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Abstract

Background: In the first part of this study, an extensive literature survey led to the construction of a new version
of the Liverpool Malaria Model (LMM). A new set of parameter settings was provided and a new development of
the mathematical formulation of important processes related to the vector population was performed within the
LMM. In this part of the study, so far undetermined model parameters are calibrated through the use of data from
field studies. The latter are also used to validate the new LMM version, which is furthermore compared against the
original LMM version.

Methods: For the calibration and validation of the LMM, numerous entomological and parasitological field
observations were gathered for West Africa. Continuous and quality-controlled temperature and precipitation time
series were constructed using intermittent raw data from 34 weather stations across West Africa. The
meteorological time series served as the LMM data input. The skill of LMM simulations was tested for 830 different
sets of parameter settings of the undetermined LMM parameters. The model version with the highest skill score in

African tropics.

terms of entomological malaria variables was taken as the final setting of the new LMM version.

Results: Validation of the new LMM version in West Africa revealed that the simulations compare well with
entomological field observations. The new version reproduces realistic transmission rates and simulated malaria
seasons are comparable to field observations. Overall the new model version performs much better than the
original model. The new model version enables the detection of the epidemic malaria potential at fringes of
endemic areas and, more importantly, it is now applicable to the vast area of malaria endemicity in the humid

Conclusions: A review of entomological and parasitological data from West Africa enabled the construction of a
new LMM version. This model version represents a significant step forward in the modelling of a weather-driven
malaria transmission cycle. The LMM is now more suitable for the use in malaria early warning systems as well as
for malaria projections based on climate change scenarios, both in epidemic and endemic malaria areas.

Background

The World Health Organization (WHO) estimated that
about two billion people, that is more than 40% of the
total world population, are exposed to malaria [1]. Esti-
mates in terms of 2009 revealed that this mosquito-
borne disease causes about 225 million cases and
781,000 deaths annually. At least 90% of the worldwide
malaria deaths occur in sub-Saharan Africa [2].
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Malaria is a climate-sensitive tropical disease and
hence climate exerts a strong impact upon the distribu-
tion of malaria transmission in space and time [3]. An
assessment of current and future malaria risk is an
important topic in the area of research relating climate
to disease risk [4]. Reliable forecasts of epidemic malaria
outbreaks on seasonal timescales [5] and assessments of
disease vulnerability over decadal timescales are needed
[6]. However, this requires the production of a weather-
malaria modelling system. World-leading numerical
weather forecast centres have already demonstrated use-
ful skill in forecasts far beyond a month lead-time for
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some tropical regions [7], and climate projections are
becoming more reliable [8]. Advances have also been
achieved in weather- or climate-driven malaria model-
ling. For example, Hoshen and Morse [9] introduced the
Liverpool Malaria Model (LMM), which is a mathemati-
cal-biological model of malaria parasite dynamics driven
by daily temperature and precipitation data. However,
further progress must be obtained in order to enable
skilful malaria simulations for epidemic and endemic
malaria regions based on meteorological data. For this
reason, the present study introduces the LMM version of
2010 (henceforth called LMMyg;0), which simulates a
more realistic spread of malaria in space and time and
is hence a useful tool for a weather- or climate-disease
modelling system.

In the first part of this study [10], an extensive litera-
ture review enabled the construction of a set of refined
parameter settings (see Table 1) and an extended math-
ematical formulation of the LMM. Important sub-mod-
ules of the original LMM version were reviewed and
updated. The oviposition, as well as the survival of

Table 1 LMM parameters and mathematical formulations
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immature mosquitoes, were adjusted to field conditions
via the application of a fuzzy distribution model. In the
second part of this study (this paper) previously unde-
termined model parameters are calibrated and the
LMM,010 is validated by means of entomological and
parasitological field observations from West Africa.

Methods

Data sources

Time series of meteorological stations

In the present study, temperature and precipitation
measurements from synoptic weather stations across
West Africa (see Figure 1) were used as LMM data
input. Weather station data were gathered from the
archive of the German Weather Service (DWD; German
Weather Service) as well as from the Federal climate
complex Global Surface Summary of Day version 7
(GSOD; from the US National Climate Data Centre)
data. The meteorological time series were quality-
checked and missing values were filled according to a
specific procedure, which is described by Ermert [11].

sym parameter valygos valyo10

Dgy humid degree days of the gonotrophic cycle 37.1 degree days 37.1 degree days
Dy, dry degree days of the gonotrophic cycle 654 degree days 654 degree days
Tar humid gonotrophic temperature threshold 7.7°C 7.7°C

To dry gonotrophic temperature threshold 4.5°C 4.5°C

R 10-day accumulated precipitation threshold 10 mm 10 mm

R. rainfall laying multiplier 10 NU

#E, number of produced eggs per female mosquito NU 120 eggs

#E, number of oviposited eggs per female mosquito NU Eq. Two in [10]
U; lower threshold of unsuitable rainfall conditions (fuzzy distribution model) NU 0 mm

S most suitable rainfall condition (fuzzy distribution model) NU 10 mm

U, upper threshold of unsuitable rainfall conditions (fuzzy distribution model) NU 500 mm

CAP cap on the number of fertile mosquitoes 10,000 mosquitoes 400 mosquitoes
MMA mosquito mature age 15 days 12 days

Ng-r rainfall independent immature daily mosquito survival probability NU 82.5%

Ny daily immature mosquito survival probability (in %) Eq. Three in [10] Eq. Four in [10]
Pd daily mosquito survival probability (in %) Martens | (see [10]) Martens Il (see [10])
Pay dry season mosquito survival probability shift NU -10%

D degree-days of the sporogonic cycle 111 degree days 111 degree days
T, sporogonic temperature threshold 18°C 16°C

a human blood index 50% 80%

b mosquito-to-human transmission efficiency 50% 30%

Case adult-child conversion rate NU 0.5

HIA human infectious age 14 days 20 days

r daily human recovery rate 0.0284 day ' 0.0050 day’

GF fraction of gametocyte carriers NU 50%

c human-to-mosquito transmission efficiency 50% 20%

trim trickle of the number of added infectious mosquitoes 1.01 mosquitoes 1.01 mosquitoes

LMM model parameters and mathematical formulations with regard to their original (Hoshen and Morse 2004) and new settings. Columns: sym: symbol of the
model parameter; parameter: name of the parameter; unit: unit; valygos: LMM3o04 Value; valygio: LMMagqo value. Abbreviations: NU: not used. Parameter values in
italics refer to calibrated values and those values and mathematical formulations in bold were determined in the first part of this study [10].
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The resulting analysis provides continuous and quality-
controlled temperature (T) and rainfall (R) time series
between 1973 and 2006 for 34 synoptic weather stations
in West Africa (see Figure 1 and Additional file 1).
Altogether 830 different sets of parameter settings of
the LMM were forced by temperature and rainfall con-
ditions derived from intermittent time series from 34
weather stations. The model was, therefore, subject to
different climate conditions (cf. the varying temperature
and rainfall values in Figure 2). The climates covered by
the meteorological data set range from arid hot desert
to tropical monsoon climates and therefore lead to var-
ious observed transmission levels of epidemic and ende-
mic malaria. Fairly dry conditions in the Sahel, for
example, resulted in the field in no malaria transmission
at Diomandou Dieri (Senegal; 16°31'N; 14°39'W) [12]. In
contrast, nearly continuous rainfall caused year-round
transmission in Cameroon at Etoa (3°46’N; 11°29’E) [13].
The temperature range of this meteorological data set
lie, for most stations, well above 20°C (cf. Figure 2) inhi-
biting the model validation for the lower malaria tem-
perature limit of about 16°C [14].
Regional climate simulations
Driving the LMM with gridded data is needed for the
validation of the simulated malaria spread in Africa.
Due to the lack of gridded daily temperature and rainfall
data from ground observations, data from a so-called
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regional climate model are used. Such a model is able to
more accurately represent spatial variations of the atmo-
sphere than so-called global atmosphere-ocean general
circulation models.

Gridded LMM simulations for Africa were based on
meteorological data from three ensemble runs between
1960 and 2000 from the REgional MOdel (REMO) [15].
REMO is a hydrostatic, limited area model using primi-
tive equations, which are solved on 20 hybrid atmo-
spheric levels [16]. At the lateral and lower boundaries
REMO was nested into ECHAMS5/MPI-OM (European
Centre HAmburg Model, 5th generation/Max-Planck-
Institute-Ocean Model) global coupled climate model
simulations that were forced with the observed green-
house gas increase [17-19]. The space-time resolution of
REMO data used in the present study was 0.5° and daily
values, respectively.

Expected systematic model errors in annual precipita-
tion and in simulated temperatures were considerably
reduced using bias correction, ensuring realistic data
input for the malaria simulations [11]. The bias-cor-
rected data are later used to drive gridded malaria runs
in order to compare the original and new LMM
versions.

Entomological and parasitological observations
In terms of malaria modelling, the entomological and
parasitological data are of particular interest since

340° 342° 344° 346’ 348" 350° 352° 354" 356° 358

Figure 1 Meteorological and malaria observations. Map showing locations of the synoptic weather station used in this study (see Additional
file 1) as well as the locations of entomological and parasitological field studies (purple dots; see Additional file 2).
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and Cameroon as well as plotted in an ascending rainfall order.
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Figure 2 Rainfall and temperatures in West Africa. Box-and-whisker plot of annual rainfall (R;
mean temperatures (T,; red box plots and right hand scale) between 1973 and 2006 grouped for the West Sahel, Central Sahel, Guinean coast,

blue box plots and left hand scale) and annual

malaria models have to undergo validation procedures.
The present study was restricted to West Africa since
this area was one of the focus regions of the IMPETUS
project (Integrated Approach to the Efficient Manage-
ment of Scarce Water Resources in West Africa) [20].
Numerous published malaria observations were
extracted from the literature.

It was shown that population density is an important
factor of malaria transmission [21,22]. In addition, crop
irrigation strongly impacts malaria and its seasonality
[23-26]. Also malaria and vector control such as the
usage of impregnated bed nets are able to reduce trans-
mission [27-31]. In the present study, field observations
were only included for which a rural environment can
be assumed from the information given in the publica-
tion (see Additional file 2 which includes also data from
non-rural sites). Urban and irrigated areas and those
when permanent streams influenced transmission were
excluded (except for the locations in Cameroon, where
this is nearly always the case). The few sites subject to
vector control or other local or regional interventions
were not used. This procedure ensured that other fac-
tors than climate, which influence malaria transmission,
were excluded to the extent possible.

Entomological malaria field studies frequently sample
biting mosquitoes on humans [32]. Standard measures
include the so-called Human Biting Rate (HBR), which
is the number of mosquito bites per human per time.
However, only female mosquitoes with sporozoites in
their salivary glands are able to infect humans. This
fraction of the biting females is called CircumSporozoite
Protein Rate (CSPR). Multiplying HBR with CSPR results
in the so-called Entomological Inoculation Rate (EIR),
which is defined as the number of infectious mosquito
bites per human per time [33]. Only months revealing
infectious mosquito bites (EIR values above zero) are
usually used to define the malaria season at a certain
location [34]. By contrast, parasitological malaria studies
usually measure the asexual parasite ratio (PR) repre-
senting the proportion of the survey population, which
is positive for the malaria parasite [35]. The literature
was, therefore, reviewed in terms of malaria field studies
(see Additional file 2).

Wherever applicable, observations were taken into
account with regard to eleven different entomological and
parasitological variables (these are: the annual Human Bit-
ing Rate (HBR,), the annual Entomological Inoculation
Rate (EIR,), the annual mean CircumSporozoite Protein
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Rate (CSPR,), the length, start, and end of the malaria sea-
son (Seas, SSeas, and ESeas, respectively), the length of the
main malaria season (MSeas; i.e. the number of months
in which 75% of EIR, is recorded [36]), the month of maxi-
mum transmission (XSeas; i.e. the month with the largest
entomological inoculation rate), the annual mean, maxi-
mum, and minimum of the asexual parasite ratio (PR,
PR,,.ux: «» and PR,,;,, ., respectively). Included are the lit-
erature references as well as some basic features such as
the name, geographical position, land-use of the study site,
and the time period. Note that all these malaria variables
can be computed from the LMM output.

Definition of malaria seasonality

The definition of the malaria season is based on the
monthly Entomological Inoculation Rate (EIR,,), which is
observed from field studies. The introduction of the
malaria parasite into the LMM is assured by a constant
influx of new infectious mosquitoes resulting in EIR
values that might exceed those of low transmission
areas. In order to compare ‘truly’ modelled EIR values
with field observations, the artificial EIR values were
removed via two separate LMM runs. The standard run
results in a mixture of bites from the added infectious
mosquitoes and those which were infected when they
bit infectious humans in the simulation. The artificial
EIR values were produced in a second run when only
the added infectious mosquitoes were biting in the
model, achieved by setting the number of produced eggs
per female mosquito (#E,) to zero. Here, the oviposition
of Anopheles females is prohibited and the mosquito
population is therefore not able to grow. The subtrac-
tion of the EIR values of the second run from that of
the standard run results finally in the elimination of arti-
ficial EIR values. Note that the same procedure was used
with regard to the computation of the human biting rate
(HBR).

In field studies, the malaria season is mostly deter-
mined on a monthly scale and is usually referred to
months with EIR,, values above zero [34]. For this rea-
son, in the model the malaria season starts (SSeas) by
definition in the first month with an EIR,, value of at
least 0.01 infectious bites per human. According to the
formulation of the model, the arbitrary EIR value of 0.01
means that during a 30-day month at least one out of
the 100 modelled humans is bitten by an infectious
mosquito. In West Africa, the malaria season usually
ends when the number of mosquitoes decreases at the
end of the rainy season. Therefore, mosquito biting is
reduced to such low numbers that the EIR values are
reduced to zero indicating that transmission has ceased.
Consequently, the last month during the transmission
period defines the end of the malaria season (ESeas).
Some individual years also reveal year-round or even no

Page 5 of 19

malaria transmission for certain locations. The length of
the malaria season (Seas) is therefore the number of
months with EIR,, reaching at least 0.01 infectious bites.
For each site or grid box additionally the length of the
main transmission season (MSeas) is defined as the
number of months in which 75% of EIR, is transmitted,
an index which was used by Hay et al. [37]. Where pos-
sible the month with the maximum malaria transmission
(XSeas) is identified as the month with the highest EIR,,
value.

The use of the transmission threshold of 0.01 infec-
tious mosquito bites per human per month ensures the
attainment of a reasonable transmission level in the
model that can be compared with observations from the
literature. However, the definition of the malaria season
in the model might not be directly comparable to field
studies since observations are subject to a certain detec-
tion limit. That is due to the fact that field experiments
do not continuously measure biting rates (at best two
times in each week of the field campaign) and that these
field studies do not account for every human of the
population of the study site.

Definition of the validation

For the model validation, the LMM runs are driven by
weather observations from meteorological stations in
West Africa. The malaria model simulations are com-
pared against observations from more than 200 sites
using up to eleven different entomological and parasito-
logical variables. The skill of the malaria simulations is
measured by a problem-adapted skill score (see below).
The performance of every particular set of parameter
settings of the model is measured for each of the eleven
malaria variables by this skill score (SC(x)). In addition,
the performance of a set of parameter settings with
regard to all malaria variables is quantified by the sum
of the eleven skill scores (SC(all)). This approach
enables the production of a ranking of different sets of
parameter settings. Finally, the most suitable set of para-
meter settings in terms of the skill score determines the
new LMM version.

The LMM was run with meteorological time series
covering 1973 to 2006 discussed above. Therefore, each
simulation at a particular station produced 34 annual
values for every considered variable (e.g. EIR,). Since
malaria conditions are different between rural and
urban areas [21], only data from rural field sites were
used for the LMM validation. On the other hand, ento-
mological data are never measured continuously because
of the amount of work required in practice [38]. For
this reason, no single long time series of malaria obser-
vations exist. However, field observations of a subset of
the nine malaria variables were frequently found in the
area of the considered weather stations. Unfortunately,
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such malaria data has not been detected for all the used
stations. For example, in the vicinity of Parakou (Benin)
no field observations were extracted from the literature.

A further data issue that must be taken into account
arises from the fact that the malaria field measurements
were not performed at the locations of the weather sta-
tions. However, observation sites are available in the
vicinity of the weather stations meaning that they are
located in same climatic zones (Figure 1). In this con-
text, it must be noted that precipitation can differ
greatly between locations just few kilometres apart, but
meteorological stations are much more coarsely distrib-
uted [39,40]. Also different environmental conditions
(e.g. state of land surface) complicate the comparison
between simulations and field observations. Shaman and
Day [39] allude to the mismatch between the scales at
which disease vectors respond to hydrologic variability
and the scales at which hydrologic variability is actually
monitored. For all these reasons, a reproduction of the
field values of particular years, for example, of transmis-
sion rates is not expected by the LMM. In addition, it
implies that paired annual correlations at single stations
are not useful. Therefore, the usage of standard skill
scores, used to determine the skill in weather forecasting
[41], is not possible with the data sets that are available.
In addition, statistical moments of the model and obser-
vational malaria data cannot be statistically meaningful
tested due to the low sample size of the field observa-
tions. In order to overcome these issues, a subjective
problem-adapted skill score is defined in the following
section.
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Definition of a skill score

A special validation procedure must be defined. It must
be considered that simulations will not be able to repro-
duce single field observations. However, it is possible
that the LMM simulates about the correct mean and
variability of malaria variables, as observed in the field,
since the weather station and the assigned field sites
encounter similar climate conditions. In the following,
location names refer to the name of the weather station,
even if malaria observations from a nearby field site are
discussed. The assignment of the weather stations to the
malaria study sites is given in Additional file 2.

The evaluation claims that the simulated LMM values
are comparable to field observations in reproducing the
malaria-climate relationship across a range of malaria
variables for the locations investigated in this paper. The
validation procedure controls if, in general, the values of
the model simulation agree with the field observations.
Also the quantity of available observations is taken into
account. The following six criteria define a problem-
adapted scoring system (see also Table 2):

The evaluation of the model runs is performed by
means of a skill score (SC), which considers the number
of available observations for each of the eleven malaria
variables. Stations with at least five observations contri-
bute at maximum three or four points to the calculated
skill score. Weather stations with fewer field measure-
ments add one to three points to the skill score (cf.
Table 2). No score is added when stations reveal no
observations. The validation method also makes allow-
ances for the uncertainty of the year-to-year variability.

Table 2 Criteria in terms of the evaluation of LMM simulations

# name description Neps Points var

1 overlap Any observation is included in the simulated range > 4] all variables

2 enclosure Every observation is included in the simulated range >2 4] all variables

3 median The observed median is included in the simulated range >3 +] HBR,, EIR, CSPR, Seas
enclosure MSeas PR, PRyina PRmaxa

4 median The observed median is located within the lower and upper quartile of the >5 41 HBR, EIR, CSPR, Seas
quartile simulations MSeas PRy PRyina PRmaxa
enclosure

5 penalty The simulations exceed the one and a half time maximum of all field observations >1 -5 HBR, EIR,

6 frequency

I: The observations as well as the simulations show the same month maximum >3 +]

SSeas ESeas XSeas

occurrence of the monthly entomological inoculation rate (EIR,).

Il: The majority of the observations and simulations show no or yearround

transmission, respectively.

Ill: The observations and simulations reveal mostly no transmission.

IV: The month showing the most field observations of multiple years of EIR,, is
identical to the particular month resulting from the simulation.

SSeas/ESeas: Criterion | or |l
XSeas: Criterion Il or IV

Criteria in terms of the evaluation of LMM simulations which are based on field observations in the area of synoptic stations. The malaria runs are rated
separately for each station. Every fulfilled criterion increases the score of such a model run by one point. The sum of the achieved points at all stations and from
the eleven entomological and parasitological variables finally add to the skill score of a particular LMM set of parameter settings (SC(all)). Columns: #: criteria
number; name: short term; description: criterion description; neps: lowest number of available observations needed to fulfil the criterion; points: assigned number

of points; var: malaria variables for which the particular criterion are applied.
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A proper analysis would only be possible for numerous
available observations per station. In fact, an estimate of
the frequency distribution of observed malaria para-
meters is not feasible from the few records available.

The computed skill score is based on the probability
that observations, assigned to particular weather sta-
tions, fall into certain ranges of simulations (Table 2). It
is expected that any observation is included in the range
of the model simulations with regard to this station data
(criterion 1: overlap). Of course, the model version per-
forms better when every observation is enclosed in the
simulated range (criterion 2: enclosure). Where there
are at least three available records the observed median
is also calculated. The confidence in the run increases
when the observed median is contained in the range of
the model simulations (criterion 3: median enclosure).
The reliability of the median estimate increases for sites
where five observations or more field measurements
exist. Only for at least five available records the condi-
tion has to be met that the observed median falls within
the range of the lower (25th percentile) and upper quar-
tile (75th percentile) of the 34 simulated annual values
(criterion 4: median quartile enclosure). For model inte-
grations with different parameter settings, every fulfilled
criterion at a weather station adds one point to the skill
score of a particular malaria variable.

This rating system might favour model versions gener-
ating unrealistic high values and a strong interannual
variation. This fact is countered by another criterion
that eliminates unrealistically high entomological values
(criterion 5: penalty). Five penalty points are applied to
the skill score of HBR, and EIR,, when any simulated
value exceeds one and a half times the maximum of all
available field measurements (see Table 2). This thresh-
old seems to be a reasonable measure for the restriction
of simulated values. Sets of parameter settings leading
to unrealistic high biting rates (HBR, and EIR, values)
are rejected.

The third and fourth criteria are not calculable for
three of the variables under certain circumstances (cf.
Table 2): the start (SSeas) and end (ESeas) of the
malaria season (for which the criteria are undefined in
the cases of no transmission or year-round transmis-
sion), and the month of maximum transmission (XSeas)
(for which they are undefined in the case of no trans-
mission). For these variables, the maximum of the fre-
quency distribution is compared instead (criterion 6:
frequency). Regarding SSeas and ESeas, a model version
is given an additional score of one point when both the
observations as well as the simulations show the same
month of maximum occurrence. A point is also gained
when the majority of the observations and simulations
show no or year-round transmission, respectively. For
XSeas, a model version can achieve one additional point
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for a weather station either if both the observations and
simulations reveal mostly no transmission or if the
month showing the most field observations of multiple
years of maximum EIR,, values is identical to the parti-
cular month resulting from the simulation (e.g. if for a
single station the strongest transmission values are both
mostly observed and simulated for August).

For each weather station, a skill score is determined
for every set of parameter settings and for every one of
the eleven entomological and parasitological variables
(e.g. for Ouagadougou the skill score in terms of EIR,,
i.e. SC(EIR,), is 4 for the LMM,,0; see Figure 3). The
skill scores from the weather stations add up to the skill
score of a particular variable (SC(x); e.g. SC(EIR,) is 41
for the LMM,010; see Figure 3). Finally, the sum of all
skill scores of a particular set of parameter settings is
calculated (i.e. SC(all), which is 279 for the LMMy;0).

For each particular station and each variable a certain
number of points are achievable (e.g. 54 points can be
reached in terms of SC(EIRa)). As stated above this opti-
mum depends on the availability of field observations
(see Table 2), which differs for each weather station and
each malaria variable. The minimum number of possible
points is zero for stations, with no available field obser-
vations (e.g. see Parakou in Figures 3, 4, and 5). At max-
imum four points can be achieved, when at least five
observations are available. For example, numerous field
observations are available for Bobo-Dioulasso (see Figure
3, 4, and 5). In case of SSeas, ESeas, and XSeas at maxi-
mum only three points can be achieved since only three
criteria are applied for these variables (see Table 2).

Results

In the following, undefined parameters of the LMM are
calibrated by means of West African field observations.
A two step approach is used in order to reduce the
degrees of freedom of the model within each step. The
performance of the model runs is measured by the pro-
blem-adapted scoring system. At the end, the set of
parameter settings revealing the highest skill score is
selected. Finally, the simulations of the LMM,q04 and
LMM,,0 are compared to field observations of the ele-
ven entomological and parasitological malaria variables.

Calibration of the LMM

The majority of the model parameters were determined
in the first part of this study [10]. However, some para-
meters were not allocatable due to a large spread in
their published values or due to the lack of data. These
undetermined values were two of the three parameters
(S and U,) of the fuzzy distribution model. Here, S
defines the most suitable 10-day accumulated rainfall
conditions for mosquito breeding, meaning rainfall pro-
vides open water surfaces, which tend not to be flushed
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Stations are grouped as in Figure 2.
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Figure 3 Observed and simulated annual entomological inoculation rates. Validation of LMM,q;, simulations in terms of the annual
entomological inoculation rate (FIR,) in the area of the 34 synoptic stations in West Africa used in this study. The simulated 34 annual EIR,
values between 1973 and 2006 are illustrated as grey box-and-whisker plots (the numeric values of maxima beyond the scale of the ordinate are
plotted on the upper abscissa). Field observations of EIR, (green lines and box plots) are either displayed as a vertical line (two available
measurements), a vertical line with the median (three or four values), or as a box-and-whisker plot (> five data points). Each observation is
furthermore inserted as a red circle and the number of observations is given above the entered observations (red digits). The skill score in terms
of EIRa (SC(EIR,)), a measure of the performance of the simulations with regard to observed data, is denoted for every station as a blue digit.

out by heavy rainfall. U, defines the upper limit of suita-
ble rainfall conditions above which all breeding habitats
are flushed out. Note that U/}, which is the lower limit
of suitable rainfall conditions, was simply set to 0 mm
since under prolonged dry conditions ephemeral water
bodies will dry up [10].

In addition, the number of produced eggs per female
mosquito (#E,), the cap on the number of fertile mosquitoes
(CAP), as well as the shift off relative to the dry season
mosquito survival probability (p,,) are undetermined.
Here, p4, is used to reduce vector survival during dry
atmospheric conditions [10]. In the first part of this study
[10], some parameter values were estimated from the

range of published data and few were based on educated
guesses, this might have resulted in some false estimation
of these predefined parameters. However, the following
calibration of the remaining parameters will largely com-
pensate such inaccurate assessments.

As outlined above, the LMM calibration was underta-
ken for weather conditions at meteorological stations
and included two general steps: (i) The initial experi-
ment enabled a rough estimate of realistic parameter
values and allowed the setting of two undetermined
parameters. (ii) The second set of model runs permitted
a final adjustment of the remaining model parameter
settings. In order to simplify the calibration procedure,
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pa; was initially set to zero. Altogether three different
settings were used for U, (i.e. the upper limit of suitable
rainfall conditions in terms of larval breeding of the
fuzzy distribution model). Ahumada et al. [42] defined
extreme rainfall as more than 255 mm of cumulative
rainfall throughout a period of three days. Their model
markedly reduces the mosquito population under exces-
sive rainfall. According to a 10-day period, which is
used by the fuzzy distribution model, this suggests a U,
value of about 500-1000 mm. In fact, U/, was either set
to 500, 750, or 1000 mm.

First step

For the isolation of particular sets of parameter settings
the remaining parameters (S, U,, #E,, and CAP) were
simultaneously varied (S: 5, 10, 15, 20, and 30 mm; Us:
500, 750, and 1000 mm; #E,: 50, 75, 100, 125, and 150
eggs; CAP: 250, 500, 750, 1000, and 2000 fertile
females). The various LMM simulation runs were com-
pared to data from the eleven entomological and parasi-
tological variables (see Additional file 2), these are:
HBR,, EIR,, CSPRa, SSeas, ESeas, Seas, PR,, PR,
and PR,,;,, , The first 375 (originating from the combi-
nation of 5-3-5:5 settings) different LMM settings were

ranked with regard to the skill score of all variables (SC
(all)) and in terms of the two entomological variables
HBRa and EIRa (i.e. SC(HBR,, EIR,) = SC(HBR,)+SC
(EIR,)). Here, SC(HBR,, EIR,) is measuring the skill of
the model simulation in terms of both HBR, and EIR,,.
The ranking of sets of parameter settings with regard
to SC(HBR,, EIR,) showed that S (i.e. the most suitable
rainfall condition in terms of larval breeding of the
fuzzy distribution model) affects mainly the spread of
malaria in the northern part of the Sahel, for example,
at various stations in Senegal [11]. In these dry areas
the growth opportunity of the mosquito population is
strongly suppressed by the fuzzy distribution model
when S is set to high values. In this case, fewer suita-
ble breeding sites are assumed in the model reducing
the number of eggs entering and of larvae surviving
the aquatic stages [10]. Obviously, S has to be set to
relatively low values in order to keep malaria going in
the northern Sahelian zone. However, too low S values
seem to be unrealistic since the potential evaporation
in tropical Africa usually exceeds several millimetres
per day. The optimal 10-day rainfall of S is finally
fixed to 10 mm since this value still enables the
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of the asexual parasite ratio. Same as Figure 3 but for the annual

simulation of malaria in the northern part of the Sahel
(see step 1.1 in Table 3). This analysis shows the clear
need for the validation of the model under different
rainfall conditions.

The evaluation of the performance of the 375 model
versions also enabled a final setting of U, since highest
skill scores were exclusively generated by a value of
500 mm [11]. The lowest skill scores were attained by
settings with high values of CAP, #E,, and U,, as well
as low values of S, which apparently evoke large

Table 3 Overview of calibration experiments

mosquito populations (see Additional file 3 and step
1.2 in Table 3).

A closer analysis of the data revealed that malaria
transmission rates in the Sahel are fairly sensitive to the
setting of #E, (i.e. the number of produced eggs per
female mosquito) [11]. The median HBRa value rises,
for example, at Linguére, Mopti, and Diourbel from less
than 100 to several thousand bites per year, when #E,
increases from 50 to 150 eggs. Unfortunately, only nine
field observations of HRB, and EIRa are available north

step Parameter area SC result

step 1 pa=0 - - -

step 1.1 Se [5 30] northern Sahel SC(HBR,, EIR ) =>S5:=10mm

step 1.2 U, e [500, 1000] West Africa SC(all) = U, : =500 mm

step 1.3 #E, € [50, 150] Sahel SC(HBR,, EIR,) = #E, € [75, 125]

step 14 CAP e [250, 2000] West Africa SC(all) = CAP e [300, 900]

step 2 CAP € [300, 900] West Africa SC(HBR,, EIR,) = CAP: 400 fertile
#E, € [70, 130] females, #E, : = 120 eggs,
pa; € [0, 10] Pa; - = -10%

Overview in terms of the evaluation of the performed calibration steps. Columns: step: step number; parameter: particular settings of the model parameter; area:
area of interest; SC: applied skill score; result: result of the calibration step (for more details see text).
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of 14°30’N. This fact impeded a proper determination or
a further confinement of #E,. However, the LMM
underestimates (overestimates) EIR,, when #E, is set to
50 (150) eggs (see Additional file 3 and step 1.3 in
Table 3).

After confirming the parameter range of #E, (75-125
eggs) also CAP (i.e. the cap on the number of fertile
mosquitoes) was more precisely determined (step 1.4 in
Table 3). CAP is only of importance for comparatively
large annual rainfall amounts. CAP markedly reduces
the number of deposited eggs and hence biting rates
under wet conditions. In fact, the reduction is markedly
pronounced in the Sudanian zone, along the Guinean
coast, and in Cameroon for low CAP values (<750 fertile
females). In contrast, large values of CAP (= 1000) cause
fairly high numbers of non-infectious and infectious
mosquito bites [11]. The ranking relative to SC(all)
shows that LMM versions reveal a small skill when CAP
is set to 250 fertile females [11].

Second step

The basis of the second iteration of the LMM calibra-
tion are the conclusions taken from the first step. For
this reason, only the setting of CAP, #E,, and p,, needed
to be varied. For the second set of runs, the #E, values
were varied between 70 and 130 eggs (7 steps at incre-
ments of 10 eggs) and CAP (i.e. the cap on the number
of fertile females) was set between 300 and 900 fertile
females (13 steps at 50 fertile females). Five different
values for p,| (i.e. the reduction of dry season mosquito
survival) were in addition utilised (0.0, -2.5, -5.0, -7.5,
and -10.0%). The second set of model runs included
altogether 455 (originating from the combination of
7-13-5 settings) different model sets of parameter
settings.

The second set of runs shows that low (high) #E, and
high (low) CAP values produce the highest skill scores
in terms of the eleven variables (SC(all)). As stated
above this is because #E, and CAP tend to compensate
each other at the more humid locations (see Additional
file 3). Particularly notable is the fact that various model
versions exhibited comparatively high skill scores. This
fact makes a final objective setting of the remaining
parameters difficult. For simplicity, the model version
with the highest skill score in terms of HBR, and EIR,
(SC(HBR,, EIR,)) was chosen.

The set of parameter settings with #E, = 120 eggs,
CAP = 400 fertile females, and p,;; = -10% produced the
highest skill score in terms of HBR, and EIR,. A total of
78 from 106 possible points (73.6%) was reached by this
model version. With regard to SC(all) altogether 279
from the 440 possible points were gained (Additional
file 3).

The #E, value of 120 eggs is in the middle of observa-
tions (see Additional file One of Ermert et al. [10]). The
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pay value of -10% enables the simulation of a realistic
end of the malaria season. Malaria transmission stops
one to two months earlier in the model when this p;|
value is applied (cf. Figure 4). The correspondence with
MARA (mapping Malaria Risk in Afrika project) maps
[43] is improved by the earlier break of malaria
transmission.

Validation of the LMMyg40

Based on weather conditions observed at meteorological
stations, results of the LMM simulations using the final
set of parameter settings (see Table 1) compare well to
observed values of eight entomological variables. The
new model version leads to the simulation of about the
same EIR, values as observed (Figure 3; SC(EIR,) = 41
(54)) in both epidemic and endemic malaria areas of
West Africa. For example, the LMM achieves 15 from
17 achieveable points with regard to criterion 1 (enclo-
sure), all points in terms of criterion 3 (median enclo-
sure), and 6 out of 8 points regarding criterion 4
(median quartile enclosure). The performance of the
model is lower in terms of criterion 2 (enclosure), which
appears with criterion 4 (median quartile enclosure) to
be the most rigorous criterion.

Low EIR, values are modelled under dry conditions
in the Sahel under epidemic malaria conditions. The
EIR, values are much higher for annual rainfall of
about 1000 mm and again decrease as observed in the
field data when the model is subject to higher annual
rainfall (Figure 3). Within endemic malaria areas the
LMM,41 simulation encompasses in most cases the
observed values of EIR,. For some stations with
numerous observations even the median values of EIR,
are comparable, for example, in vicinity of Bobo-Diou-
lasso in Burkina Faso (13 observations) or in the area
of Kaolack in Senegal (six observations). However,
there are also some exceptions, for example, in vicinity
of Barkedji in Senegal the simulated EIR, is much
lower than two observations [44]. The high biting rates
in this area are probably a result of special local envir-
onmental conditions. LeMasson et al. [44] and Molez
et al. [45] conjectured that the presence of clay hol-
lows, which collect water as soon as the rains start,
caused a long persistence of temporary ponds and
hence of malaria transmission. With regard to the
annual human biting rate (HBR,) and consequently
also for the annual mean of the circumsporozoite pro-
tein rate (CSPR,), similar statements are valid. There is
a correspondence between the LMM,g1o simulations of
HBR,, as well as CSPR, and observations from entomo-
logical studies (SC(HBR,) = 37(52); SC(CSPR,) = 33
(55); cf. Additional file 4). At nearly every station at
least one observation is enclosed in the simulation (cri-
terion 1; see Table 4). In only two cases the observed
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Table 4 LMMyq04 and LMM,q40 performance
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criteria number (see Table 2)

criteria number (see Table 2)

SC(x) 1 2 3 4 5 6 LMM,oos 1 2 3 4 5 6 LMMyoo
SC(HBR,) 7(16) 516)  5(13)  0(7) 60 - -43(52) 14(16) 8(16) 11(13) 47) 0 - 37(52)
SC(CSPR,) 6(18) o1e) 204 1) - - 9(55) 14(18) 4(16) 12(14) 3(7) - - 33(55)
SC(FIR,) 12(17) 7(16)  1013)  18) 50 - 20(54) 15(17) 7(16)  13(13) 6(8) 0 - 41(54)
z 25(51) 12(48) 17(40)  2(22) -110 - 54(161) 43(51) 19(48) 36(40) 13(22) O - 111(161)
SC(Seas) 11006)  5(12) 709 4(5) - - 27(42) 15(16) 4(12) 8(9) 45 - - 31(42)
SC(MSeas) 13(14) 5(12) A7) 0(4) - - 2(37) 12(14) 9(12) 7(7) o4 - - 28(37)
SC(XSeas) 12(17) 4(14) - - - 2010 18(41) 15(17) 6(14) - - - 200 23(41)
SC(SSeas) 11(17) 2(14) - - - 3010) 16(41) 16(17) 7(14) - - - 5(10) 28(41)
SC(ESeas) 15(16) 3(12) - - - 409 2(37) 13(16) 3(12) - - - 20 18(37)
z 62(80) 1964 11(16)  4(9) - 9290 105(198) 71(80)  29(64) 15(16) 49 - 929 128(198)
SC(PRa) 4(13) 109) 260 12) - - 8(29) 9(13) 3(9) 3(5) 102) - - 16(29)
SCPRmay, o) 7(11) 2(7) 36)  02) - - 2(25) 8(11) 4(7) 4(5) 0 - - 16(25)
SC(PRmin, o 3(12) 1(8) 005) 0R) - - 427) 5(12) 1(8) 2(5) 02) - - 8(27)
z 14(36) 404) 515 1(6) - - 24(81) 22(36) 8(24)  9(15) 16) - - 40(81)
SC(al) 101(167)  35(136)  33(71)  737) -110  9(29) 75(440) 136(167) 56(136) 60(71) 18(37) 0 929  279(440)

Performance of LMMyg04 and LMM,g,4 relative to entomological and parasitological field studies in West Africa. Digits are taken in bold, when either the LMM,g04
or the LMM,g;0 performs better. Values in italics indicate no difference between the two model versions. The numbers in brackets refer to points that could be
theoretically achieved (see text). Inserted are the scores of the LMM,g04 and LMMyg10 in terms of single criteria (see Table 2) as well as to their sum (columns:
LMM 004 and LMMsg40). Columns: SC(x): skill score with regard to variable x; 1: score regarding the first criterion (overlap); 2: enclosure; 3: median enclosure; 4:
median quartile enclosure; 5: penalty; 6: frequency. Subtotals (X) are furthermore inserted in terms of the skill scores of entomological (HBR,, CSPR,, and EIR,),
malaria seasonality (Seas, MSeas, XSeas, SSeas, and ESeas), as well as parasitological variables (PR, PRmax, a and PRuyin. 4). The comparison of the skill scores of the
eleven malaria variables with regard to the performance of the LMMyg04 and LMM,g,0 (including only values from columns: LMMyg04 and LMMsg40) reveals a

P value of 0.0064 in terms of the Wilcoxon signed rank test.

median is not enclosed in the LMM simulations (cri-
terion 3; Table 4).

Another result of the calibration is that the simula-
tions capture the variability of malaria transmission. The
interannual variability of EIR,, for example, is fairly
large. For most stations the number of infectious mos-
quito bites fluctuates between values of less than 100
and several hundred. Unfortunately, long-term studies
are rare and continuous observations from rural sites
are only available from Ndiop for four years (Senegal;
13°41’N, 16°23'W). In this Sahelian village, malaria
transmission varied in the mid of the 1990 s between
seven and 63 infective bites per human per year [34].
For this area, simulated EIR, values range from almost
zero to about 158 infectious bites per human per year.
Note that the LMM simulation refers to the meteorolo-
gical data from Kaolack, which is located about 55 km
to the northeast of Ndiop.

The simulation of the malaria seasonality by the
LMM,g1¢ is consistent with epidemic and endemic field
observations, despite the fact that a part of the field
observations reveals considerably heterogeneous values.
The simulated length of the season agrees well with the
observations (SC(Seas) = 31(42)). Only in one out of 16
cases is there no overlap (criterion 1) with observations.
In three out of the five cases with at least five field
observations, the optimum scoring of four points is

achieved (see Additional file 4). In general, the season
length shortens with decreasing annual rainfall. Short
malaria seasons and no malaria transmission are simu-
lated for the Sahel and year-round transmission is
found, for instance, in Cameroon. Also the length of the
main transmission season corresponds roughly to the
observations (SC(MSeas) = 28(37)). At only two of the
14 weather stations no overlappings (criterion 1) are
found. Criterion 3 (median enclosure) is fulfilled for
each of the seven cases (Table 4).

The skill score in terms of the maximum transmission
month (XSeaS) gains 23 from the 41 achieveable points
(SC(XSeas) = 23(41); cf. Additional file 4). The month of
maximum transmission overlaps (criterion 1) between
simulations and observations in 15 out of 17 cases and
all observations are enclosed in the simulation range
(criterion 2) in six out of 16 cases. The simulated
month with the maximum transmission therefore corre-
sponds frequently with that of the observations, espe-
cially in the Sahel. However, in terms of XSeas, the
model simulations disagree in Cameroon, at the weather
stations of Yaoundé and Koundja for areas with year-
round endemic malaria transmission.

Both the start (SSeas) and end (ESeas) of the malaria
season are realistically reproduced by the LMMyg1o ver-
sion (Figure 4; SC(SSeas) = 28(41); SC(ESeas) = 18(37)).
With regard to SSeas the observations and simulations
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do not overlap only in one case (criterion 1; Table 4). In
terms of ESeas, in 5 out of 10 cases the maximum num-
ber of observations and simulations are found in the
same month (criterion 6; Table 4). For weather stations
that observed no malaria transmission in most years, the
model also simulates most frequently no transmission.
The same is true for Yaoundé; in terms of year-round
transmission (see Additional file 4). Observations that
fall outside of simulations hardly differ more than one
month.

The performance of the LMM;4;¢ with regard to the
annual mean (PR,), annual minimum (PR,,;, ,) and
annual maximum of the asexual parasite ratio (PR, .)
is somewhat mixed. The main reason for the relatively
low skill scores is the heterogeneous parasitological
observations that cannot be reproduced by the LMM
(Figure 5 and Additional file 4). Measurements of the
PR,,.;.. . for example, exhibit a remarkable spread. Nine
observations of PR,,;, , reveal higher values than 50%
whereas 23 values are lower than this threshold. These
differences suggest that some special factors are strongly
affecting PR values. As a consequence, the LMM;j¢;0
reaches only eight from 27 possible points (Figure 5;
Table 4). Due to the fact that there is a stronger year-
to-year variability in the LMMyg1¢ in terms of the simu-
lation of PR, and PR,,,. , the model performs better
with regard to these two parasitological variables (SC
(PR,) = 16 (29); SC(PRmax;a) = 16 (25); Table 4; Addi-
tional file 4).

LMM,g10 versus LMMgo4

In this section, the performance of the LMM version of
2004 (henceforth called LMM,g,) is compared to that
of the LMM,g19. The LMM is validated using simula-
tions that are based on time series driven by weather
station observations (see Table 4). In addition, gridded
LMMj004 and LMMyg10 runs driven by the bias-
corrected REMO data (see data sources) are compared
(Figure 6).

The validation of the LMM,q04 and LMMy4; runs
based on weather station data from West Africa clearly
demonstrates a significant improvement of the original
model version (the P value is 0.0064; see Table 4).
Except for ESeas, all skill scores are higher for the
LMM,010 than for the LMM,qp4. Comparison of the
LMM,04 simulations with field observations reveal two
general features: (i) The LMMygo4 fails to simulate
malaria transmission in various malarious semi-arid
regions and significantly overestimates the transmission
in humid areas especially regions with endemic malaria
territories. Note here that the LMMyg04 was not
designed to be used in endemic areas. (ii) Values of the
parasite ratio, expressed in the three parasitological vari-
ables, are not optimal in the original model version. In
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terms of ESeas, the improvement of the model, espe-
cially in the Sahel, seems not to show up due to the
lack of numerous observations of ESeas in this area.
Nevertheless, the LMM,g10 represents a significant step
forward in the modelling of a weather-driven malaria
transmission cycle.

The first feature (i) is a result of the simplified linear
relationship between rainfall and the deposition of eggs
by female mosquitoes in the LMMjg4. In predominantly
dry areas the model is not able to produce a reasonable
size of the mosquito population. The LMM,q04 hence
fails to simulate malaria transmission in the northern
part of the Sahel (Figure 6a &6c¢). By contrast, in the
LMM410 runs, malaria transmission is found as far
north as about 18°N (Figure 6b &6d). This seems to be
realistic since, for example, a definite malaria season
was observed south of Agadez [46], which is located at
about 17°N. Further the MARA project detected epi-
demic-prone areas up to 20°N [47].

In the second step, LMM runs were driven by gridded
and bias-corrected REMO data for 1960-2000. Based on
this input data the LMM,19 seems to reproduce a rea-
listic picture with regard to transmission rates and the
malaria seasonality for the whole of Africa including epi-
demic and endemic malaria areas (cf. Figure 6b &6d).
This is in contrast to the LMM,go4 which was originally
only constructed for epidemic malaria territories [9].
This former model version simulates a tremendous
number of mosquitoes and generates significantly too
high EIR, values for humid areas such as the equatorial
tropics (Figure 6a). HBR,, partly exceeds 1,000,000 bites
per annum in these endemic malaria areas [11]. Note
that HBR,, field values are usually much lower than
50,000 bites (see Additional file 2). However, the original
model version also reveals deficiencies in terms of the
spread of malaria within epidemic regions. The
LMM,004 fails to simulate malarious areas north of
about 16°N.

The infectiousness of mosquitoes is underestimated by
the LMM,4 since values of the circumsporozoite pro-
tein rate (here CSPR,) are in general lower than 1% [11]
resulting from the comparatively low mosquito survival
of the Martens I scheme (see Figure 3 in [10]). In addi-
tion, the start of the malaria season is notably delayed
in the LMMygo4 simulations. The start of the season
occurs about one to two months later under the original
than under the new LMM version [11]. The strong
growth of the mosquito population causes shorter main
transmission seasons (MSeas values) in the LMMyg04
runs than in that of the LMM,y;0 [11]. Moreover, a
later occurrence of XSeas is found for the LMMygg4
simulations.

Deficiencies of the LMM,o4 are also found for the
three parasitological variables. Almost the whole
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Figure 6 Simulated malaria distribution. LMM,n,, and LMM,q;, simulated present-day (1960-2000) malaria distribution and season length
based on bias-corrected daily precipitation and temperature data from the regional climate model REMO. Displayed are (a & b) the annual
entomological inoculation rate (EIR,), (c & d) the start month of the malaria season (SSeas), (e & f) the annual mean of the asexual parasite ratio
(PR,), and (g & h) the standard deviation of the annual maximum of the parasite ratio (6(PRmay, o)-
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population clears the malaria parasite during the dry
season due to the high recovery rate (r) of the LMMyg04
(LMMy004 (LMMyg10): 7 = 0.0284(0.005) day™; see [10]).
Such a characteristic is, however, not found in parasito-
logical surveys (see Figure 5) and results in a very low
skill in terms of PR,,;, , (see Table 4). The strong
recovery from infection, moreover, underestimates the
values of PR, and PR,,,, , [11]. In comparison to
LMM,qo runs, parasite ratios are hence much lower in
the LMM,g04 simulations (see Figure 6e &6f).

One characteristic of malaria epidemic areas is the
sudden and unexpected increase of the parasite ratio
in certain years. Epidemic regions therefore should
reveal a strong interannual variability of the annual
maximum of the asexual parasite ratio (PR,,..
Figure 6g &6h) and in general low annual mean asex-
ual parasite ratios (PR,; Figure 6e &6f). According to
LMM simulations forced with gridded REMO data,
epidemic areas are found along a strip within the Sahe-
lian zone as well as for highland territories and fairly
dry areas in East Africa, Zambia, and Angola (Figure
6g &6h). Most notable is the fact that in the LMMyq04
runs the strip of high epidemic risk is detected about
2-4° to the south in comparison to that of the
LMM,,0. Note that the LMM,q,¢ simulations seem to
be more realistic in comparison to previous assess-
ments of epidemic territories in the Sahel [47]. Differ-
ences between LMMyg04 and LMM,p;¢ simulations are
also found outside of the Sahelian zone. Overall the
LMM,010 seems to result in a stronger interannual
variability of PR, 4

Discussion
The aim of the present study was the development of an
improved weather-driven malaria model, which is able
to simulate malaria transmission in both epidemic as
well as endemic malaria areas. This section provides a
detailed discussion with regard to various aspects of the
present study. The present-day climate performance of
the new model version are discussed relative to results
of former studies and the model calibration is evaluated.
Comparison of LMM,g;( runs with those performed
by the original formulation of the model reveals a signif-
icant improvement (see Table 4) of the model perfor-
mance both for epidemic as well as endemic malaria
areas. In contrast to the LMMygg4, the LMM,0, is able
to reproduce the low transmission rates in the northern
part of the Sahel. This enables, therefore, an improved
detection of epidemic areas, in particular, in the Sahel.
The LMM,q;o validation also shows that the model can
now also be applied for endemic malaria areas. The
usage of the fuzzy distribution model enables the simu-
lation of realistic sizes of the mosquito population under
humid rainfall conditions resulting in reasonable
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transmission rates. Moreover, the lag in the malaria sea-
sonality has disappeared in the new version of the
LMM.

Various published malaria distribution maps [43,48]
correspond well with the simulated spread of malaria by
the LMM0;0. However, in certain parts the simulated
intensity of malaria transmission differs considerably
from published malaria maps. The LMM,q;0 in general
seems to predict higher transmission rates than satellite-
derived predictions of EIR, from Rogers et al. [48]. The
maps of transmission intensity provided by Gemperli et
al. [49] are fairly patchy. In fact, the prediction from
Gemperli et al. significantly suffers from the neglected
interannual variability of malaria. Based on the few
available EIR, observations it is difficult to judge which
estimates are closer to reality. However, the validation
of the LMM,;( under different climatic conditions pro-
vides evidence that the present study generated realistic
biting rates and a reasonable interannual variability.

The calibration of the LMM was performed in West
Africa for different atmospheric conditions of epidemic
and endemic malaria regions. Realistic temperature and
precipitation time series were reconstructed from var-
ious synoptic weather stations. The comparison with
observations from eleven entomological and parasitolo-
gical variables finally enabled the setting of undeter-
mined model parameters.

The databases (including meteorological, entomologi-
cal, and parasitological observations) for the LMM cali-
bration are not optimal. There is a mismatch between
the scales at which a disease vector responds to hydrolo-
gic variability and the scales at which hydrologic varia-
bility is actually observed. Systems should be developed
that monitor hydrologic variability at scales correspond-
ing to disease system ecologies [50]. In this study, the
generation of realistic meteorological station time series
enabled the comparison with atmospheric conditions
from malaria field studies, which were not conducted
directly at the weather stations. These sites therefore in
any case exhibit a different temporal variability of rain-
fall and temperatures. This might be one reason,
amongst other factors such as environmental conditions,
why year-to-year comparisons between observation and
simulation were weakly correlated at single locations. In
order to circumvent this problem, the present study
refrained from looking at paired annual correlations at
single stations but applied a problem-adapted scoring
system.

The required historical entomological and parasitolo-
gical data are rarely available with sufficient coverage.
Most locations show only one, two, or even no field
measurements. It is therefore likely that a larger set of
observations would have an impact on the result of the
model calibration. Ideally, model simulations and
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malaria observations should be compared from year-to-
year. However, this would require the simultaneous
monitoring of long-term malaria data and meteorologi-
cal measurements. Such long time series are available
for the area of Ndiop/Senegal (S. Louvet, personal com-
munication, 2007), but these data sets are not publicly
available.

The close ranking of diverse model runs as well as the
lack of sufficient validation data further restricted an
objective formal fitting of the model. In fact, various
steps of the calibration procedure were subjective. Due
to high computational costs it was furthermore not pos-
sible to fit all remaining model parameters simulta-
neously. However, because various settings compensate
each other it is likely that the final model formulation
conforms as much as possible to reality.

The calibration and validation of the model should
also be ideally not only restricted to West Africa. How-
ever, such an extension to, for example, East Africa was
beyond the scope of this study. The Malaria Atlas Pro-
ject intends to provide access to various malaria studies
[51]. This might provide an efficient access to malaria
data beyond that of West Africa. Such an extension
would ideally include East African highlands and an esti-
mation of the sporogonic temperature threshold.

This study was naturally not able to account for all
processes involved in the spread of malaria. Some fac-
tors might be included in a future extension of the
LMM. The simulation of the parasitological malaria
variables by the LMM,q1¢ is a simplification of real pro-
cesses. The validation of the LMM,4;9 by means of
parasitological measurements in West Africa revealed
shortcomings of the new model version. Lower skill
scores were achieved by the three parasitological vari-
ables when compared to the results from the eight ento-
mological variables.

In addition to the lack of immunity, the LMMjp10
does not account for other malaria factors such as che-
moprophylaxis and human activities. However, this
could be implemented by means of a variable parameter
setting. Observations suggest a greater variability of the
parasite ratio. At Bobo-Dioulasso, for example, the ten
observed annual mean asexual parasite ratios (PR,)
range between 29.1 and 77.5%. In contrast, the 34
annual values of the LMM,g;( only span values between
50 and 70% [11].

Due to the lack of long-term observations, Kleinsch-
midt et al. [52] and Gemperli et al. [49] were forced to
neglect the interannual variability of PR. This fact might
again partly be responsible for their projected irregular
PR pattern in West Africa. Their maps also show a
sharp decrease of PR, north of about 15°N. In contrast
to the LMM,;o runs and the Garki model simulations
from Gemperli et al. [49], PR, is frequently lower than
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50% south of 15°N. Only few regions exhibit higher PR,
values than 70%, which are simulated by the LMMy,,.

It should be pointed out here that climate is rarely the
only important driver of malaria. Numerous other stu-
dies showed [21,22,53,54] that in particular human
activities are crucial for the transmission and prevention
of malaria across Africa. For example, the modification
of the landscape by irrigation [55], forest clearing [56],
or urbanization [57] can significantly alter malaria trans-
mission. The present study assessed only the malaria
risk for rural areas without the influence of permanent
breeding places. The applicability of this analysis is
therefore limited when permanent water bodies or
urban centres are present. In principle, the calibration of
the LMM,(;9 could also be performed for urban areas.
However, such an undertaking seems to be hampered
by the lower number of available observations (see
Additional file 2).

Conclusions

One of the most comprehensive studies to date in terms
of gathering validation data and information from the
literature for the development of a new version of an
existing malaria model was conducted for West Africa.
The first part of this study [10] provided new parameter
settings of the LMM and changed some key processes
in the model. The performance of numerous model ver-
sions were compared to malaria field observations from
rural sites with no malaria measures and irrigation in
order to maximise the climate-driven malaria impact.
The comparison with observations from eleven entomo-
logical and parasitological variables finally enabled the
specification of a final set of parameter settings of the
model. Validation of the new LMM version in West
Africa reveals that the simulations and malaria seasonal-
ity compare well with entomological field observations
of epidemic and endemic malaria areas. The LMM,q;g
also demonstrates a fairly realistic simulation of the
malaria spread as well as an improved detection of epi-
demic risk in Africa. Due to model limitations, the per-
formance of the LMM,q,o is somewhat weaker with
regard to parasitological variables.

It is concluded that the LMM,g;( represents a signifi-
cant step forward in the modelling of a weather-driven
malaria transmission cycle. In contrast to the original
model, the application of the new model version is not
only restricted to epidemic malaria regions but the
usability is now extended to endemic malaria areas.
Ermert [11] hence used the LMM,q;( for the assessment
of malaria risk under the influence of observed and pro-
jected climate change using regionalized climate projec-
tions for Africa. The LMM,q,, simulated transmission
rates were passed to the Garki model to form a hybrid
malaria model, which is able to consider further aspects
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of the malaria disease such as age-dependent parasite
ratios as well as the immune status of the population. In
the near future, this hybrid model will be applied in a
health early warning system, which is implemented by
the QWeClI (Quantifiying Weather and Climate Impacts
on Health in Developing Countries) project from the
European Community’s Seventh Framework Research
Programme. Further work might enable the inclusion of
some other processes involved in the spread of malaria
into the LMM.

Additional material

Additional file 1: Synoptic weather stations. Information relative to
synoptic weather stations from West Africa. The country, name, identifier,
latitude and longitude positions, as well as the elevation of the
meteorological stations are given. The LMM was driven by reconstructed
temperature and precipitation time series (1973-2006) from these
meteorological stations.

Additional file 2: Entomological and parasitological data. Data with
regard to entomological and parasitological observations from malaria
field studies.

Additional file 3: Skill scores in terms of the LMM validation. Ranks
in terms of skill scores as computed for simulations of different LMM sets
of parameter settings: (1) Top 10 and last 5 of 300 malaria runs from the
first calibration step according to the skill score of the annual human
biting and entomological inoculation rates (SC(HBR4EIR,)). (2) Top 10 of
300 malaria runs from the first calibration step in terms of all eleven
entomological and parasitological malaria variables (SC(all)). (3) Top 10 of
455 malaria runs from the second calibration step relative to SC(HBR,,
EIR,). (4) Top 10 of 455 malaria runs from the second calibration step
regarding SC(all).

Additional file 4: Observed and simulated entomological and
parasitological values of the LMMy,0. Validation of LMMg10
simulations in terms of HBR,, CSPR,, Seas, MSeas, XSeas, SSeas, PR,, and
PRmax, o in the area of the 34 synoptic stations in West Africa as ordered
in Figure 2.

List of abbreviations

DWD: German Weather Service; ECHAMS5/MPI-OM: European Centre
HAmburg Model, 5th generation/Max-Planck-Institute-Ocean Model; GSOD:
Federal climate complex Global Surface Summary of Day version 7; LMM:
Liverpool Malaria Model; LMMygo4: Liverpool Malaria Model version of 2004;
LMM010: Liverpool Malaria Model version of 2010; MARA: Mapping Malaria
Risk in Africa;

List of symbols

#E,: number of produced eggs per female mosquito; CAP: cap on the
number of fertile mosquitoes; CSPR: CircumSporozoite Protein Rate; CSPR,;:
annual mean CircumSporozoite Protein Rate; EIR: Entomological Inoculation
Rate; EIR,,: monthly Entomological Inoculation Rate; EIR,: annual
Entomological Inoculation Rate; ESeas: End month of the malaria Season;
HBR: human Biting Rate; HBR,: annual Human Biting Rate; MSeas: length of
the Main malaria Season; py): dry season mosquito survival probability shift
off; PR: asexual Parasite Ratio; PR, annual mean asexual Parasite Ratio; PRqx,
o annual maximum of the asexual Parasite Ratio; PRy, o annual minimum
of the asexual Parasite Ratio; r: recovery rate; R: rainfall; R,: annual rainfall
amount; Rs1o4: 10-day accumulated precipitation; S: most suitable rainfall
condition according to the fuzzy distribution model; SC(all): skill score with
regard to the used eleven malaria variables; SC(x): skill score with regard to
malaria variable x; Seas: length of the malaria Season; SSeas: Start month of
the malaria Season; T: temperature; T,: annual mean temperature; Uy: lower
threshold of unsuitable rainfall conditions with regard to the fuzzy
distribution model; U,: upper threshold of unsuitable rainfall conditions
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regarding the fuzzy distribution model; XSeas: month of maXimum
transmission, i.e. the month with the largest EIR value.
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