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Abstract

Background: Drug resistance is a major problem to control Plasmodium falciparum infection in endemic countries.
During last decade, African countries have changed first-line treatment to artemisinin-based combinations therapy
(ACT); sulphadoxine-pyrimethamine (SP) is recommended for Intermittent Preventive Therapy (IPT). Molecular
markers related to P falciparum resistance were analysed for the period of transition from SP to ACT, in isolates
imported from Africa.

Methods: A first group of samples was taken in the period between June 2002 and June 2006 (n = 113); a second
group in the period between November 2008 and August 2010 (n = 46). Several alleles were analysed by nested
PCR-RFLP: 51, 59, 108, 164, in the pfdhfr gene; 436, 437, 540, 581, in the pfdhps gene; 86, 1246, in the pfmdr1 gene
and 76, in the pfcrt gene. The prevalence of alleles in the groups was compared with the chi-squared or Fisher’s
exact tests.

Results: The pfdhfr N51I, C59R and S108N were over to 90% in the two groups; all samples had the I164. In the
pfdhps, 437 G and 581 G, increased up to 80% and 10.9% (p = 0.024), respectively in the second group. The 540 G
decreases (24% to 16.%) and the 436A disappears at the end of the follow-up (p = 0.004) in the second group. The
76I-pfcrt stayed over 95% in the two groups. Prevalence of 86Y-pfmdr1 decreased over eight years.

Conclusions: Pharmacological pressure affects the resistance strains prevalence. As for SP, the disappearance of
436A and the decrease in 540 G suggest that these mutations are not fixed. On the other hand, studies carried out
after ACT introduction show there was a selection of strains carrying the SNPs N86Y, D1246Y in pfmdr1. In this
work, the prevalence of pfmdr1- D1246Y is increasing, perhaps as a result of selective pressure by ACT. Continued
surveillance is essential to monitor the effectiveness of treatments.

Background
Malaria treatment is an essential tool to control Plasmo-
dium falciparum disease in endemic countries. Resis-
tance to currently available drugs is one of his main
problems [1]. Several mutations linked to resistance

have been described in different genes of P. falciparum
genome. These mutations take place spontaneously in
the parasite, though pharmacological pressure is one of
the most important factors involved in their spread [2].
Resistance to chloroquine appears nowadays in all

regions where P. falciparum is present in Africa [3]. The
main determinant of chloroquine resistance is the K76I
mutation of the pfcrt gene, which left to in vivo and in
vitro resistance [4]. In addition, the N86Y and D1246Y
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mutations in the pfmdr1 gene, together with the occur-
rence of mutations in the pfcrt gene, reduce susceptibil-
ity to chloroquine [5].
Use of sulphadoxine-pyrimethamine (SP) began in

Africa in the early 1980s and was adopted as first-line
treatment for non-severe malaria in many sub-Saharan
countries. In the last decade, the high resistance levels
reached across the continent have led to a change in
treatment policies. SP is currently recommended by the
World Health Organization (WHO) for intermittent
preventive therapy (IPT) in pregnant woman (IPTp) and
infants (IPTi) [6].
Loss in efficacy of either component of SP brings

about a reduction in the efficacy of the combination [7].
Resistance to pyrimethamine is related with single
nucleotide polymorphisms (SNPs) at codons A16V,
N51I, C59R, S108N/T and I164L of the pfdhfr gene.
Although the C50R mutation is usually found in South
America, it has recently been described in Africa [8].
The I164L mutation is hardly ever seen in Africa, and
its association with resistance in this continent is doubt-
ful [9]. In the dhps gene, five SNPs, namely, S436A/F,
A437G, K540E, A581G and A613S/T, have been
reported to be linked to P. falciparum resistance to sul-
phadoxine. An increase in the number of mutations in
both, pfdhfr and pfdhps, genes leads to an increase in
clinical resistance. In Africa, the pfdhfr triple mutant,
51I-59R-108 N, together with the pfdhps double mutant,
437 G-540E, the so called dhfr/dhps quintuple mutation
predicts treatment failure with SP [10].
Nowadays, artemisinin combination therapy (ACT) is

used as a first-line treatment in uncomplicated malaria
in African countries with artemether-lumefantrine (AL)
and artesunate-amodiaquine (AS/AQ) being the combi-
nations used [11]. The SNPs in the pfcrt and pfmdr1
genes are related with the efficacy of amodiaquine,
which is structurally related to chloroquine although in
vivo and in vitro data suggest that cross-resistance
between both molecules is incomplete [12]. The wild-
type alleles of the pfmdr1 gene, N86 and D1246, are
linked to a decrease in the in vitro response to lumefan-
trine and artemisinin [13]. After the introduction of AL,
an in vivo association has been established with re-infec-
tions by strains with wild-type pfmdr1 alleles and the
wild-type pfcrt allele, K76 [14].
The Hospital Carlos III (Madrid, Spain) is a tropical

disease reference centre. Its Tropical Medicine and Pae-
diatrics Departments, attends to immigrants and travel-
lers. SNPs in P. falciparum linked to resistance were
analysed in patients proceeding from African countries.
Samples were collected over a period of eight years, dur-
ing a transition phase from high SP coverage to treat-
ment with ACT. This study sought to ascertain the
prevalence of anti-malarial drug resistant strains during

this period, and measure the impact of pharmacological
pressure.

Methods
Biological samples
Blood samples were collected from 200 patients with P
falciparum infection, who had come to Spain from eigh-
teen African countries (Figure 1). After microscopic
diagnosis, identification to species level was performed
by polymerase chain reaction (PCR). DNA was extracted
from 200 μl of blood using QIAamp DNA Blood Mini-
kits® (QIAGEN, Hilden, Germany). Samples were classi-
fied in two groups, the first including those collected
between June 2002 to June 2006, and the second one
including those collected between November 2008 to
August 2010.

Molecular assays
Multiplex PCR was performed to diagnose the malaria
species [15]. Nested polymerase chain reaction-restric-
tion fragment length polymorphism (PCR-RFLP) was
used to analyse the presence/absence of mutations at
codons 51, 59, 108 and 164 of the pfdhfr gene, codons
436, 437, 540 and 581 of the pfdhps gene, codons 86
and 1246 of the pfmdr1 gene, and codon 76 of the pfcrt
gene [16]. In the same way of other works,, mixed popu-
lations were deemed mutants [17].

Statistical analysis
All analyses were performed using the SPSS statistical
software package, version 15.0. The prevalence of muta-
tions in the groups was compared using the chi-squared
(c2) or Fisher’s exact test. Statistical significance was set
at p ≤ 0.05.

Results
The typing efficiency for each codon was as follows:
100% of samples for the pfdhfr-51- 59; 99.5% for pfdhfr-
108 and pfdhps-436,-437; 99% for pfdhps-540-581; 98%
for pfcrt-76; 97.5% for pfmdr1-1246; 96% for pfmdr1-86
and 95% for pfdhfr-164.
Changes in the prevalence of typed alleles over the

two periods are shown in the Table 1.

Pfdhfr-pfdhps
The frequency of the combination of pfdhfr mutated
alleles with more than one mutation increased across
the Continent, with the most frequent being the pfdhfr
triple mutant, 51I-59R-108 N. In the pfdhps gene, the
most frequent genotype was 437 G, followed by the
double mutant, 437 G-540E, though this one decreased
slightly owing to the fall in the 540E mutation. The
pfdhps double mutant, 437 G-581 G, also increased (p =
0.03).
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Mutations in both pfdhfr and pfdhps genes were
observed in 76% of patients (n = 152). At the end of the
study, the most prevalent were: the quadruple mutant,
51I-59R-108 N-437 G, followed by the quintuple

mutant, 51I-59R-108 N-437 G-540E, and the quintuple
ones 51I-59R-108 N-437 G-581 G, which increases his
prevalence (p = 0.03).
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(2/0)  
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(1/0) 

United Republic
of Tanzania 
(1/1)  
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Figure 1 African countries of origin of samples.

Table 1 Molecular markers of resistance (%)

n = 200

I
2002-2005
(n = 139)

II
2008-2010
(n = 61)

I II I II

W M W M p Combined genotypes

pfdhfr-51 4.3 95.7 8.2 91.8 0.3 pfdhfr-51I-59R-108N Cuadruple pfdhf-pfdps

pfdhfr-59 5 95 8.2 91.8 0.5 51I-59R-108N-437G

pfdhfr-108 1.4 98.6 1.6 98.4 1 90.8 81.3 53.4 63.3

pfdhfr-164 100 0 100 0 1 Quintuple pfdhf-pfdps

pfdhps-436 87.7 12.3 100 0 0.004 pfdhps-437G 51I-59R-108N-437G-540E

pfdhps-437 29 71 16.4 83.6 0.05 18.4 16.3

pfdhps-540 75.4 24.6 83.3 16.7 0.2 46.7 60 51I-59R-108N-437G-581G

pfdhps-581 97.8 2.2 90 10 0.02 1 8.2

pfmdr1-86 48.5 51.5 58.6 41.4 0.1

pfmdr1-1246 64.9 35.1 91.8 8.2 0.0001

pfcrt-76 4.4 95.6 3.4 96.6 1

Wild-type (W) and mutant-type (M) alleles; I: 2002-2006; II: 2008-2010
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Pfcrt
Mutation 76I of pfcrt keeps above 95% during the study
period (Table 1).

pfmdr1
The prevalence of wild-type alleles of the pfmdr1 gene,
N86 and D1246, increased across the eight years.

Discussion
In this study, although samples from 18 countries,
patients from Central and West Africa accounted for
79.9% and 16.1% respectively of all, and those from the
East of the continent were scarce (4%). Even so, there
are few studies about changes molecular markers of
resistance after large-scale deployment of ACT in the
entire African Continent, in a long period of time.
Malaria treatment is one of the mainstays of disease
control programmes, and parasite resistance to anti-
malarial drugs is one of its major problems. Current
treatment policies are based on ACT, so as to reduce
the loss of efficacy and emergence and spread of resis-
tance resulting from pharmacological pressure and
migratory movements, among other factors [18]. Surveil-
lance during the period of treatment policies change is
essential, to evaluate its impact: in cases where resis-
tance has not yet become permanent in a population,
prevalence of resistance-related alleles should decline if
pharmacological pressure ceases [19]. However, up to
now, molecular markers related to SP resistance appear
to show no reduction after the introduction of ACT [6].
Indeed, an increase has even been observed in some
regions; this has been attributed to the widespread use
of other drugs, such as cotrimoxazole [20], which have
cross-resistance with SP, and to the fact that the combi-
nation is widely used outside the official sector [21]. In
this way, in this study the pfdhfr triple mutant, 51I-59R-
108 N, became established. With regard to mutations
linked to sulphadoxine resistance, in spite of a signifi-
cant disappearance of 436A, there are a significant
increase of the 437 G allele and, it should be stressed
the emergence of mutant 581 G in Cameroon, two
cases, Gabon, one case, and Equatorial Guinea, five
cases, countries in which this mutation has never been
previously detected. Also, a case of 581 G allele was also
detected in Mali, where this mutation has been already
described [22]. It has been noted that in areas where the
pfdhfr triple and pfdhps double mutants are established,
the emergence of mutation 581 G can endanger inter-
mittent preventive therapies with SP. It has also been
shown a selection of this mutated allele in woman
receiving IPT [23,24]. At all events, to check whether
significant changes are taking place in the prevalence of
mutations linked to a decrease in the use of SP, and to
monitor the appearance of mutations that, until now,

have rarely been described in these regions (581 G),
continued surveillance is needed to evaluate their impact
on IPT [25,26].
For molecular markers related to anti-malarial drugs

currently being used in Africa (pfcrt and pfmdr1
genes), a reduction in the prevalence of pfcrt 76I and
pfmdr1 N86Y mutations in response to a decrease in
chloroquine use has been observed in some regions
[27]. On the other hand, the wild-type pfmdr N86 and
the pfcrt K76 genotypes are associated with lower sus-
ceptibility to dihydroartemisinin in vitro [12]. In addi-
tion, studies undertaken after the introduction of ACT
have shown that there is a selection of strains carrying
wild-type alleles, pfmdr1 N86, pfmdr1D1246 [28] and
pfcrt K76 [15]. The first has been linked to a signifi-
cant decrease in in vitro sensitivity to lumefantrine
and an increase of reinfections in vivo after AL treat-
ment, a finding that renders the use of lumefantrine
advisable in areas where chloroquine-resistant muta-
tions remain high [6]. In this way, the prevalence of
pfcrt 76I had risen to over 95% by the end of the
study: nevertheless, the prevalence of wild-type pfmdr1
N86 shows a statistical tendency to increase and the
wild-type pfmdr1D1246 raises until 91.8% ant the end
of the study. It is possible that these results reflect the
first step in ACT resistance.

Conclusions
This study suggests the appearance of strains related
with resistance to ACT. On the other hand, the study
shows the existence of mutations in some regions in the
African Continent who will put in danger the use of
IPTp and IPTc. In vivo surveys are the gold standard
for analysis of malaria therapy resistance, but it can be
concluded that surveys like the one described in the
current paper could be an essential tool to assess and
follow up the long-term use and efficiency of ACT and
IPT.
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