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Abstract

Background: Malaria in pregnancy increases the risk of maternal anemia, abortion and low birth weight.
Approximately 85.3 million pregnancies occur annually in areas with Plasmodium falciparum transmission.
Pregnancy has been reported to alter the pharmacokinetic properties of many anti-malarial drugs. Reduced drug
exposure increases the risk of treatment failure. The objective of this study was to evaluate the population
pharmacokinetic properties of artemether and its active metabolite dihydroartemisinin in pregnant women with
uncomplicated P. falciparum malaria in Uganda.

Methods: Twenty-one women with uncomplicated P. falciparum malaria in the second and third trimesters of
pregnancy received the fixed oral combination of 80 mg artemether and 480 mg lumefantrine twice daily for three
days. Artemether and dihydroartemisinin plasma concentrations after the last dose administration were quantified
using liquid chromatography coupled to tandem mass-spectroscopy. A simultaneous drug-metabolite population
pharmacokinetic model for artemether and dihydroartemisinin was developed taking into account different
disposition, absorption, error and covariate models. A separate modeling approach and a non-compartmental
analysis (NCA) were also performed to enable a comparison with literature values and different modeling strategies.

Results: The treatment was well tolerated and there were no cases of recurrent malaria. A flexible absorption
model with sequential zero-order and transit-compartment absorption followed by a simultaneous
one-compartment disposition model for both artemether and dihydroartemisinin provided the best fit to the data.
Artemether and dihydroartemisinin exposure was lower than that reported in non-pregnant populations. An
approximately four-fold higher apparent volume of distribution for dihydroartemisinin was obtained by
non-compartmental analysis and separate modeling compared to that from simultaneous modeling of the drug
and metabolite. This highlights a potential pitfall when analyzing drug/metabolite data with traditional approaches.
(Continued on next page)
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Conclusion: The population pharmacokinetic properties of artemether and dihydroartemisinin, in pregnant women
with uncomplicated P. falciparum malaria in Uganda, were described satisfactorily by a simultaneous
drug-metabolite model without covariates. Concentrations of artemether and its metabolite dihydroartemisinin
were relatively low in pregnancy compared to literature data. However, this should be interpreted with caution
considered the limited literature available. Further studies in larger series are urgently needed for this vulnerable

group.
Keywords: Non-linear mixed effects modeling, Pharmacokinetics, Artemether, Dihydroartemisinin, Pregnancy,
Malaria
Background cure rates were reported for pregnant women (n=124)

Malaria is a major cause of morbidity and mortality in
pregnancy [1]. An estimated 85.3 million pregnancies
occurred in 2007 in areas with Plasmodium falciparum
transmission [2]. The susceptibility to malaria is
increased during pregnancy as a result of immunological
and hormonal changes [3,4]. P. falciparum malaria in
pregnancy is associated with increased anaemia and a
higher risk of severe malaria and death compared to a
non-pregnant adult population [5]. Parasitized erythro-
cytes accumulate in the placenta [3,6,7]. Malaria reduces
birth weight through intrauterine growth retardation
and preterm delivery [8].

Pregnancy has been reported to alter the pharmacoki-
netic properties of many anti-malarial drugs. Lower drug
exposure in pregnant women has previously been
reported for artemether/dihydroartemisinin [9], artesu-
nate/dihydroartemisinin [10], dihydroartemisinin [11],
lumefantrine [12], atovaquone [13], proguanil [13], sul-
phadoxine [14] and pyrimethamine [15]. This may in-
crease the risk of treatment failure, particularly when
immune responses to malaria are suppressed during
pregnancy. In contrast some studies show similar (e g,
pyrimethamine, amodiaquine and desethylamodiaquine)
or higher (e g, pyrimethamine, sulphadoxine and meflo-
quine) anti-malarial drug exposure in pregnant women
compared to the non-pregnant adult patient population
[14-20]. Different pharmacokinetic analytical methodolo-
gies, such as non-compartmental analysis (NCA), separ-
ate and simultaneous population pharmacokinetic
analysis, have been employed which further complicates
the interpretation. Comparison of parameter estimates
obtained with different methodologies should be per-
formed with caution.

Artemisinin-based combination therapy (ACT) is
recommended as first-line treatment by the World
Health Organization (WHO) for uncomplicated P. fal-
ciparum malaria [1]. The fixed oral combination of arte-
mether and lumefantrine is one of the most widely used
ACTs and gives high cure rates (>95%) and good toler-
ability in children and adults with uncomplicated P. fal-
ciparum malaria [21-23]. However, unacceptably low

on the north-west border of Thailand (PCR-corrected
cure rate of 82.0% (95% CI. 74.8-89.3) at delivery or day
42 if later) with a standard fixed combination explained
by low drug concentrations in late pregnancy [12,24].
On the other hand, high efficacy (PCR-corrected cure
rate of 98.2% (95% CI. 93.5-99.7) at delivery or day 42 if
later) was reported in pregnant women in Uganda
(n=152) when treated with a standard regimen of arte-
mether and lumefantrine [25]. Transmission, and there-
fore immunity, is substantially higher in Uganda than in
Thailand, but pharmacokinetic differences may also con-
tribute to these findings.

The objective of this study was to characterize the
population pharmacokinetic properties of artemether
and its metabolite dihydroartemisinin in pregnant
women with uncomplicated P. falciparum malaria in
Uganda.

Methods

Study design

This pharmacokinetic study was nested into a larger effi-
cacy study conducted in the Mbarara National Referral
Hospital (MNRH) antenatal clinic (ANC) in Uganda.
Full clinical details are reported elsewhere [25]. Ethical
approval was obtained from the Mbarara University Fac-
ulty of Medicine Research and Ethics Committee, the
Mbarara University Institutional Ethics Committee, the
Uganda National Council for Science and Technology
(ethics committee) and the de Protection des Personnes
de St. Germain en Laye, lle de France XI. The trial was
registered at ClinicalTrials.gov (NCT00495508). The
patients were recruited from March to September 2008.
Inclusion criteria were P. falciparum mixed- or mono-
infection (detected by microscopy), residence in the
Mbarara municipality (radius 15 km from MNRH) and
an estimated gestation age (EGA) of at least 13 weeks.
Exclusion criteria were P. falciparum parasitaemia above
250,000 parasite/pL, severe anaemia (Hb <7 g/dL), signs
or symptoms of severe malaria requiring parental treat-
ment, known allergy to artemisinin derivates, lumefan-
trine or quinine, previous participation in the efficacy
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study or inability to comply with the specified follow-up
schedule. Patients were enrolled if they fulfilled all of the
inclusion criteria, none of the exclusion criteria, and if
written informed consent was obtained. The presented
population pharmacokinetic analysis was conducted
using the dense artemether/dihydroartemisinin samples.

Dose regimen and blood samples

Four tablets of the fixed oral combination of artemether
and lumefantrine (Coartem® Novartis Pharma AG, Basel,
Switzerland; each tablet contained 20 mg artemether and
120 mg lumefantrine) were administered twice daily for
three days (0, 8, 24, 36, 48 and 60 hours) with 200 mL of
milk tea at each dose to optimize the oral bio-availability
of lumefantrine [26]. A full replacement dose was given if
the dose was vomited within 30 min and a half replace-
ment dose was given if the dose was vomited between
30 min and one hour. The patient was withdrawn from
the study and treated with rescue treatment if the replace-
ment dose was vomited again within 30 min. Venous
blood samples (2 mL) were drawn from a cannula into
heparinized tubes at 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2,
2.5,3,4, 6,8, and 10 hours after the last dose.

Drug analysis

Blood samples were centrifuged at 1,400 g for 5 min and
plasma was stored at -70°C until analysis. Plasma sam-
ples were shipped on dry ice to MORU Clinical Pharma-
cology Laboratory, Bangkok, Thailand for drug
quantification. Quantification of artemether and dihy-
droartemisinin was performed by a previously published
method [27]. Artemether and dihydroartemisinin and
their stable isotope labeled internal standards were
extracted from plasma using solid phase extraction
(HLB u-elution SPE 96-well plate, Waters, USA) sepa-
rated and quantified by liquid chromatography (Agilent
1200 system, Agilent Technologies, USA) coupled to
positive electro spray tandem mass spectroscopy (API
5000 triple quadrupole, Applied Bios stems/MDS SCIEX,
USA). To ensure precision and accuracy during quantifi-
cation, triplicates of quality control samples at three
concentrations; 3.46 ng/ml, 36.0 ng/ml and 375 ng/ml
for both artemether and dihydroartemisinin were ana-
lyzed with every batch. The overall accuracy (i e, relative
standard deviation) was less than 5.4%. The limit of de-
tection (LOD) was set to 0.5 ng/mL and the lower limit
of quantification (LLOQ) was set to 1.43 ng/mL for both
compounds. The MORU laboratory is a participant in
the QA/QC programmed supported by the Worldwide
Antimalarial resistance Network (WWARN).

Compartmental analysis
Artemether and dihydroartemisinin dose and plasma con-
centrations were converted into molar units and modeled
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as the natural logarithm of the molar plasma concentra-
tions. Modeling and simulation was performed on a Win-
dows XP operating system (Microsoft Corporation,
Seattle, WA, USA) with a G95 Fortran compiler (Free
Software Foundation, Boston, MA, USA) using NON-
MEM v.7.1 (ICON Development Solutions, Ellicott City,
MD, USA). ADVAN5, TRANSI and the first order condi-
tional estimation method with interaction was used during
model building [28]. Post-processing and automation was
performed using Pearl-Speaks-NONMEM (PsN) v. 3.2.12
[29,30], Census v. 1.2b2 [31], Xpose v. 4 [32] and R v.
2.10.1 (The R Foundation for Statistical Computing).

The objective function value (OFV) computed as
minus twice the log likelihood of the data, physiological
plausibility and goodness-of-fit diagnostics were used to
evaluate competing models during the model building
process. A reduction in OFV of 3.84 or more was con-
sidered a significant (p=0.05) improvement after the
introduction of one new parameter (one degree of
freedom).

Pharmacokinetic properties of artemether and dihy-
droartemisinin were modeled both separately and simul-
taneously using a one-compartment disposition model
with first-order absorption and elimination for both arte-
mether and dihydroartemisinin. Complete conversion of
artemether into dihydroartemisinin was assumed for all
modeling approaches [33,34]. The population pharmaco-
kinetic models were parameterized using a first-order
absorption rate constant (ka), artemether elimination
clearance (CLarnM/F), apparent artemether volume of
distribution (Varm/F), dihydroartemisinin elimination
clearance (CLppa/F), and apparent dihydroartemisinin
volume of distribution (Vpya/F). Inter-individual vari-
ability (IIV) was implemented exponentially for all
parameters.

The simultaneous population pharmacokinetic base
model was optimized further in order to describe accur-
ately the pharmacokinetic properties of artemether and
dihydroartemisinin. The implementation of relative bio-
availability was investigated followed by addition of one
and two peripheral distribution compartments for both
artemether and dihydroartemisinin. Enterohepatic recir-
culation of artemether was evaluated by applying a model
event time (MPAST) to the rate constant from a periph-
eral compartment to the central compartment. This gen-
erated continuous flow from the central compartment to
a hypothetical biliary compartment and a time-dependent
backflow to the gut compartment mimicking the entero-
hepatic circulation. A semi-mechanistic liver model struc-
ture described by Gordi et al was also applied to the data
in order to describe partial pre-systemic conversion of
artemether into dihydroartemisinin [35].

Several absorption models were evaluated in combin-
ation with the most appropriate body structure; first-
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order, parallel first-order, zero-order, parallel first- and
zero-order and zero order absorption followed by first-
order absorption with and without lag-time. An alter-
native way to describe partial pre-systemic conversion
of artemether into dihydroartemisinin was also consid-
ered by an estimated ratio of dual first order absorption
of artemether and dihydroartemisinin. A transit-
compartment absorption model with an individually
estimated number of transit compartments was tried
and compared to a less flexible transit-compartment
absorption model where the number of transit-
compartments (1-10) was evaluated and fixed for the
population. A semi-mechanistic transit-compartment
absorption model was also evaluated combining zero-
order dissolution of the drug before drug absorption
via a fixed number of transit compartments. A correl-
ation matrix of more than 50% between variability
components was considered as a significant contribu-
tion. Additive, proportional and intercept-slope error
models were evaluated to explain residual random vari-
ability of artemether and dihydroartemisinin. Separate
and combined error models for artemether and dihy-
droartemisinin were evaluated.

Different methodologies to avoid bias in parameter esti-
mates caused by multiple samples being below the limit of
quantification (BLOQ) were evaluated [36-38]. BLOQ data
were imputed by a fixed concentration at LLOQ/2 or
modeled as censored data using the M3 method [36-38] in
combination with Laplacian estimation.

All covariates (Table 1) were screened by adding
them individually on each of the pharmacokinetic
parameters in the model using a linear and an expo-
nential relationship. Significant covariates (p<0.05,
AOFV >3.84) that were considered physiologically
plausible were evaluated through forward addition and
backward elimination covariate selection (SCM,
[29,39]). A p-value of 0.05 was used in the forward step
and a p-value of 0.01 (AOFV >6.63) was considered
significant for retaining a covariate in the model during
the backward elimination. Body weight was also evalu-
ated as an allometric function on all clearance and vol-
ume parameters. A model with estimated age of
gestation as a covariate on CLarm, Varms CLpHas
Vpha, and MTT in a linear relationship was evaluated
for a full-covariate model approach.

Eta and epsilon shrinkage was calculated to assess the
reliability of individual parameter estimates and good-
ness-of-fit diagnostics [40]. A non-parametric bootstrap
of 1,000 datasets was performed in order to calculate
non-parametric confidence intervals. The predictive
power of the model was examined by visual and numer-
ical predictive checks, using 2,000 simulations of each
individual plasma concentration series [41]. The 95%
confidence intervals of the simulated 5%, 50™ and 95™
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Table 1 Demographic information of the study
population

Mean £ S.D.  Median (range)
Number of patients 21
Total artemether dose (mg/kg) 846+ 122 8.73 [5.46-9.80]
Total number of samples 316
Sample size (samples/patient) 15.0+0.805 15 [12-16]
covariates
Body weight (kg) 58.1+10.1 55 [49-88]
Age (years) 214+428 21 [16-35]
Gestational age (weeks) 258+7.77 27 [13-36]
Haemoglobin (g/dL) 11.1+£1.72 11.3 [7.6-14.6]
Red blood cell count (10° cells/ 37440629 3.71(237-4.79)
cmm)
Haematocrit (%) 337+5.14 34.0 (23.2-44.5)
Neutrophils (counts/uL) 273403802 2.75 (1.14-4.13)
Eosinophils (counts/ul) 0.130+0.148 0.0700 [0.0200-

0.570]
Basophils (counts/uL) 0.0280+0.0140 0.0200 [0.0100-
0.0600]

Lymphocytes (counts/uL) 2.08+0.667 1.98 [1.12-351]
Monocytes (counts/uL) 0.590+0214 0550 [0.260-1.00]
Platelets (10%/cmm) 166620 167 [64-285)
Alanine aminotransferase 16.1+£6.77 14.0 [5.00-35.0]
(UL
Creatinine (mg/dl) 0481+0.103 0.470 [0.330-0.660]
Bilirubin (mg/dl) 124£1.10 0.910 [0.560-5.53]
Diastolic blood pressure (mmHg)  60.1+6.20 60.0 [46.0-75.0]
Temperature (°C) 36.8+0.747 36.7 [36.0-38.5]
P. falciparum parasitaemia 10900432000 1570 [88.0-148000]

(parasites/ul)

percentile were overlaid with the 5%, 50" and 95 per-
centile of the observed data.

Non-compartmental analysis

Individual concentration-time data were analyzed with
NCA using WinNonlin v. 5.3 (Pharsight Corporation,
California, USA). Complete in vivo conversion of arte-
mether into dihydroartemisinin was assumed [42]. The
dose of dihydroartemisinin was calculated using the rela-
tive difference in molecular weight of artemether and
dihydroartemisinin [dosegihydroartemisinin = dOS€artemether X
(deihydroartemisinin: 284.3 g/ mOl)/ (Mwartemether: 298.4 g/
mol)]. Total exposure up to the last measured concentra-
tion (AUCy1ast) Was calculated using the linear trapez-
oidal method for ascending concentrations and the
logarithmic trapezoidal method for descending concentra-
tions. Extrapolation from the last observed concentration
was performed using Cpast/Az for each individual subject.
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A log-linear regression was used to estimate the terminal
elimination half-life using the observed concentrations in
the terminal elimination phase. Maximum concentration
(Cmax) and time to Cyax (Tymax) were taken directly
from the observed data. Standard procedures in WinNon-
lin were used to compute the individual values for appar-
ent volume of distribution (V;/F) and oral elimination
clearance (CL/F).

Pharmacokinetic parameter estimates from the NCA
and separate modeling were compared to that produced
by a simultaneous modeling strategy. Small but system-
atic differences in individual parameter estimates might
result in significant differences between methodologies,
when using paired tests, but will be of no clinical rele-
vance. A student t-test was therefore used to compare
logarithmically transformed parameter estimates between
two methodologies. ANOVA with regression analysis was
performed to compare logarithmically transformed par-
ameter estimates between more than two methodologies.

Results

Demographic information

Twenty-one (21) pregnant women in their second and
third trimesters from Uganda were enrolled in the study
(Table 1). The treatment was well tolerated and no cases
of vomiting or recurrent malaria infections were recorded.

Pharmacokinetic analysis

Compartmental analysis of artemether and
dihydroartemisinin

A zero-order absorption followed by transit compartment
absorption described the artemether and dihydroartemisi-
nin absorption better than all other absorption models
(AOFV > -71). The administered drug disintegrates in the
gut, resulting in a continuous drug supply, described by a
zero-order process followed by transit absorption of drug
into the systemic circulation. Six transit compartments
were sufficient to describe the data. Other absorption
models were not better and/or produced unreliable par-
ameter estimates (RSE>50%). The implementation of a
pre-systemic artemether elimination pathway in the model
(AOFV =-12.5) was only possible in combination with a
two-compartment disposition of artemether and the M3
method, but this resulted in an unrealistic artemether
elimination half-life of 48.8 h [46.7-53.1] so this model
structure was not considered as superior.

A simultaneous one-compartment drug-metabolite
model best described the disposition pharmacokinetics
of artemether and dihydroartemisinin. Goodness-of-fit
diagnostics of the final model showed an adequate
description of observed data (Figure 1). The under-
prediction of low artemether and dihydroartemisinin
concentrations is a direct consequence of a high propor-
tion of data below the LLOQ. The goodness-of-fit
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diagnostics in the present study (Figure 1) suggested that
a two-compartment disposition model for dihydroarte-
misinin might be a better description of the data but the
addition of a peripheral compartment for dihydroartemi-
sinin did not improve the model fit (AOFV =0.003). An-
other study in children (one to 10 years old) with
uncomplicated P. falciparum malaria in Tanzania was best
described by a simultaneous artemether-dihydroartemisinin
model consisting of two- and one-disposition compart-
ments for artemether and dihydroartemisinin, respectively
[33]. The addition of a peripheral compartment for arte-
mether improved the model fit (AOFV =-14.8) but could
not be retained due to a combination of poor precision
(RSE >30%) in additional parameters and misspecification
of censored data. Implementation of the M3 method solved
the misspecification of censored data but poor parameter
precision (RSE>30%) remained. Incorporation of inter-
individual variability in the relative bioavailability signifi-
cantly improved the model fit (AOFV =-133) due to vari-
able absorption of artemether.

A combined additive error model for both the drug
and the metabolite was sufficient to describe the random
residual variability in the data. This is not unexpected
since artemether and dihydroartemisinin plasma samples
were obtained from the same blood sample and concen-
trations were quantified using a simultaneous bioanalyti-
cal method.

In the final model, the absorption rate constant was
set to be identical to the rate constant between transit
compartments because of the poor precision of the ab-
sorption rate constant (RSE >50%). IIV for the distribu-
tion volume of artemether and dihydroartemisinin were
fixed to zero because of poor precision (RSE >50%). In-
corporation of relative bioavailability should theoretically
decorrelate pharmacokinetic parameters (i e, clearance
and volume parameters) within a patient. As expected,
variability components between these parameters were
not correlated (<50% correlation) in the final model.

The relatively short half-life of artemether and dihy-
droartemisinin can cause a bias in parameter estimates be-
cause a large proportion of concentration measurements
below the LLOQ (i.e. 14.9% and 47.6% of artemether and
13.7% and 33.3% of dihydroartemisinin samples were
below the LLOQ in total and at 10 hours after dose, re-
spectively). Coding BLOQ data as missing data performed
well with no trends of over- or under-predicting BLOQ
data (Figure 2). Incorporation of the M3 method or im-
puting BLOQ data with LLOQ/2 resulted only in minor
improvements in the visual diagnostics. The M3 and
LLOQ/2 approach resulted in much higher condition
numbers compared to the conventional method of coding
BLOQ data as missing data, which implies that these
models are less robust. BLOQ data were therefore coded
as missing data in the final model.
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There were no statistically significant covariates in this
study. Artemether is predominantly metabolized by
cytochrome 3A4 [43] and dihydroartemisinin by UGT
1A9 and UGT 2B7 [44]. Both the hepatic and intestinal
CYP 3A4 activities have been reported to be induced
during pregnancy compared with post-partum women
[45,46]. Between the second and third trimester of preg-
nancy no difference in CYP 3A4 activity has been
observed [45]. This might explain why no covariate ef-
fect of estimated age of gestation could be found on
artemether elimination clearance in this study. DHA is
eliminated via glucuronidation and limited evidence sug-
gests higher UGT 1A9 and UGT2B7 activities at the
time of delivery compared with non-pregnant women
[47,48]. However, no covariate effect of estimated age of
gestation was found on dihydroartemisinin elimination
clearance either. This might indicate that there is no dif-
ference in UGT 1A9 and UGT2B7 activity between the
second and third trimester. As there was no non-pregnant
control group, pregnancy could not be evaluated as a cat-
egorical covariate in this study. A full covariate approach
was applied to enable a visual inspection of the estimated
age of gestation effect on CLaArm/E Varm/E CLpua/E
Vpua/F and MTT (Figure 3). The covariate effect was dis-
tributed with a certainty of 95% between -7.0% and 5.5%
change in parameter estimate per estimated age of gesta-
tion in weeks, confirming the absence of significant

covariate effects from estimated age of gestation in the
studied population.

The numerical predictive check of the final model
computed 1.11% (95% CL 0.74 to 11.11%) and 2.96%
(95% CI, 0.74-11.85%) of the observed artemether con-
centrations below and above the 90% prediction inter-
val, respectively. For dihydroartemisinin 0% and 0.37%
(95% CI. 0.37-12.45%) of observations were calculated
below and above the 90% prediction interval, respect-
ively. This indicated an over-prediction of the variabil-
ity from both the drug and the metabolite. This was a
result of problems with fitting the erratic absorption
phase and a relatively small study population (Figure 2).
No cases of vomiting were reported nor were there
other possible explanations for the observed absorption
characteristics such as concomitant therapy. Similar er-
ratic absorption profiles have been reported previously
in healthy volunteers [49] and similar over prediction
was reported in children with uncomplicated malaria
in Tanzania [33].

The central tendencies of the concentration-time pro-
files are predicted adequately and population parameter
estimates were robust but showed large inter-individual
variability as indicated by the predictive checks (Table 2
and Figure 2). All shrinkage estimates were below 20%
indicating the reliability of the individual parameter
estimates.
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clearance artemether (CLagw/F) from 250 bootstrap runs.

The impact of analysis methodologies

Due to the absence of a non-pregnant control group the
results had to be compared to literature. The majority of
the pharmacokinetic evaluations of artemether and dihy-
droartemisinin have been performed using NCA
[9,10,42]. The standard procedure of analyzing a metab-
olite is to adjust the input dose for the metabolite by the
relative difference in molecular weight between the par-
ent drug and the metabolite. The metabolite is then
assumed to be absorbed from the gut into the systemic
circulation. This is inaccurate since the drug in most
cases is absorbed as parent drug and then converted to
metabolite in vivo. The same assumption is made when
analyzing the data using a separate pharmacokinetic
drug and metabolite model. These approaches might re-
sult in non-physiological parameter estimates for the
metabolite when analyzing the data both with NCA or
separate modeling. A simultaneous pharmacokinetic
drug-metabolite model will therefore produce more ac-
curate and physiologically plausible parameter estimates
for both the drug and the metabolite.
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Table 2 Parameter estimates for the final simultaneous artemether and dihydroartemisinin model

Parameter Population estimate® 95% CI° 1IV[%CV]? 95% CI°
(% RSE)° (% RSE)®
CLarw/F (L/h1) 875 (18.7) 625-1280 28.0 (47.6) 12.0-37.8
Varw/F (L) 2160 (17.4) 1620-3100 - -
Clppa/F (L/hr) 468 (10.2) 387-588 904 (39.0) 40.5-126
Vora/F (L) 57.1 (20.1) 41.7-88.8 - -
MTT (hr) 0.274 (194) 0.174-0.378 75.2 (39.6) 414-121
DUR (hr) 0.687 (25.5) 0.380-1.14 151 (24.1) 90.6-209
F 1 (fixed) - 85.5 (24.8) 53.2-108
No. of transit compartments 6 (fixed) - - -
o 0.166 (6.87) 0.130-0.221 23.1 (51.7) 8.35-35.2

Post-hoc estimates parameters®
AUCs0n- (hrxng/mL)

Artemether Median (range)
111 (16.2-317)

329 (7.5-82.8)

1.16 (0.65-3.81)

Cmax (ng/mL)
Tmax (hn)

Dihydroartemisinin Median (range)
167 (55.3-437)
452 (14.1-114)
1.37 (0.82-3.89)

@Population mean values and inter-individual variability (IIV) estimated by NONMEM. IV is presented as 100* ((e

mean variance estimate_1)1/2

PThe relative standard error (RSE) is calculated as 100%(standard deviation/mean value) from 1,046 successful iterations of a non-parametric bootstrap. The 95%
confidence interval (95% Cl) is displayed as the 2.5 to 97.5 percentiles of the bootstrap estimates.

“Post-hoc estimates were calculated as the median and ranges of the empirical Bayes estimates.

CLr/F: elimination clearance of artemether, Vgpy/F: apparent volume of distribution of artemether, CLpy4/F: elimination clearance of dihydroartemisinin, Vppa/F;
apparent volume of distribution of dihydroartemisinin, MTT; mean transit time, DUR; duration of zero order-absorption and F; relative bioavailability. The additive
error (o) variance will essentially be exponential on artithmic scale data. AUC: total area under the plasma concentration-time curve after the last dose, Cyax:
maximum concentration after the last dose and Tyax: Time to maximum concentration.

The observed data were evaluated using NCA and a
first-order absorption model followed by a separate one-
compartment disposition model for artemether and
dihydroartemisinin. Parameter estimates from these
approaches were compared to the results obtained using
a simultaneous artemether-dihydroartemisinin one-com-
partment disposition model with first-order absorption
to assess the impact of the different pharmacokinetic
analysis methodologies. All tested methodologies described
the data reasonably well (Table 3). Significant differences

in apparent volume of distribution and absorption rate
constant were evident when comparing NCA/separate
modeling to simultaneous modeling (Table 3). The arte-
mether absorption rate constant was approximately two
times higher using simultaneous modeling compared to
separate modeling. The artemether apparent volume of
distribution obtained with separate modeling was approxi-
mately 25% and 50% lower compared to the estimates
obtained with NCA and simultaneous modeling, respect-
ively. The effect on the metabolite was even larger with an

Table 3 Summary of parameter estimates for a comparative analysis of different methodologies

Parameter Approach 1 Approach 2 Approach 3 P-value P-value P-value
Non compartmental Separate modelling Simultaneous modelling (1vs?2) (1vs3) (2 vs 3)
analysis Median [range] Median [range] Median [range]

Artemether

CL/F (L/hr) 753 [220-7381] 904 [375-2919] 858 [365-4593] 0.975 0.899 0972

V/F (L) 1750 [547-11045] 1293 [1279-1301] 2292 [951-4967] 0.002 0.826 0.013

Ka (hr') - 0392 [0.137-2.25] 0.878 [0.381-2.17] - - 0.008

AUCgon- st (hrx ng/ml) 98.5 [7.24-355] 86.4 [26.5-207] 91.1 [17.4-215] 0.989 0.999 0.983

Dihydroartemisinin

CL/F (L/hn) 381 [167-1364] 534 [220-1116] 496 [214-1199] 0311 0459 0910

V/F (L) 647 [374-4154] 691 [325-1699] 163 [97-200] 0.247 <0.001 <0.001

Ka (hr'") - 0472 [0472-0472] - - - -

AUCqon-Last (hrxng/ml) 196 [53.2-449] 140 [67.2-340] 150 [62.2-345] 0304 0502 0.930

CL/F: elimination clearance, V/F: apparent volume of distribution, Ka: absorption constant and AUCsp_14s7: total area under the plasma concentration-time curve
after the last dose to the last sample time. P-values were presented from an ANOVA test with regression analysis or a student t-test (comparing 2 groups) on log
transformed parameter estimates. Non-compartmental analysis (Approach 1), separate modelling (Approach 2) and simultaneous modelling (Approach 3) results.
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Table 4 A comparison of the artemether pharmacokinetic properties to literature values

Artemether
Parameter AUC (hrx ng/ Cuax (ng/mL/ Tuax (hr) Ty (hr) CL (L/hr/kg)
mL/mg dose) mg dose)
Pregnant women Final model (N=21) Median (range)® 1.34 0411 1.16 1.77 15.1
with uncomplicated (0.203-3.75) (0.0930-1.04) (0.653-3.81) (0.773-249)  (186)°
malaria NCA (N =21) Median (range) 121 (009-426) 0443 127 196 132
(0.0710-1.79) (0.500-4.00) (0.590-4.01) (3.21-130)
NCA in Thai pregnant Median (90% 0.820 0438 1.00 1.50 259
patients (N=13) [9] ranges) (0.131-3.50) (0.175-1.30) (0.500-2.00) (1.20-7.20) (6.00-162)
Non-pregnant patients  NCA in Thai patients ~ Mean + SD. 264+136 0.828+0.679 2.0 (1.00-8.00) 2.20£1.00 -
with uncomplicated (N=25) [52]
malaria NCA in Thai patients  Mean (range) 603 (321-1023) 112 (0.73-150) 2.0 (20-2.0) 26(1847) 327
(N=13) [54]
Healthy subjects NCA in Pakistani Median (range)  4.53 (1.60-830)  2.16 (0.678-4.54) 150 (0.500-3.00) 1.88 3.1
subjects (N=12) [42)¢ (1.24-4.00) (1.57-11.9)
NCA in Caucasian Mean + SD. 0.791 £0.906 0.343+£0.386 1.5 [1-4] 1.6 -
subjects (N=14) [53]
NCA in Caucasian Mean + SD. 0.350+0.300 0.190+0.130 1.60+0.800 0500+0.100 -

subjects (N=28) [50]°

“Median and ranges were derived from the empirical Bayes estimates.

PPopulation estimate (%RSE).

After a single dose of 300 mg artemether and four consecutive 100 mg artemether doses daily.

“After a single dose of artemether-lumefantrine (Co-Artem).

After five doses artemether mono-therapy.

AUC: area under the concentration-time curve, Cyax: maximum concentration, Tpax: time to maximum concentration and T;,: elimination half-life. AUC and Cyax
were normalized by artemether dose.

approximately four times lower estimated apparent vol-  This shows clearly that the volume of distribution estimate
ume of distribution for dihydroartemisinin using simultan-  is affected by the actual absorption model for dihydroarte-
eous modeling compared to the other two methodologies.  misinin. Therefore, different modeling approaches will lead

Table 5 A comparison of the dihydroartemisinin pharmacokinetic properties to literature values

Dihydroartemisinin

Parameter AUC (hrxng/mL/  Cyax (ng/mL/ Tyax (hr) Ty (hr) CL (L/hr/kg)
mg dose) mg dose)
Pregnant women Final model (N=21) Median (range)® 211 0.593 137 0.10 8.06
with uncomplicated (0.703-5.44) (0.185-1.50) (0.82-3.89)  (0.0150-0470) (105)°
malaria NCA (N=21) Median (range) 257 109 183 139 691
(0.698-5.89) (0.247-2.01) (0.520-4.00) (0.690-2.36) (2.29-23.1)
NCA in Thai pregnant  Median (90% ranges) 4.68 2.16 1.00 1.30 4.50
patients (N=13) [9] (0.391-7.67) (0.944-2.94) (0.500-2.00) (0.900-8.40) (2.80-5.40)
Non-pregnant patients NCA in Thai male Mean + SD. 792+340 269+134 2.00 1.60 +0.400 -
with uncomplicated patients (N=25) [52] (1.00-6.00)
malaria NCA in Thai Mean (range) 1.1 141 4 (2-4) 36 -
patients (N =13) [54]° (7.04-15.6) (0.871-2.12) (24-4.8)
Healthy subjects NCA in Pakistani Median (range) 397 1.60 1.50 1.78 3.70
subjects (N=12) [42]¢ (2.57-4.74) (0.704-2.56) (0.750-3.00) (1.34-2.20) (3.05-5.27)
NCA in Caucasian Mean + SD. 251+£122 0982+0547 15[1-4] 1.5+06 -
subjects (N=14) [53]
NCA in Caucasian Mean + S.D. 24240682 0818+0294 16+08 08+03 -

subjects (N=28) [50]°

“Median and ranges were derived from the empirical Bayes estimates.

PPopulation estimate (%RSE).

After a single dose of 300 mg artemether and four consecutive 100 mg artemether doses daily.

d After a single dose of artemether-lumefantrine (Co-Artem).

€After five doses artemether mono-theraphy.

AUC: area under the concentration-time curve, Cyax: maximum concentration, Tyax: time to maximum concentration and T;,,: elimination half-life. AUC and Cpyax
were normalized by dihydroartemisinin dose.
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to differences in the characterization of both the absorption
and the distribution phases for the drug and metabolite.
Although the approaches led to significant differences in
pharmacokinetic parameter estimates, this may have little
clinical relevance. Total exposure of both artemether and
dihydroartemisinin were not significantly different for the dif-
ferent approaches. A trend of lower dihydroartemisinin ex-
posure after separate and simultaneous modeling compared
to after NCA was observed. This phenomenon resulted from
difficulties with fitting the erratic absorption phase.

Comparison to literature

Data collected in this study did not allow investigation
of auto-induction since patients were sampled only after
the last dose. However, a 57% increase in elimination
clearance of artemether with each dose (auto-induction)
has been suggested in a previous publication [33] and
lower artemether exposures were found after multiple
dosing [50-53]. The elimination clearance in this study
was 4.9-fold higher than that in healthy Pakistani volun-
teers when sampled after a single dose administration
(15.1 L/hr/kg vs 3.11 L/h/kg). This could be a result
of auto-induction. However, the effect of a different sam-
pling scheme, pregnancy, ethnic differences and/or dis-
ease should also be considered [42].

Cyvaxs AUC, Tyax Ti» and CL results obtained by
NCA and simultaneous population pharmacokinetic drug
metabolite modeling were compared to literature NCA
results in Tables 4 and 5. The elimination half-life of arte-
mether (1.96 h) is longer compared to the elimination
half-life of dihydroartemisinin (1.39 h), which suggests for-
mation rate limited elimination of dihydroartemisinin.
Therefore, the elimination half-life of dihydroartemisinin
obtained with compartmental modeling did not reflect its
physiological value as a result of flip-flop kinetics. Conse-
quently, the NCA elimination half-life for dihydroartemisi-
nin was considered as the true value.

Estimated artemether and dihydroartemisinin exposure
in this African pregnant woman population was similar to
that reported in pregnant Thai patients [9]. Both the
present study and the previously published study in Thai
pregnant women [9] showed lower artemether exposures
but in a similar range compared to one Thai adult non-
pregnant patient population [52]. In contrast, exposures
were considerably lower compared to another Thai, adult,
non-pregnant patient population [54]. Dihydroartemisinin
exposures in both African and Thai pregnant women were
lower compared to the two Thai adult non-pregnant pa-
tient populations [52,54]. This might suggest a lower arte-
mether and dihydroartemisinin exposure in a pregnant
population compared to a non-pregnant patient popula-
tion. However, this comparison was based on only two
available reference populations with different ethnicity
[52,54]. Therefore, studies in larger series with non-
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pregnant control groups are urgently needed to further as-
sess the pharmacokinetics of artemether and dihydroarte-
misinin in pregnant women.

Conclusion

In conclusion, the population pharmacokinetic proper-
ties of artemether and its metabolite dihydroartemisinin
were well described by a simultaneous drug-metabolite
model in 21 pregnant women with uncomplicated P. fal-
ciparum malaria in Uganda. Total exposure of arte-
mether and dihydroartemisinin were somewhat lower in
these pregnant women compared to literature adult pa-
tient populations. However, these results should be
interpreted with caution since ethnicity might have an
impact on the pharmacokinetic properties of these
drugs. Further studies in larger series with both pregnant
and non-pregnant patients are urgently needed to study
the pharmacokinetics in this vulnerable group.

Competing interests

The Wellcome Trust is a UK-based medical research charity and is
independent of all drug companies. It has no financial links with the
manufacturers of either the diagnostic tests or the drugs used in this study.
The authors declared no conflict of interest.

Authors’ contributions

FN, MD, PG, SM, PP and ET planned and conducted the clinical study. NN, NL
performed the drug analysis and FK, JT conducted the pharmacokinetic
analysis. FK, JT drafted the manuscript. All authors reviewed the manuscript
critically for important intellectual content and approved the final version.

Acknowledgements

We sincerely thank the women for their cooperation in completing this
study. We thank the diligent staff from the Mbarara National Referral Hospital
(MNRH), Mbarara, Uganda. This study was an initiative of “Aid for poverty
related diseases in developing countries” and was co-financed by Médecins
Sans Frontiéres and the European Commission. This investigation was part of
the Wellcome Trust-Mahidol University-Oxford Tropical Medicine Research
Programmed, and the PKPDia collaboration, both supported by the
Wellcome Trust of Great Britain. The drug assays were supported by the
Malaria in Pregnancy (MIP) consortium, which is funded through a grant
from the Bill and Melinda Gates Foundation to the Liverpool School of
Tropical Medicine.

Author details

!Centre for Tropical Medicine, Nuffield Department of Clinical Medicine,
University of Oxford, Oxford, UK. “Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
3Epicentre, Paris, France. “Epicentre, Mbarara, Uganda. *Center for Vaccine
Development, University of Maryland School of Medicine, Baltimore, MD,
USA. ®Mbarara, University of Science & Technology, Mbarara, Uganda.
’Shoklo Malaria Research Unit, Mae Sot, Thailand.

Received: 25 June 2012 Accepted: 15 August 2012
Published: 22 August 2012

References

1. World Health Organization: World malaria report. 2011.

2. Dellicour S, Tatem AJ, Guerra CA, Snow RW, ter Kuile FO: Quantifying the
number of pregnancies at risk of malaria in 2007: a demographic study.
PLoS Med 2010, 7:21000221.

3. Rogerson SJ, Hviid L, Duffy PE, Leke RF, Taylor DW: Malaria in pregnancy:
pathogenesis and immunity. Lancet Infect Dis 2007, 7:105-117.

4. Douglas NM, Anstey NM, Angus BJ, Nosten F, Price RN: Artemisinin
combination therapy for vivax malaria. Lancet Infect Dis 2010, 10:405-416.

5. World Health Organization: Guidelines for the treatment of malaria. 2010.



Tarning et al. Malaria Journal 2012, 11:293
http://www.malariajournal.com/content/11/1/293

20.

21.

El Tahir KE, Al-Kharji AM, Ageel AM: Influence of diethylcarbamazine and
mefloquine on PGI2 synthesis by the rat thoracic aorta and myometrial
tissues. Gen Pharmacol 1991, 22:837-846.

Looareesuwan S, White NJ, Warrell DA, Forgo |, Dubach UG, Ranalder UB,
Schwartz DE: Studies of mefloquine bioavailability and kinetics using a
stable isotope technique: a comparison of Thai patients with falciparum
malaria and healthy Caucasian volunteers. B8r J Clin Pharmacol 1987,
24:37-42.

Vyas N, Avery BA, Avery MA, Wyandt CM: Carrier-mediated partitioning of
artemisinin into Plasmodium falciparum-infected erythrocytes. Antimicrob
Agents Chemother 2002, 46:105-109.

McGready R, Stepniewska K, Lindegardh N, Ashley EA, La Y, Singhasivanon
P, White NJ, Nosten F: The pharmacokinetics of artemether and
lumefantrine in pregnant women with uncomplicated falciparum
malaria. Eur J Clin Pharmacol 2006, 62:1021-1031.

McGready R, Stepniewska K, Ward SA, Cho T, Gilveray G, Looareesuwan S,
White NJ, Nosten F: Pharmacokinetics of dihydroartemisinin following
oral artesunate treatment of pregnant women with acute
uncomplicated falciparum malaria. Eur J Clin Pharmacol 2006, 62:367-371.
Tarning J, Rijken MJ, McGready R, Phyo AP, Hanpithakpong W, Day NP,
White NJ, Nosten F, Lindegardh N: Population pharmacokinetics of
dihydroartemisinin and piperaquine in pregnant and non-pregnant
women with uncomplicated malaria. Antimicrob Agents Chemother 2012,
56:1997-2007.

Tarning J, McGready R, Lindegardh N, Ashley EA, Pimanpanarak M,
Kamanikom B, Annerberg A, Day NP, Stepniewska K, Singhasivanon P, White
NJ, Nosten F: Population pharmacokinetics of lumefantrine in pregnant
women treated with artemether-lumefantrine for uncomplicated
Plasmodium falciparum malaria. Antimicrob Agents Chemother 2009,
53:3837-3846.

McGready R, Stepniewska K, Edstein MD, Cho T, Gilveray G, Looareesuwan S,
White NJ, Nosten F: The pharmacokinetics of atovaquone and proguanil
in pregnant women with acute falciparum malaria. Eur J Clin Pharmacol
2003, 59:545-552.

Nyunt MM, Adam |, Kayentao K, van Dijk J, Thuma P, Mauff K, Little F,
Cassam Y, Guirou E, Traore B, Doumbo O, Sullivan D, Smith P, Barnes Ki:
Pharmacokinetics of sulfadoxine and pyrimethamine in intermittent
preventive treatment of malaria in pregnancy. Clin Pharmacol Ther 2010,
87:226-234.

Karunajeewa HA, Salman S, Mueller |, Baiwog F, Gomorrai S, Law |, Page-
Sharp M, Rogerson S, Siba P, llett KF, Davis TM: Pharmacokinetic properties
of sulfadoxine-pyrimethamine in pregnant women. Antimicrob Agents
Chemother 2009, 53:4368-4376.

Green MD, van Eijk AM, van Ter Kuile FO, Ayisi JG, Parise ME, Kager PA,
Nahlen BL, Steketee R, Nettey H: Pharmacokinetics of sulfadoxine-
pyrimethamine in HIV-infected and uninfected pregnant women in
Western Kenya. J Infect Dis2007, 196:1403-1408.

Na Bangchang K, Davis TM, Looareesuwan S, White NJ, Bunnag D,
Karbwang J: Mefloquine pharmacokinetics in pregnant women with
acute falciparum malaria. Trans R Soc Trop Med Hyg1994, 88:321-323.

van Luin M, Van der Ende ME, Richter C, Visser M, Faraj D, Van der Ven A,
Gelinck L, Kroon F, Wit FW, Van Schaik RH, Kuks PF, Burger DM: Lower
atovaquone/proguanil concentrations in patients taking efavirenz,
lopinavir/ritonavir or atazanavir/ritonavir. AIDS 2010, 24:1223-1226.

Rijken MJ, McGready R, Phyo AP, Lindegardh N, Tarning J, Laochan N, Than
HH, Mu O, Win AK, Singhasivanon P, et al: Pharmacokinetics of
dihydroartemisinin and piperaquine in pregnant and non-pregnant
women with uncomplicated falciparum malaria. Antimicrob Agents
Chemother 2011, 55:5505-5506.

Tarning J, Chotsiri P, Jullien V, Rijken MJ, Bergstrand M, Cammas M,
McGready R, Singhasivanon P, Day NPJ, White NJ, et al- Population
pharmacokinetic and pharmacodynamic modeling of amodiaquine and
desethylamodiaquine in women with Plasmodium vivax malaria during
and after pregnancy. Antimicrob Agents Chemother 2012, In press.

Sagara |, Rulisa S, Mbacham W, Adam |, Sissoko K, Maiga H, Traore OB, Dara
N, Dicko YT, Dicko A, Djimdé A, Jansen FH, Doumbo OK: Efficacy and
safety of a fixed dose artesunate-sulphamethoxypyrazine-pyrimethamine
compared to artemether-lumefantrine for the treatment of
uncomplicated falciparum malaria across Africa: a randomized multi-
centre trial. Malar J 2009, 8:63.

22.

23.

24,

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Page 11 of 12

Abdulla S, Sagara I, Borrmann S, D'Alessandro U, Gonzalez R, Hamel M,
Ogutu B, Martensson A, Lyimo J, Maiga H, Sasi P, Nahum A, Bassat Q, Juma
E, Otieno L, Bjorkman A, Beck HP, Andriano K, Cousin M, Lefévre G, Ubben
D, Premji Z: Efficacy and safety of artemether-lumefantrine dispersible
tablets compared with crushed commercial tablets in African infants and
children with uncomplicated malaria: a randomised, single-blind,
multicentre trial. Lancet 2008, 372:1819-1827.

Hatz C, Soto J, Nothdurft HD, Zoller T, Weitzel T, Loutan L, Bricaire F, Gay F,
Burchard GD, Andriano K, Lefévre G, De Palacios PI, Genton B: Treatment of
acute uncomplicated falciparum malaria with artemether-lumefantrine
in nonimmune populations: a safety, efficacy, and pharmacokinetic
study. Am J Trop Med Hyg 2008, 78:241-247.

McGready R, Tan SO, Ashley EA, Pimanpanarak M, Viladpai-Nguen J,
Phaiphun L, Wustefeld K, Barends M, Laochan N, Keereecharoen L,
Lindegardh N, Singhasivanon P, White NJ, Nosten F: A randomised
controlled trial of artemether-lumefantrine versus artesunate for
uncomplicated plasmodium falciparum treatment in pregnancy. PLoS
Med 2008, 5:253.

Piola P, Nabasumba C, Turyakira E, Dhorda M, Lindegardh N, Nyehangane D,
Snounou G, Ashley EA, McGready R, Nosten F, Guerin PJ: Efficacy and
safety of artemether-lumefantrine compared with quinine in pregnant
women with uncomplicated Plasmodium falciparum malaria: an open-
label, randomised, non-inferiority trial. Lancet Infect Dis 2010, 10:762-769.
Ashley EA, Stepniewska K, Lindegardh N, Annerberg A, Kham A, Brockman
A, Singhasivanon P, White NJ, Nosten F: How much fat is necessary to
optimize lumefantrine oral bioavailability? Trop Med Int Health 2007,
12:195-200.

Hanpithakpong H, Kamanikom B, Singhasivanon P, White NJ, Day NPJ,
Lindegardh N: A liquid chromatographic-tandem mass spectrometric
method for determination of artemether and its metabolite
dihydroartemisinin in human plasma. Bioanalysis 2009, 1:37-46.

Beal SL, Boeckman AJ, Sheiner LB: NONMEM user's Guides. University of
California at San Francisco: NONMEM Project Group; 1992.

Lindbom L, Pihlgren P, Jonsson EN: PsN-Toolkit-a collection of computer
intensive statistical methods for non-linear mixed effect modeling using
NONMEM. Comput Methods Programs Biomed 2005, 79:241-257.

Lindbom L, Ribbing J, Jonsson EN: Perl-speaks-NONMEM (PsN)-a Perl
module for NONMEM related programming. Comput Methods Programs
Biomed 2004, 75:85-94.

Wilkins JJ: NONMEMory: a run management tool for NONMEM. Comput
Methods Programs Biomed 2005, 78:259-267.

Jonsson EN, Karlsson MO: Xpose-an S-PLUS based population
pharmacokinetic/pharmacodynamic model building aid for NONMEM.
Comput Methods Programs Biomed 1999, 58:51-64.

Hietala SF, Martensson A, Ngasala B, Dahlstrom S, Lindegardh N, Annerberg
A, Premji Z, Farnert A, Gil P, Bjorkman A, Ashton M: Population
pharmacokinetics and pharmacodynamics of artemether and
lumefantrine during combination treatment in children with
uncomplicated falciparum malaria in Tanzania. Antimicrob Agents
Chemother 2010, 54:4780-4788.

Salman S, Page-Sharp M, Griffin S, Kose K, Siba PM, llett KF, Mueller I, Davis
TM: Population pharmacokinetics of artemether, lumefantrine, and their
respective metabolites in Papua New Guinean children with
uncomplicated malaria. Antimicrob Agents Chemother 2011, 55:5306-5313.
Gordi T, Xie R, Huong NV, Huong DX, Karlsson MO, Ashton M: A
semiphysiological pharmacokinetic model for artemisinin in healthy
subjects incorporating autoinduction of metabolism and saturable first-
pass hepatic extraction. Br J Clin Pharmacol 2005, 59:189-198.

Ahn JE, Karlsson MO, Dunne A, Ludden TM: Likelihood based approaches
to handling data below the quantification limit using NONMEM VI. J
Pharmacokinet Pharmacodyn 2008, 35:401-421.

Beal SL: Ways to fit a PK model with some data below the quantification
limit. J Pharmacokinet Pharmacodyn 2001, 28:481-504.

Bergstrand M, Karlsson MO: Handling data below the limit of
quantification in mixed effect models. AAPS J 2009, 11:371-380.

Jonsson EN, Karlsson MO: Automated covariate model building within
NONMEM. Pharm Res 1998, 15:1463-1468.

Savic RM, Karlsson MO: Importance of shrinkage in empirical bayes
estimates for diagnostics: problems and solutions. AAPS J 2009,
11:558-569.



Tarning et al. Malaria Journal 2012, 11:293 Page 12 of 12
http://www.malariajournal.com/content/11/1/293

41, Bergstrand M, Hooker AC, Wallin JE, Karlsson MO: Prediction-corrected
visual predictive checks for diagnosing nonlinear mixed-effects models.
AAPS J 2011, 13:143-151.

42, Ali S, Najmi MH, Tarning J, Lindegardh N: Pharmacokinetics of artemether
and dihydroartemisinin in healthy Pakistani male volunteers treated with
artemether-lumefantrine. Malar J 2010, 9:275.

43. van Agtmael MA, Gupta V, van der Wosten TH, Rutten JP, van Boxtel CJ:
Grapefruit juice increases the bioavailability of artemether. Fur J Clin
Pharmacol 1999, 55:405-410.

44. llett KF, Ethell BT, Maggs JL, Davis TM, Batty KT, Burchell B, Binh TQ, le Thu
TA, Hung NC, Pirmohamed M, Park BK, Edwards G: Glucuronidation of
dihydroartemisinin in vivo and by human liver microsomes and
expressed UDP-glucuronosyltransferases. Drug Metab Dispos 2002,
30:1005-1012.

45. Tracy TS, Venkataramanan R, Glover DD, Caritis SN: Temporal changes in
drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during
pregnancy. Am J Obstet Gynecol 2005, 192:633-639.

46.  Pavek P, Ceckova M, Staud F: Variation of drug kinetics in pregnancy. Curr
Drug Metab 2009, 10:520-529.

47. Anderson GD: Using pharmacokinetics to predict the effects of
pregnancy and maternal-infant transfer of drugs during lactation. Expert
Opin Drug Metab Toxicol 2006, 2:947-960.

48.  Anderson GD: Pregnancy-induced changes in pharmacokinetics: a
mechanistic-based approach. Clin Pharmacokinet 2005, 44:989-1008.

49. van Agtmael MA, Van Der Graaf CA, Dien TK, Koopmans RP, van Boxtel CJ:
The contribution of the enzymes CYP2D6 and CYP2C19 in the
demethylation of artemether in healthy subjects. Eur J Drug Metab
Pharmacokinet 1998, 23:429-436.

50. van Agtmael MA, Gupta V, van der Graaf CA, van Boxtel CJ: The effect of
grapefruit juice on the time-dependent decline of artemether plasma
levels in healthy subjects. Clin Pharmacol Ther 1999, 66:408-414.

51. van Agtmael MA, Cheng-Qi S, Qing JX, Mull R, van Boxtel CJ: Multiple dose
pharmacokinetics of artemether in Chinese patients with uncomplicated
falciparum malaria. Int J Antimicrob Agents 1999, 12:151-158.

52. Lefevre G, Looareesuwan S, Treeprasertsuk S, Krudsood S, Silachamroon U,
Gathmann |, Mull R, Bakshi R: A clinical and pharmacokinetic trial of six
doses of artemether-lumefantrine for multidrug-resistant Plasmodium
falciparum malaria in Thailand. Am J Trop Med Hyg 2001, 64:247-256.

53. Lefevre G, Bindschedler M, Ezzet F, Schaeffer N, Meyer |, Thomsen MS:
Pharmacokinetic interaction trial between co-artemether and
mefloquine. Eur J Pharm Sci 2000, 10:141-151.

54.  Karbwang J, Na-Bangchang K, Congpuong K, Thanavibul A, Wattanakoon Y,
Molunto P: Pharmacokinetics of oral artemether in Thai patients with
uncomplicated falciparum malaria. Fundam Clin Pharmacol 1998,
12:242-244.

doi:10.1186/1475-2875-11-293

Cite this article as: Tarning et al: Population pharmacokinetics of
Artemether and dihydroartemisinin in pregnant women with
uncomplicated Plasmodium falciparum malaria in Uganda. Malaria
Journal 2012 11:293.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Study design
	Dose regimen and blood samples
	Drug analysis
	Compartmental analysis
	Non-compartmental analysis

	Results
	Demographic information
	Pharmacokinetic analysis
	Compartmental analysis of artemether and dihydroartemisinin
	The impact of analysis methodologies
	Comparison to literature


	Conclusion
	Competing interests
	Authors´ contributions
	Acknowledgements
	Author details
	References

