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Abstract

Background: Malaria caused by Plasmodium falciparum is one of the leading causes of human morbidity and mortality
from infectious diseases, predominantly in tropical and sub-tropical countries. As genetic variations in the toll-like
receptors (TLRs)-signalling pathway have been associated with either susceptibility or resistance to several infectious and
inflammatory diseases, the supposition is that single nucleotide polymorphisms (SNPs) of TLR2, TLR4, TLR9, Toll-interleukin
1 receptor domain containing adaptor protein (TIRAP) and FCGR2A could modulate malaria susceptibility and severity.

Methods: This study was planned to make a further contribution to solving the problem of the real role of the most
common polymorphisms of TLR4, TLR9, TIRAP and FCGR2A genes in modulating the risk of malaria and disease severity
in children from Burundi, Central Africa. All the paediatric patients aged six months to 10 years admitted to the hospital
of Kiremba, Burundi, between February 2011 and September 2011, for fever and suspicion of acute malaria were
screened for malaria parasitaemia by light microscopy of thick and thin blood smears. In children with malaria and in
uninfected controls enrolled during the study period in the same hospital, blood samples were obtained on filter paper
and TLR4 Asp299Gly rs4986790, TLR9 G1174A rs352139, T-1486 C rs187084 TLR9 T-1237 C rs5743836, TIRAP Ser180Leu
rs8177374 and the FCGR2A His131Arg rs1801274 polymorphisms were studied using an ABI PRISM 7900 HT Fast Real-
time instrument.

Results: A total of 602 patients and 337 controls were enrolled. Among the malaria cases, 553 (91.9 %) were considered
as suffering from uncomplicated and 49 (8.1 %) from severe malaria. TLR9 T1237C rs5743836CC was associated with an
increased risk of developing malaria (p = 0.03), although it was found with the same frequency in uncomplicated and
severe malaria cases. No other differences were found in all alleles studied and in genotype frequencies between malaria
cases and uninfected controls as well as between uncomplicated and severe malaria cases.

Conclusions: TLR9 T1237C seems to condition susceptibility to malaria in Burundian children but not its severity,
whereas none of the assessed SNPs of TLR4, TIRAP and FCGR2A seem to influence susceptibility to malaria and disease
severity in this population.
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Background
Malaria caused by Plasmodium falciparum is one of the
leading causes of human morbidity and mortality from
infectious diseases, predominantly in tropical and sub-
tropical countries [1]. However, manifestations of the P.
falciparum infection can vary significantly from patient
to patient, ranging from asymptomatic infection to se-
vere life-threatening disease [2]. Together with parasite
virulence phenotypes and level of parasitaemia, the
host’s immune response to the infectious agent has been
considered one of the most important conditioning fac-
tors of malaria susceptibility and severity, with the first
immune response to P. falciparum strictly related to the
activity of toll-like receptors (TLRs) [3]. TLRs are a
group of trans-membrane proteins, present in mono-
cytes, macrophages and dendritic cells that play a crucial
role in the innate immune system. This operates by dif-
ferentially recognizing pathogen-associated molecular
patterns through their extracellular receptor modules
and initiating inflammatory signalling pathways through
an intracellular domain [4]. Several studies have demon-
strated that TLR2, TLR4 and TLR9 are involved in the
recognition of P. falciparum ligands and that, when
encountering the parasite, they elicit a complex cascade
of signalling events. These culminate in trans-activation
of a repertoire of pro-inflammatory cytokines, such as
interferon (IFN)-γ, interleukin (IL)-12 and tumour ne-
crosis factor (TNF) that should favour the elimination of
the infectious agent [5-9]. However, it has been reported
that excessive serum levels of these pro-inflammatory
cytokines can be frequently found in most of the severe
malaria cases [10-14]. Consequently, because genetic
variations in the TLR- signalling pathway have been
associated with either susceptibility or resistance to sev-
eral infectious and inflammatory diseases, the suppos-
ition is that single nucleotide polymorphisms (SNPs) of
TLR2, TLR4 and TLR9 could modulate malaria suscepti-
bility and severity [15]. Moreover, because the Toll-
interleukin 1 receptor domain containing adaptor protein
(TIRAP) mediates downstream signalling of TLR2 and
TLR4 inducing pro-inflammatory response and a SNP of
this protein has been reported to diminish TLR2 signal-
ling [16], it has been considered possible that genetic var-
iations of TIRAP could modify host response to P.
falciparum infection. Finally, genetic variants of
FCGR2A, an immunoglobulin G receptor, could be asso-
ciated with an increased risk of malaria because of a sig-
nificant reduction in its binding capacity for IgG and C
reactive protein (CRP) and the consequent reduced
phagocytosis of IgG and CRP opsonized structures [17].
However, studies specifically planned to evaluate the im-
portance of genetics in conditioning susceptibility to and
clinical manifestations of malaria have reported conflict-
ing results for all these genetic variants [18-31].
This study was planned to make a further contribution
to solving the problem of the real role of the most com-
mon polymorphisms of TLR4, TLR9, TIRAP and
FCGR2A in modulating the risk of malaria and disease
severity. It was carried out in Burundi, a Central African
country where malaria is highly endemic perennially and
for which no data on relationships between genetics and
malaria are available at present.

Methods
Study population and recruitment
This study, approved by the Ethical Committee of the
Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Poli-
clinico, Milan, Italy, and the hospital of Kiremba, Burundi,
was carried out in the hospital of Kiremba, a small town
located in the district of Ngozi in the northern part of Bu-
rundi, between February 2011 and September 2011.
All the paediatric patients aged six months to 10 years

admitted to the hospital of Kiremba, Burundi, for fever and
suspicion of acute malaria were screened for malaria para-
sitaemia by light microscopy of thick and thin blood
smears, with two independent readers. If informed written
or verbal (in case of illiteracy) consent was obtained from a
parent or legal guardian, children for whom both readers
were positive for the presence of P. falciparum were en-
rolled and grouped according to disease severity in accord-
ance with World Health Organization criteria [32]. In
particular, uncomplicated malaria was diagnosed when chil-
dren had symptoms and signs of malaria (fever, chills,
vomiting, headache), P. falciparum on blood smear, and no
evidence of malaria complications. Severe malaria was diag-
nosed in presence of cerebral malaria [repeated seizures or
coma (Blantyre coma scale ≤2 or Glasgow coma scale ≤8)],
circulatory collapse, respiratory distress, or haemoglobin
level <5 g/dL. Otherwise healthy children seen in the hos-
pital during the study period for minor surgery with a simi-
lar sex and age distribution and without asymptomatic
parasitaemia according to the results of the screening with
thick and thin films were enrolled as uninfected controls.
Blood samples were obtained from all the children at en-

rolment, both cases and controls. Blood was collected on
filter paper (LTA, Brugherio, MI) for future DNA extrac-
tion and testing and kept in a cool, dry place. Samples col-
lected were sent in the central laboratory in the
Department of Maternal and Paediatric Sciences of the
University of Milan, Italy, by airmail, once a month, for
genetic studies.

DNA extraction and SNP identification
The blood spots on filter paper were cut into little frag-
ments, then incubated for 1 hour in 3- mL lysis buffer at
room temperature on an orbital shaker. Paper residues were
separated from lysate by brief spinning. DNA from all sam-
ples was then extracted with a NucliSens EasyMAG



Esposito et al. Malaria Journal 2012, 11:196 Page 3 of 8
http://www.malariajournal.com/content/11/1/196
instrument (Biomerieux, Bagno a Ripoli [FI], Italy), using the
Specific B protocol. The DNA extracted was quantified
using a Nanodrop ND-1000 instrument (Thermo Fisher Sci-
entific, Waltham, MA, USA), with elution buffer as blank.
SNP genotyping was then performed on genomic DNA
using pre-designed TaqmanW SNP Genotyping assays (Ap-
plied Biosystems by Life Technologies, Monza, Italy) [33,34].
SNP selection was based on previously reported associations
with malaria in populations of different ethnicities. The non-
synonymous SNP of TLR4 Asp299Gly (rs4986790, assay
code C__11722238_20), the intronic SNP of TLR-9 G(1174)
A (rs352139, assay code C___2301953_10), the two pro-
moter SNPs of TLR-9 at positions T(-1486)C (rs187084,
assay code C___2301952_10) and T(-1237)C (rs5743836,
assay code C__32645383_10), the TIRAP/MAL Ser180Leu
(rs8177374, assay code C__25983622_10) and the FCGR2A
His131Arg non- synonyimous SNPs (rs1801274, assay code
C___9077561_20) were then studied. Reactions and an al-
lelic discrimination analysis were performed on an ABI
PRISM 7900 HT Fast Real-time instrument (Applied
Biosystems).

Statistical analysis
Data were analysed using SAS for Windows v. 9.1 (SAS In-
stitute, Cary, NC, USA). Categorical variables are presented
Table 1 Allele frequencies in the study population for the sel

Gene and
polymorphic alleles

Allele frequency

Uninfected
controls (n = 337)

Children with
malaria (n = 602)

TLR4 Asp299Gly rs4986790

Asp 0.94 0.94

Gly 0.06 0.06

TLR9 G1174A rs352139

G 0.51 0.53

A 0.49 0.47

TLR9 T1486C rs187084

T 0.75 0.75

C 0.25 0.25

TLR9 T1237C rs5743836*

T 0.68 0.63

C 0.32 0.37

TIRAP Ser180Leu rs8177374

Ser 0.98 0.97

Leu 0.02 0.03

FCGR2a H131R rs1801274

His 0.45 0.43

Arg 0.55 0.57

Significant difference between uninfected controls and children with malaria for TL
uncomplicated malaria and those with severe malaria.
as numbers and percentages, and were analysed using con-
tingency tables and the chi-squared or Fisher’s exact test, as
appropriate. The Hardy-Weinberg equilibrium (HWE) was
performed by comparing the numbers observed of different
genotypes with those expected under the HWE for the esti-
mated genotype frequencies and p> 0.05 was in HWE.
Genotyping deviations from HWE were assessed under
Pearson’s chi-square (X2) or the likelihood-ratio statistical
test, as appropriate [35,36]. Odds ratios and the correspond-
ing 95 % confidence intervals (CI) were calculated to meas-
ure the association between genetic variation in selected
genes and risk of malaria overall and severe malaria.

Results
A total of 602 patients (346 males; mean age ± standard
deviation, 5.3 ± 4.4 years) and 337 uninfected controls
(196 males; mean age ± standard deviation, 5.4 ± 4.3 years)
were enrolled. Among uninfected controls, 106 (31.4 %)
were admitted for abdominal surgery, 79 (23.4 %) for
orthopaedic surgery, 69 (20.5 %) for urogenital surgery, 55
(16.3 %) for plastic surgery and 28 (8.3 % for otolaryngol-
ogy surgery. Among malaria cases, 553 (91.9 %) were con-
sidered as suffering from uncomplicated malaria and 49
(8.1 %) from severe malaria (12, 24.5 %, with cerebral mal-
aria; 37, 75.5 %, with severe anemia). Table 1 shows the
ected SNPs

P value Children with
uncomplicated
malaria (n = 553)

Children with
severe malaria
(n = 49)

P value

0.93 0.98

0.55 0.07 0.02 0.07

0.52 0.57

0.61 0.48 0.43 0.36

0.76 0.72

0.94 0.24 0.28 0.45

0.63 0.63

0.04 0.36 0.37 0.93

0.97 0.98

0.50 0.03 0.02 0.59

0.42 0.45

0.58 0.58 0.55 0.61

R9 T1237C rs5743836 only. No difference between children with
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allele frequencies for the selected SNPs in P. falciparum-
infected children and in controls. All SNPs examined were
present in the study populations. However, minor allele
frequencies for TLR4 Asp299Gly and for TIRAP Ser180-
Leu were less than 10 % in patients regardless of disease
severity (2.1 % to 7.0 % for TLR4 Asp299Gly, 2.1 % to
3.0 % for TIRAP Ser180Leu) and controls (6 % for TLR4
Asp299Gly and 2.4 % for TIRAP Ser180Leu). On the con-
trary, minor allele frequency for the other SNPs studied
exceeded >20 % in all cases, reaching values around 40 %
(42.3 %-45.2 %) and 50 % (43.0 %-48 %) for FCGR2A
His131Arg and TLR9 G1174A, respectively. TLR9
T1237C rs5743836 C was found significantly more fre-
quently in children with malaria than in uninfected con-
trols (p= 0.04), although no difference was found between
children with uncomplicated and those with severe mal-
aria. No other significant difference among Burundian
children with malaria and related controls was found as
Table 2 Genotype frequencies comparing uninfected controls

Genotype fr

Gene and
polymorphic
alleles

Observed Ex

Uninfected
controls (n = 337)

Children with
malaria (n = 602)

Uninfected contro
(n = 337)

TLR4 Asp 299Gly rs4986790

Asp/Asp 300 (89.0) 528 (87.7) 300 (89.0)

Asp/Gly 36 (10.7) 72 (11.9) 36 (10.7)

Gly/Gly 1 (0.3) 2 (0.3) 1 (0.3)

TLR9 G1174A rs352139

GG 92 (27.3) 166 (27.5) 89 (26.4)

GA 163 (48.4) 302 (50.2) 169 (50.2)

AA 82 (24.3) 134 (22.3) 79 (23.4)

TLR9 T1486C rs187084

TT 197 (58.4) 342 (56.8) 191 (56.7)

TC 113 (33.6) 220 (36.6) 125 (37.1)

CC 27 (8.0) 40 (6.6) 21 (6.2)

TLR9 T1237C rs5743836

TT 155 (46.0) 245 (40.6) 155 (46.0)

TC 147 (43.6) 267 (44.4) 147 (43.6)

CC 35 (10.4) 90 (15.0) 35 (10.4)

TIRAP S180L rs8177374*

Ser/Ser 324 (96.1) 567 (94.2) 321 (95.3)

Ser/Leu 10 (3.0) 35 (5.8) 16 (4.7)

Leu/Leu 3 (0.9) 0 0 (0.0)

FCGR2a H131R rs1801274

His/His 76 (22.6) 108 (17.9) 73 (21.7)

His/Arg 152 (45.1) 299 (49.7) 159 (47.2)

Arg/Arg 109 (32.3) 195 (32.4) 105 (31.1)

Percentages in brackets. CI, confidence interval; HWE, Hardy-Weinberg equilibrium.
well as between children with uncomplicated and those
with severe malaria for all the other allele frequencies
studied (P> 0.05 for all the other comparisons).
Table 2 shows the genotype frequencies for SNPs stud-

ied comparing children with malaria and uninfected
controls, whereas Table 3 summarizes the genotype fre-
quencies for SNPs studied comparing children with un-
complicated malaria and those with severe malaria. For
TLR4, TLR9 and FCGR2A frequency of the genetic var-
iants was as expected, whereas genotyping for TIRAP
Ser180Leu variants showed slight deviations from what
would be expected under the HWE in the control group
(p< 0.001). TLR9 T1237C rs5743836CC was associated
with an increased risk of developing malaria (p = 0.03),
although it was found with the same frequency in un-
complicated and severe malaria cases. No other differ-
ences in all the allele and genotype frequencies studied
were found between malaria cases and uninfected
and children with malaria for the selected SNPs

equency

pected P (HWE, X2) OR (95 % CI) P value

ls Children with
malaria (n = 602)

528 (87.7) Controls = 0.94 1 (reference)

71 (11.8) Malaria = 0.78 1.14 (0.73-1.79) 0.55

3 (0.5) 1.14 (0.06-67.3) 0.92

167 (27.8) Controls = 0.56 1 (reference)

300 (49.8) Malaria = 0.88 1.03 (0.74-1.43) 0.87

135 (22.4) 0.91 (0.61-1.34) 0.60

340 (56.5) Controls = 0.07 1 (reference)

223 (37.0) Malaria = 0.57 1.12 (0.83-1.51) 0.43

39 (6.5) 0.85 (0.49-1.49) 0.55

238 (39.5) Controls = 0.99 1 (reference)

280 (46.5) Malaria = 0.22 1.15 (0.86-1.54) 0.34

84 (14.0) 1.63 (1.03-2.60) 0.03

567 (94.2) Controls =<0.001 1 (reference)

34 (5.6) Malaria = 0.46 2.00 (0.98-4.09) 0.06

1 (0.2) - -

110 (18.3) Controls = 0.10 1 (reference)

295 (49.0) Malaria = 0.72 1.38 (0.96-2.00) 0.07

197 (32.7) 1.26 (0.85-1.86) 0.23



Table 3 Genotype frequencies comparing uninfected controls and children with malaria for the selected SNPs

Genotype frequency

Gene and
polymorphic
alleles

Observed Expected P (HWE, X2) OR (95 % CI) P value

Children with
uncomplicated
malaria (n = 553)

Children with
severe malaria
(n = 49)

Children with
uncomplicated
malaria (n = 553)

Children with
severe malaria
(n = 49)

TLR4 Asp 299Gly rs4986790

Asp/Asp 481 (86.9) 47 (95.9) 481 (86.9) 47 (95.9) Uncomplicated malaria = 0.74 1 (reference)

Asp/Gly 70 (12.7) 2 (4.1) 69 (12.5) 2 (4.1) Severe malaria = 0.88 0.29 (0.03-1.16) 0.08

Gly/Gly 2 (0.4) 0 (0.0) 3 (0.6) - -

TLR9 G1174A rs352139

GG 149 (27.0) 17 (34.7) 151 (27.3) 16 (32.6) Uncomplicated malaria = 0.73 1 (reference)

GA 280 (50.6) 22 (44.9) 276 (49.9) 24 (49.0) Severe malaria = 0.56 0.69 (0.34-1.43) 0.27

AA 124 (22.4) 10 (20.4) 126 (22.8) 9 (18.4) 0.71 (0.28-1.71) 0.40

TLR9 T1486C rs187084

TT 316 (57.2) 26 (53.1) 315 (57.0) 26 (53.0) Uncomplicated malaria = 0.60 1 (reference)

TC 201 (36.3) 19 (38.8) 203 (36.7) 19 (38.8) Severe malaria = 0.84 1.15 (0.58-2.22) 0.66

CC 36 (6.5) 4 (8.2) 35 (6.3) 4 (8.2) 1.35 (0.32-4.21) 0.59

TLR9 T1237C rs5743836

TT 226 (40.9) 19 (38.8) 219 (39.6) 20 (40.8) Uncomplicated malaria = 0.16 1 (reference)

TC 243 (43.9) 24 (49.0) 257 (46.5) 23 (47.0) Severe malaria = 0.71 1.17 (0.60-2.33) 0.62

CC 84 (15.2) 6 (12.2) 77 (13.9) 6 (12.2) 0.85 (0.27-2.31) 0.74

TIRAP S180L rs8177374*

Ser/Ser 520 (94.0) 47 (95.9) 520 (94.0) 47 (95.9) Uncomplicated malaria = 0.47 1 (reference)

Ser/Leu 33 (6.0) 2 (4.1) 32 (5.8) 2 (4.1) Severe malaria = 0.88 0.67 (0.07-2.77) 0.59

Leu/Leu 0 (0.0) 0 (0.0) 1 (0.2) 0 (0.0) - -

FCGR2a H131R rs1801274

His/His 97 (17.5) 11 (22.5) 99 (17.9) 10 (20.4) Uncomplicated malaria = 0.62 1 (reference)

His/Arg 276 (49.9) 23 (46.9) 272 (49.2) 24 (49.0) Severe malaria = 0.70 0.73 (0.33-1.74) 0.42

Arg/Arg 180 (32.6) 15 (30.6) 182 (32.9) 15 (30.6) 0.73 (0.30-1.85) 0.46

Percentages in brackets. CI, confidence interval; HWE, Hardy-Weinberg equilibrium.
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controls as well as between uncomplicated and severe
malaria cases.

Discussion
The overall data seem to indicate that none of the SNPs of
TLR4, TIRAP and FCGR2A genes studied, assessed in Bu-
rundian children, play a role in modulating susceptibility
to malaria and disease severity in this population. Regard-
ing SNPs of TLR9, this study suggests that whereas no
role may be ascribable to TLR9 G1174A and TLR9
1486 C, TLR9 T1237C seems to be associated with an
increased risk of developing malaria, although this SNP is
not associated with different disease severity. Despite data
regarding association between polymorphisms and sever-
ity of the disease have to be evaluated with caution be-
cause the total number of severe cases, particular those
with cerebral malaria, is too small to permit to draw
definitive conclusions, these findings seem to indicate that
variation in the characteristics of TLR9 can play a role in
conditioning the development of malaria. Consequently,
they can be useful in the identification of children at
higher risk of developing the disease and those for whom
the preventive measures are strongly needed. However, all
of these data have to be confirmed with larger studies be-
cause in most of the cases data collected with this study
are only partially in agreement with those that have been
already published at this regard.
Data on TLR4 Asp299Gly are quite different from those

reported by other authors who, on the other hand,
obtained results largely conflicting with each other. Mock-
enhaupt et al. reported that this polymorphism was asso-
ciated with an increased risk of severe paediatric malaria
without affecting the risk of infection [19]. On the con-
trary, Basu et al. demonstrated that TLR4 Asp299Gly was
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more common in patients with low parasitaemia and con-
cluded that TLR4 could have a genetic role in controlling
the blood infection level in mild malaria and could indir-
ectly suggest a protective effect of TLR4 Asp299Gly
against severe disease [20]. Similarly to the data here
reported, Zakeri et al. [21] and Sam-Agudu et al. [18], re-
spectively, reported a similar incidence of this SNP in chil-
dren with mild malaria and in controls or in patients with
cerebral malaria and in those with uncomplicated malaria.
However, because the frequency of TLR4 Asp299Gly was
always low in this study and in those previously reported,
it is difficult to draw firm conclusions on the role of this
SNP in susceptibility modulation to malaria and disease
severity. On the other hand, different reports have also
been published for another TLR4 SNP, Thr399Ile, which
some authors have associated with severe malaria, whereas
others have observed with similar frequency in malaria
patients and in healthy individuals [19-21]. Consequently,
further studies are needed to establish whether TLR4
might effectively be involved in P. falciparum recognition
and host response in humans and whether TLR4 could
contribute to the control of infection.
Studies on TLR9 SNPs have also reported conflicting

data. Sam-Agudu et al., studying children with cerebral
malaria, found that patients with the C allele at -1237 and
G allele at 1174 had higher levels of IFN-γ than those with-
out these alleles [18]. Because animal studies have implied
a causal role for IFN-γ in the pathogenesis of cerebral mal-
aria and IFN-γ levels were found higher in children with
cerebral malaria who died as compared with survivors [12],
these authors concluded that these TLR9 SNPs could play
a role in modulating malaria severity. On the contrary,
Campino et al., despite reporting evidence of cis-variants
acting on gene expression, did not find any convincing as-
sociation between TLR9 SNPs and malaria severity [24].
The data of this study agree only in part with those
reported. As found by Ciampino et al. [24] but contrary to
what was reported by Sam-Agudu et al. [18], no association
between TLR9 SNPs and malaria severity was found, al-
though a significant association between TLR9 1237 C and
disease susceptibility was evidenced. In the past it was sug-
gested that a possible explanation for the different data col-
lected by Ciampino et al. [24] and Sam-Agudu et al. [18]
could be found in the presence of different haemozoin
loads in patients studied. TLR9 is located in the endoso-
mal/lysosomal compartment of the cells and recognizes nu-
cleic acids of microbes including that of P. falciparum.
Haemozoin is a dark-brown haem crystal produced by P.
falciparum that functions as a carrier for P. falciparum
DNA and functionally affects TLR9 response to parasite in-
fection activating TLR9 proportionally to its concentration
[9]. Several studies have documented that the haemozoin
load is higher in children with SM compared with UM
[3,37-39]. Unfortunately, these data seem to differ from this
hypothesis because TLR9 T1237C was more common in
children with malaria than in uninfected controls but had
the same frequency in ill children, independent of disease
severity. However, because the number of children with
TLR9 SNPs was relatively low in all the studies, in this case
too further studies are needed.
In this study, contrary to what was reported by some

authors [21,25], no protective effect of TIRAP Ser180Leu
heterozygosity on susceptibility to and severity of malaria
was found. Prevalence of heterozygosity in this study was
quite similar to that reported by most of the authors that
have studied African individuals. The differences between
this study and those by Zakeri et al. [21] and Khor et al.
[25] can be ascribed to differences in number of subjects
enrolled. On the other hand, the lack of any relationship
between the presence of TIRAP Ser180Leu heterozygosity
and protection from malaria was also found by Leoratti
et al. [23] and by Hamann et al. [26]. These latter authors
reported a much reduced prevalence of both heterozygos-
ity and homozygosity for this genetic variant in individuals
from malaria holo-endemic Ghana and concluded that
this finding strongly argued against an expected positive
selection of a malaria-protective trait in Africa. However,
in all the studies the number of subjects with homozygos-
ity for TIRAP Ser180Leu was too small to be able to draw
firm conclusions.
Regarding FCGR2A His131Arg, the data of this study

are completely different from those reported by Schuldt
et al. [27] who found that homozygosity for this SNP
was positively associated with severe malarial anaemia
but not with cerebral malaria or other major malaria
complications. Several other studies have reported con-
trasting results on the role of this genetic variant on
malaria infection and disease [22,28-31]. Different gen-
etic backgrounds could explain these discrepancies.
Alleles of FCGR2A and FCGR3B, which are involved in
similar biological functions, can be in linkage disequilib-
rium and, consequently, may interfere with each other’s
evolution selection. Moreover, epistatic effects involving
variants located in other genes in the FCGR gene cluster
on chromosome 1q23-24 are likely to exist. Alterna-
tively, once again it is possible that most of the studies
were based on relatively small study groups providing
limited statistical power to reveal significant associations
with malaria and its complications.

Conclusions
Knowledge of the relationships between genetics, sus-
ceptibility to and severity of infections is essential to
identify subjects at higher risk and to develop specific
preventive measures. This is particularly import for mal-
aria that remains one of the most important health
problem in several geographic areas. This study shows
that genetic polymorphisms of some factors involved in
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the innate immune response to P. falciparum infection
have no influence in conditioning susceptibility to and
severity of malaria in Burundian children. An exception
might be represented by TLR9 T127C for which a sig-
nificant correlation with an increased risk of developing
malaria without any role in determining severity was
found. This finding, when confirmed with further studies
carried out with greater study samples, can permit to
identify those subjects for whom preventive measure are
strongly needed. Moreover, knowledge that same aspects
of the innate immunity can have different efficacy in fa-
cing infectious agents can be of value in the preparation
of specific vaccines when immune response evoked by
the antigens included in the vaccines involves the factors
with modified activity. This has to be considered also in
the preparation of the developing malaria vaccines.
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