.

HLC indoor 208 1.96 (1.39, 2.54) 1.00* NA

HLC outdoor 180 1.70 (1.13, 2.27) 1.01 (0.76, 1.34) 0.947

CDC light trap 225 2.12 (1.36, 2.89) 1.18 (0.55, 2.54) 0.666

Ifakara Tent Trap 213 2.01 (1.55, 2.47) 1.39 (0.88, 2.19) 0.153

Window exit trap 117 1.10 (0.66, 1.54) 0.52 (0.30, 0.91) 0.022

Pot resting trap indoor 8 0.08 (0.01, 0.14) 0.05 (0.02, 0.11) <0.001

Pot resting trap outdoor 48 0.45 (0.26, 0.64) 0.32 (0.12, 0.87) 0.025

Box resting trap indoor 0 0.00# 0.00# NA

Box resting trap outdoor 13 0.12 (0.05, 0.19) 0.08 (0.04, 0.14) <0.001

Anopheles funestus

HLC indoor 43 0.41 (0.20, 0.61) 1.00* NA

HLC outdoor 20 0.19 (0.05, 0.33) 0.47 (0.32, 0.70) <0.001

CDC light trap 29 0.27 (0.12, 0.43) 0.69 (0.49, 0.98) 0.04

Ifakara Tent Trap 52 0.49 (0.27, 0.71) 1.21 (0.88, 1.68) 0.245

Window exit trap 20 0.19 (0.08, 0.30) 0.49 (0.36, 0.65) <0.001

Pot resting trap indoor 0 0.00# 0.00# NA

Pot resting trap outdoor 1 0.01 (0.00, 0.03) 0.02 (0.00, 0.24) 0.001

Box resting trap indoor 0 0.00# 0.00# NA

Box resting trap outdoor 0 0.00# 0.00# NA

Culex spp.

HLC indoor 4915 46.37 (36.96, 55.78) 1.00* NA

HLC outdoor 6566 61.94 (51.78, 72.10) 1.49 (1.10, 2.00) 0.009

CDC light trap 1122 10.58 (6.82, 14.35) 0.21 (0.15, 0.31) <0.001

Ifakara Tent Trap 1406 13.26 (7.69, 18.84) 0.38 (0.20, 0.72) 0.003

Window exit trap 271 2.56 (1.35, 3.77) 0.07 (0.03, 0.13) <0.001

Pot resting trap indoor 81 0.76 (0.48, 1.05) 0.02 (0.01, 0.03) <0.001

Pot resting trap outdoor 80 0.75 (0.38, 1.13) 0.02 (0.01, 0.04) <0.001

Box resting trap indoor 26 0.25 (0.06, 0.43) 0.00 (0.00, 0.01) <0.001

Box resting trap outdoor 58 0.55 (0.14, 0.96) 0.01 (0.00, 0.02) <0.001

Data were combined across all four districts (106 nights for each trap type). Catch rates (relative to HLC indoor), 95% confidence interval, and p-value were
calculated using negative binomial regression models. Relative capture rates statistically different from HLC indoor (p < 0.05) are indicated in bold.
* Reference collection method.
# Trap types that captured zero females were excluded from the model for that species.
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Rarieda, the number of Culex captured was not signifi-
cantly different in Kisumu West (RR = 1.55, p = 0.059)
and Rachuonyo (RR = 0.59, p = 0.088), but was signifi-
cantly higher in Nyando (RR = 2.99, p < 0.001). The
efficacy of some traps for capturing Culex spp (relative
to HLC indoor) varied by district. District-stratified
catch rates for each trapping method are presented in
the Additional file 1.

Sporozoite prevalence rates
During this study, sporozoite-infected Anopheles were
captured only in Rarieda District. Sporozoite prevalence
in this district was 2.0% for An. gambiae s.l. (n = 12
infected females) and 2.6% for An. funestus (n = 5 infected
females). The largest numbers of infected An. gambiae s.l.
were captured by WET (n = 4, 4.3% infection rate)
and CDC-LT (n = 2, 2.0% infection rate). For An.
funestus, ITT yielded the largest number of infected
females (n = 4, 8.2% infection rate). Overall numbers of
infected mosquitoes were too sparse to analyze any effect
of trap type on sporozoite rates.

Proportion of fed female anophelines
Among An. gambiae s.l., 20.3% of all captured females
had recently blood fed (n = 205). The percentage of
recently fed females was 17.0% for An. funestus (n = 28).



Table 2 Relative rates for capturing female Anopheles gambiae s.l. stratified by district

Trapping method Rarieda Kisumu West Nyando Rachuonyo

HLC indoor 1.00* 1.00* 1.00* 1.00*

HLC outdoor 0.77 (0.63, 0.95)a 0.60 (0.32, 1.11)a 1.19 (0.94, 1.52)b 2.57 (1.62, 4.06)c

CDC light trap 0.76 (0.61, 0.96)a 2.74 (1.04, 7.23)b 0.54 (0.20, 1.42)a 0.36 (0.06, 2.14)a,b

Ifakara Tent Trap 0.48 (0.38, 0.62)a 1.94 (0.99, 3.79)b 1.65 (1.16, 2.35)b 3.08 (1.02, 9.35)b

Window exit trap 0.72 (0.41, 1.28)a,b 0.18 (0.05, 0.64)a 0.37 (0.25, 0.56)a 0.72 (0.64, 0.81)b

Pot resting trap indoor 0.02 (0.00, 0.07)a 0.00# 0.09 (0.05, 0.16)b 0.53 (0.28, 1.01)c

Pot resting trap outdoor 0.04 (0.01, 0.10)a 0.02 (0.00, 0.26)a 1.05 (0.51, 2.17)b 0.92 (0.20, 4.35)b

Box resting trap indoor 0.00# 0.00# 0.00# 0.00#

Box resting trap outdoor 0.05 (0.04, 0.06)a 0.00# 0.11 (0.10, 0.13)b 0.59 (0.18, 1.96)c

Catch rate (relative to HLC indoor) and 95% confidence interval were calculated using negative binomial regression models. Within each district (column), trap
catch rates statistically different from HLC indoor (p < 0.05) are indicated in bold. Across each trap type (row), different letters denote relative capture rates varying
significantly (p < 0.05) between districts. All houses in Rachuonyo District were covered by two rounds of indoor residual spraying (IRS) using pyrethroid
insecticides in July/August 2008 and April/May 2009. IRS was not conducted in Rarieda, Kisumu West, or Nyando districts.
* Reference collection method within each district.
# Trap types that captured zero females were excluded from the model for that district.
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Due to the small number of blood fed An. funestus
collected, the effect of trapping method on abdominal
status was examined only for An. gambiae s.l. Almost a
fifth of the An. gambiae s.l. captured by HLC indoor had
recently taken a blood meal (Table 3), a proportion
similar to that of HLC outdoor, ITT, and WET. Higher
proportions of fed females were caught in resting traps,
although the odds ratio for PRT indoor was not statistically
different from HLC indoor due to small sample size
(Table 3). Compared to HLC indoor, CDC-LT captured a
significantly lower proportion of fed An. gambiae s.l.
Compared to Rarieda, the proportion of fed females was
lower in Kisumu West (OR = 0.37, p-value < 0.001), but
higher in Nyando (OR = 6.07, p-value < 0.001) and
Rachuonyo (OR = 6.46, p-value < 0.001).

Discussion
All available mosquito collection methods suffer from
some kind of bias or shortcoming [6,40] and there is no
consensus regarding which techniques should be applied
Table 3 Effect of trapping method on the proportion of fed A

Trapping method Percentage of females fed

HLC indoor 18.8 (39/208)

HLC outdoor 17.2 (31/180)

CDC light trap 5.3 (12/225)

Ifakara Tent Trap 17.8 (38/213)

Window exit trap 27.4 (32/117)

Pot resting trap indoor 62.5 (5/8)

Pot resting trap outdoor 81.3 (39/48)

Box resting trap indoor 0

Box resting trap outdoor 69.2 (9/13)

Data were combined across all districts. Odds ratios were calculated using logistic r
indoor (p < 0.05).
* Reference collection method.
in which settings [2]. As a result, lack of consistent
methodology greatly limits the ability to quantitatively
compare EIRs between populations, or even within a
population over time [2,40]. Numerous researchers have
attempted to calibrate mosquito trapping techniques
against the gold standard of HLC [10,18,40-42], but
these studies employ varying designs and typically focus
on site-specific results rather than facilitating comparisons
of trap efficacy between sites [2,15]. With the aim of
contributing to a standardized evaluation of mosquito
trapping techniques across multiple countries, relative
Anopheles catch rates from six collection methods were
compared using a study design that has also been tested
in Tanzania [17] and Zambia [15].
For the purpose of estimating Anopheles biting rates in

western Kenya, trapping methods specifically targeting
host-seeking mosquitoes (i e, CDC-LT and ITT) were the
most effective. A high catch rate for CDC-LT is consistent
with numerous reports from regions throughout Africa
[10-14,24,43], including the recent trap evaluation in
nopheles gambiae s.l. captured

OR (95% CI) p-value

1.00* NA

0.71 (0.38, 1.31) 0.274

0.38 (0.16, 0.88) 0.024

0.73 (0.37, 1.42) 0.355

2.09 (0.68, 6.44) 0.198

2.67 (0.18, 40.53) 0.479

7.21 (1.65, 31.60) 0.009

NA NA

6.54 (2.27, 18.83) <0.001

egression and are indicated in bold if statistically different from HLC
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Zambia employing a similar Latin Square design [15].
In contrast, the parallel trap evaluation in Tanzania
demonstrated low capture rates for CDC-LT in urban
Dar es Salaam, an area with many competing light sources
[17]. Other researchers have cautioned that light traps
may lack sensitivity in areas where mosquito or human
populations are particularly sparse [16,18]. Thus, while
CDC-LT efficacy is generally expected to be quite high,
caution should be used when extrapolating vector biting
rates in certain areas that are very well-lit or have
unusually low densities of humans or mosquitoes.
Consistent with results from the recent Tanzanian [17]

and Zambian [15] evaluations, ITT was highly effective
for collecting malaria vectors in western Kenya. A concern
was raised, however, that nearly 18% of females caught by
ITT had recently fed, a considerably higher percentage
than those caught by CDC-LT (which prevents exposure
to bites), but a similar percentage to those caught by
HLC (which necessitates exposure to mosquito bites).
One explanation could be that the ITT C-design did not
entirely protect the collector from mosquito bites. In
contrast, an ITT evaluation in Tanzania showed that
when unfed mosquitoes were released into a semi-field
enclosure, all females caught by the ITT C-design
remained unfed (i e, females were unable to feed on the
collector) [22]. Thus, another explanation could be that
already engorged females were trapped by the ITT while
attempting to rest or feed again. Further investigation,
including analysis of blood meal sources, will be required
to address this question definitively.
Although WETs did not specifically target host-seeking

females, these traps performed moderately well in western
Kenya with pooled relative catch rates of 52% for An.
gambiae s.l and 49% for An. funestus. In contrast, both the
Tanzanian and Zambian evaluations reported very low
WET catch rates compared with HLCs (1% for An.
gambiae s.l in Tanzania [17] and 3% for An. funestus in
Zambia [15]), which the authors attributed to houses
having open eaves and numerous points for entry and exit.
Houses in western Kenya similarly had open eaves, leaving
no clear explanation for the discrepancy between results
from the present study and those from Tanzania and
Zambia. It is plausible that the houses in western Kenya
had narrower gaps between the roof and the walls or
fewer windows to serve as alternate exits (only one WET
was used per house). By fitting experimental huts in
Tanzania with net baffles to allow entry but prevent escape
of mosquitoes via eaves, Okumu et al. [44] were able to
collect similar numbers of mosquitoes in WETs compared
to CDC-LTs, suggesting that WETs can be very effective
if household exits are limited. Another possibility is that
different lighting or wind conditions may affect exit behav-
iour and WET capture rates. More detailed evaluations of
WETs in different types of houses and environmental
settings will be necessary for understanding when and
where use of WET is reliable.
Resting traps, which primarily capture fed females

seeking a secluded place to digest, yielded very few
malaria vectors in western Kenya, a pattern also observed
in Tanzania [17] and Zambia [15]. A potential explanation
is that competing resting sites were plentiful enough
indoors (e g, walls, clothing, furniture, etc.) and outdoors
(e g, roof, vegetation, etc.) that only small numbers of
mosquitoes entered the resting traps. While the absolute
numbers of females caught in resting traps were low, the
odds ratios for catching fed females in outdoor PRTs and
BRTs were six to seven times greater compared to HLC.
Thus, resting traps present a trade-off; they are practical
for sampling engorged females to study feeding behaviour,
host selection, etc. [20], but the numbers caught do not
represent quantitative estimates of vector biting density.
Even if resting traps accounted for a larger proportion
of available resting sites, these traps would likely catch
substantially fewer adult Anopheles compared to techniques
that actively lure host-seeking females [45]. In areas
dominated by exophilic vectors, however, one exception
might be a novel barrier screen that could be erected
between hosts and resting sites (if flight paths can be
identified) to collect fed females on one side and host-
seeking females on the other side [46].
Wide variation in the relative catch rate of each trapping

method was observed between the four districts. Variability
in trap performance was likely driven by district-specific
differences in ecology, vector species composition, host
availability, and/or history of malaria interventions. For
example, ITT efficacy is known to decline with increasing
vector density [47] and the lowest relative capture rate for
ITT was observed in Rarieda, the district with the highest
mosquito density. Interestingly, even the relative catch
rates for indoor vs outdoor HLC differed between
districts. Significantly more An. gambiae s.l were caught
by indoor HLC compared to outdoor HLC in Rarieda, but
this pattern was reversed in Rachuonyo, suggesting that
outdoor biting was more prevalent in Rachuonyo. This
disparity could be due to recent IRS activity (in addition
to high bed net coverage) in Rachuonyo selecting for more
outdoor feeding compared to Rarieda, where IRS was not
conducted. Widespread use of indoor insecticide-based
interventions has been correlated with increased exophilic
and exophagic behaviour in residual mosquito populations
in Tanzania [48], the Solomon Islands [49], and Equatorial
Guinea [50]. Detailed analyses of biting location and biting
time will be carried out to address whether vector control
interventions in western Kenya have promoted changes in
mosquito feeding behaviour, as well as the consequences
for malaria transmission.
An obvious limitation of this study was that not all

mosquito collection methods potentially suitable for
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operational vector surveillance could be tested. Knockdown
pyrethrum spray catches (PSCs) are effective for collecting
fed females resting indoors [6] and are commonly
conducted throughout Africa [51,52]. Due to issues of
insecticide persistence inside houses, however, PSCs
were not incorporated into the Latin Square study design.
Also promising are traps that employ novel synthetic
human odorant blends to attract host-seeking Anopheles
[53]. By utilizing a standardized a mixture of synthetic
odours instead of human bait, such traps may circumvent
problems due to differential skill or attractiveness of
collectors. The relative attractiveness of odour-baited traps
appears to vary with proximity to humans [53], however,
and further field testing is required to identify settings
appropriate for using these traps.
Despite high overall catch rates in this study for certain

trap types (e g, CDC-LT, ITT, and to some extent WET),
variability at the district level made it impossible to calculate
any simple ‘calibration factor’ to convert trap catches into
HLC equivalents consistently across western Kenya. Such
variation in trapping efficacy is unavoidable as no method
is an exact substitute for HLC [6,10,18,40,42]. Even
the catch rate for HLC, the gold standard itself, is
not constant; HLC results are influenced by the skill
of collectors and their innate attractiveness to mosquitoes
[2,7,8]. For the practical purposes of large-scale vector
surveillance and operational estimation of EIRs, high overall
capture rate and scalability allowing for intensive sampling
are likely more important than perfect precision with
regard to HLC. Vector populations exhibit marked spatial
and temporal heterogeneity, sometimes spanning several
orders of magnitude [54-57], such that estimating local
population abundance is an inexact science. The challenge
of monitoring malaria transmission intensity entomologi-
cally is further compounded as vector density and sporozo-
ite infection prevalence decrease in response to successful
malaria interventions; mosquito population distribution
becomes even more sparse and patchy so that remaining
infected mosquitoes are harder to find [54]. This point
is well illustrated in western Kenya, where Anopheline
populations have declined dramatically since the late 1990’s
due to scale-up of ITNs [33]. As a result of sparse mosquito
populations, collectors in the present study were unable
to capture any infected females in KisumuWest, Nyando,
or Rachuonyo (leading to EIR estimates of zero in those
districts), despite timing collections to correspond with
peak seasonal mosquito density. Malaria transmission was
on-going in all four districts, indicating that these study
results underestimated the true risk of infection in at least
three districts.
Comparison of trap efficacy results (relative to HLC)

from western Kenya to those from Tanzania and Zambia
highlights the difficulty in estimating calibration factors
for even the most widely-used, well-standardized trapping
methods, such as the CDC-LT. One interpretation of
these findings is that calibration factors must be validated
before use in new geographic areas. Variability at very
fine spatial and temporal scales, however, suggests
that calibration factors may be inherently unreliable.
Inter-district variation was observed for nearly all trap
types tested in this small region of western Kenya.
Furthermore, even a series of three exercises to calibrate
CDC-LT against HLC within a single Tanzanian village
yielded quite different results over the span of two and a
half years [24,58]. Thus, rather than attempting to convert
all results to HLC equivalents, vector biologists may be
better served by employing consistent trapping methods
over time and detailing the specific method they used to
obtain EIR values. Concerns have been voiced regarding
whether EIRs calculated directly from alternative trap
methods are accurate with respect to ‘true’ EIRs from
HLCs. To achieve sufficient spatial and temporal resolution,
large-scale entomological surveillance programmes require
frequent sampling [59] with traps that are inexpensive
and easy to use with little or no expert supervision [15,17].
Because non-HLC trap methods afford greatly increased
sampling effort, these cost-effective tools may in fact
provide better indications of local malaria transmission.
Recent evaluation of a routine vector surveillance
programme in Tanzania using the ITT revealed that,
despite low ITT catch rates per night of trapping compared
to HLC, intensive and geographically extensive sampling
with ITT was far more accurate for predicting risk of
malaria parasite infection than the limited number of
quality-controlled HLC collections conducted over the
same period [47].
Conclusions
With respect to western Kenya, CDC-LT and ITT are
the most effective trapping alternatives to HLC for
large-scale operational vector sampling. If either method
is impractical, due to bulkiness of the trap (ITT) or lack
of electricity for recharging batteries (CDC-LT), WET
may be an adequate substitute in this context. More
broadly, these data suggest that traps actively targeting
host-seeking females at night (e g, CDC-LT and ITT)
will generally be the most useful for estimating vector
biting rates in sub-Saharan Africa, particularly in areas
with declining mosquito densities. Novel collection tools
such as barrier screens or odour-baited traps, however,
may be more appropriate in other regions where malaria
is transmitted predominantly outdoors or early in the
evening. Identifying which vector sampling methods are
effective and practical for large-scale application under
different epidemiological settings will require further
standardized evaluations of mosquito collection techniques
that permit cross-site comparisons.
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Additional file

Additional file 1: Relative rates for capturing female Culex spp.
stratified by district. Catch rate (relative to HLC indoor) and 95%
confidence interval were calculated using negative binomial regression
models. Within each district (column), trap catch rates statistically
different from HLC indoor (p < 0.05) are indicated in bold. Across each
trap type (row), different letters denote relative capture rates varying
significantly (p < 0.05) between districts.
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