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Abstract

Background: Described here is the first population genetic study of Plasmodium malariae, the causative agent of
quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously
thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important.
This study compares the population parameters of the two species in two districts of Malawi with different malaria
transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population
structures.

Methods: Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257

P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for
each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of
infection (MOI), population differentiation, clustering of haplotypes and linkage disequilibrium was performed for
both species. Regression analyses were used to determine association of MOl measurements with clinical malaria
parameters.

Results: Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of
P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean
MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008)
and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between
transmission settings (2.12 vs 2.11) and there was no difference between children and adults. Population
differentiation showed no significant differences between villages or districts for either species. There was no
evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for

P. falciparum samples from the seasonal transmission setting.

Conclusions: The extent of similarity between P. falciparum and P. malariae population structure described by the
high level of multiple infection, the lack of significant population differentiation or haplotype clustering and lack of
linkage disequilibrium is surprising given the differences in the biological features of these species that suggest a
reduced potential for out-crossing and transmission in P. malariae. The absence of a rise in P. malariae MOl with
increased transmission or a reduction in MOI with age could be explained by differences in the duration of
infection or degree of immunity compared to P. falciparum.

* Correspondence: info@driftwoodscotland.com

'Division of Infection and Immunity, Institute of Biomedical and Life
Sciences, Level 5, Glasgow Biomedical Research Centre, Glasgow University,
120 University Place, Glasgow University of Glasgow, G12 8TA, UK

Full list of author information is available at the end of the article

- © 2011 Bruce et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
( B.oMed Central Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:info@driftwoodscotland.com
http://creativecommons.org/licenses/by/2.0

Bruce et al. Malaria Journal 2011, 10:38
http://www.malariajournal.com/content/10/1/38

Background

Malaria in humans is caused by four main species of
Plasmodium: Plasmodium falciparum, Plasmodium
vivax, Plasmodium malariae and Plasmodium ovale.
Plasmodium falciparum is the most prevalent in Africa
and the most pathogenic of these, but in most malaria-
endemic regions multiple sympatric species are found
and co-infection within individual human hosts is com-
mon. Plasmodium vivax is often found as a co-infection
with P. falciparum in endemic regions of Asia and
South America, but is absent from most of sub-Saharan
Africa, where the highest burden of malaria lies. In
Africa, P. malariae is the species most frequently found
in sympatry with P. falciparum [1].

Analysis of polymorphic antigen loci and microsatel-
lites in molecular genetic studies of P. falciparum have
provided great insights into the epidemiology (reviewed
in [2,3]) and population biology [4-6] of this parasite.
Analysis of such loci have also been used in monitoring
the effects of malaria intervention strategies [7-11].
With only a few exceptions [12,13], these studies have
been carried out in isolation from data on other sympa-
tric Plasmodium species. Population genetic data for
P. malariae are scarce. Evidence of polymorphism in
antigenic loci in P. malariae has been obtained using
monoclonal antibodies [14] and has been analysed at
the genetic level for the circumsporozoite protein [15]
and the drug-resistance locus DHFR [16]. The clearest
insight into the population genetics of P. malariae has
been given by microsatellite data which have demon-
strated global differences in population diversity and
have linked malaria symptoms with a reduction of infec-
tion complexity [17].

The importance of Plasmodium inter-species
interactions to the epidemiology of malaria has been
highlighted by a number of studies. Interactions between
co-infecting species in humans can modify within-host
dynamics [18,19] and alter transmission potential [20].
The effect of mixed species infections on clinical out-
come has been described as both beneficial [21] and
adverse [22]. Variability in the interactions between spe-
cies under different transmission intensities, coupled
with different sympatric species combinations may con-
tribute to observed differences in the epidemiology and
clinical presentations of malaria between endemic
regions [23,24]. Evidence to support the notion that
interactions can differ between different epidemiological
settings has been provided by recent comparative analy-
sis of the clinical impact of multiple infections in three
regions of Malawi with differing intensity and seasonal-
ity of transmission [25]. This study provides a detailed
analysis, at the population genetic level, of P. falciparum
and P. malariae infections reported in the previous
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study. For the first time the population biology of the
two most prevalent, sympatric malaria species in Africa
is presented. Polymorphism within microsatellite mar-
kers of both Plasmodium species was used to determine
the population structure of these sympatric parasites
within seasonal and perennial transmission regions of
Malawi. The study includes infections from asympto-
matic carriers of all ages, allowing us to determine how
the molecular epidemiology of P. falciparum and
P. malariae changes with age in these populations.
Molecular genotyping data from both species has been
used to investigate if the clinical severity of malaria is
impacted by the complexity of infection and if any
such effect is species specific in mixed infections of
P. falciparum and P. malariae.

Methods
Study sites and populations
The study was undertaken in villages in Dedza and
Mangochi districts of Malawi between 8th March and
7th April 2002. The study sites and the study protocol
have been previously described in detail [25]. Briefly,
Dedza is a semi-mountainous region in which malaria
transmission is restricted to the wet season (November-
March). Mangochi district lies 100 km to the east of
Dedza, at lower altitude and adjacent to Lakes Malawi
and Malombe. Mangochi has perennial malaria trans-
mission. Despite the difference in the epidemiology of
the two districts, the overall wet season prevalence of
malaria in the population measured using microscopy
was remarkably similar, Dedza 23.6%, Mangochi 27.3%
[25]. PCR diagnosis increased this to 54.4% and 76.7%,
in Dedza and Mangochi, respectively (all Plasmodium
species). Within Dedza district, there are two transmis-
sion zones with higher and lower prevalence, which are
likely to result from variation in the intensity of trans-
mission due to altitude. Deaths from malaria are more
than three times greater in Mangochi than Dedza [26]
and there is a difference in the clinical profile of chil-
dren admitted for malaria to district hospitals. Children
hospitalized with malaria are younger in age and suffer
more anaemia in Mangochi than in Dedza [25].
Twenty-four villages (16 from Dedza and 8 from Man-
gochi) situated within 25 km of the district hospitals
were randomly selected for participation in the study.
Village sample sizes were based on approximate P. falci-
parum prevalence per district and P. falciparum/
P. malariae ratios to give projected sample sizes of at
least 100 P. malariae positive individuals per district.
All consenting individuals from each village aged >6
months were enrolled in the study. Oral consent for vil-
lage participation was obtained from village elders and
individual written consent was obtained. From a single
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finger prick, thick and thin blood smears and a filter
paper blood sample for molecular analysis were pre-
pared and haemoglobin concentration was measured.
Axillary temperature was measured with a digital ther-
mometer and information on the following topics was
collected using a questionnaire: age, gender, occupa-
tion, religious denomination, occurrence of fever
symptoms in previous two weeks, medicine taken in
the previous two weeks, overnight stay away from
home in previous four weeks, use of bed nets and
other anti-malarial prevention measures. Ethical
approval for the study was granted by the National
Health Sciences Research Committee, Ministry of
Health and Population, Government of Malawi and
Glasgow University Ethics Committee for Non-clinical
Research Involving Human Subjects.

Detection of Plasmodium species and genotyping
Microscopy and PCR diagnosis of Plasmodium was
carried out as previously described [25]. Briefly, total
Plasmodium density (all species) was determined by
microscopy and an estimated parasite density of 10
parasites per pl of blood was assigned per species
detected by PCR in those samples that were microscopy
negative. The use of this estimate results in density
values below the microscopy sensitivity level of 40 para-
sites per pl.

Multi-locus genotyping was carried out for the two
most prevalent species P. malariae and P. falciparum.
All samples positive by PCR for P. malariae were geno-
typed using six microsatellite markers as previously
described [17]. An equal number of samples positive by
PCR for P. falciparum were selected as comparators. In
order that the comparison of P. malariae and P. falci-
parum populations were not biased by variation in
underlying malariological indices, P. falciparum samples
were matched to P. malariae samples by age of patient
(to within one year), gender and village of residence.
Where more than one sample met the criteria for
matching, a random selection was made from amongst
all possible samples. Individuals positive for both
P. malariae and P. falciparum were not excluded from
being self-matched. Samples containing P. ovale co-
infections were not excluded. These infections were
ignored for the purposes of all analyses as this species
has been shown previously to be not associated with
clinical malaria in these samples [25]. P. falciparum
positive samples were genotyped using 11 tri-nucleotide
microsatellite loci [27]. Cycling temperatures, primer
concentrations and MgCl, salt concentration of PCR
reactions were as described by Anderson et al [4] but
Taq polymerase buffer and enzyme were the same as for
P. malariae reactions [17].
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Plasmodium malariae and P. falciparum microsatellite
PCR products were separated on a 3730 capillary sequen-
cer (Applied Biosystems) following dilution (1:50-1:100)
and post-amplification mixing of differently labelled and
sized loci. Analysis of electropherograms was carried out
using GeneMapper v 3.7 software (Applied Biosystems).
Alleles were scored manually and their size measured by
comparison with size standard HD400 (Applied Biosys-
tems). To prevent mis-scoring of stutter peaks, secondary
alleles were scored only if the peak height was greater
than one third of the most intense peak. Whilst ensuring
against overestimation of alleles the result of this is to
limit the detection of alleles to only those belonging to
strains that are present at ~33% or more of the parasite
density of the dominant strain. Alleles were binned
according to size to within 2 bp. Erythrocytic stages of
Plasmodium are haploid and, therefore, the presence of
multiple alleles within a single sample indicates the pre-
sence of multiple genotypes within a species. The num-
ber of genotypes per sample, also known as the
multiplicity of infection (MOI) [28], was taken to be the
greatest number of alleles detected at any single locus for
each species. In order to compare the number of geno-
types of P. malariae and P. falciparum per sample, the
sensitivity of these measures for each species were
balanced by using only a sub-set of P. falciparum loci in
population analyses. Six out of the 11 available P. falci-
parum loci typed were matched to the six P. malariae
loci using the number of alleles per locus and heterozyg-
osity (Table 1). Six-locus haplotypes for P. malariae and
P. falciparum samples were constructed using the domi-
nant allele at each locus. The dominant allele in samples
containing multiple alleles was defined as that with the
highest peak height.

Statistical methods

Univariate and bivariate regression models accounting
for district (SPSS v10.0, Chicago, USA), were used to
determine if the Plasmodium genetic variables of spe-
cies-specific MOI or total Plasmodium MOI, were asso-
ciated with the following clinical outcomes measured
during community surveys: haemoglobin level (Hb g/dl),
mild anaemia (Hb concentration < 11.0 g/dl), moderate
anaemia (Hb concentration < 8.0 g/dl) and fever (axil-
lary temperature > 37.5°C). Linear regression was used
for Hb concentration and logistic regression for the bin-
ary outcomes of anaemia and fever. Age in years was
used as a continuous variable or defined as nine age
groups (< 1, 1-4, 5-9, 10-14, 15-19, 20-29, 30-39, 40-49,
50+ years) or individuals were grouped as either chil-
dren (< 1 to 14 years) or adults (>14 years). Multivariate
models were performed using forward inclusion of
variables and validated using reverse inclusion.



Bruce et al. Malaria Journal 2011, 10:38
http://www.malariajournal.com/content/10/1/38

Page 4 of 12

Table 1 Matching of six P. malariae microsatellite loci to P. falciparum microsatellite loci by expected heterozygosity

(He) and number of alleles detected

All data Dominant only All data Dominant only
P. malariae He Number He Number P. falciparum He Number He Number
locus of alleles of alleles  locus of alleles of alleles
Pm09 0276 Il 0.192 8 TAA42 0.551 14 0442 13
Pm11 0480 9 0.395 8 377 0.679 10 0.587 8
Pm47 0516 5 0471 5 TAAGO 03811 15 0.794 13
Pm34 0.587 13 0526 1" TAA109 0.841 19 0.820 15
Pm25 0.758 14 0.729 1 TAA8I1 0.840 13 0.830 10
Pm02 0.862 13 0.849 12 ARA2 0.871 14 0.853 13
TA1 0.805 29 0.678 25
2490 0.868 11 0.863 11
TAA87 0877 18 0.873 15
PK2 0.892 19 0.887 17
Polya 0.908 21 0911 19

He values were calculated for all alleles detected, including those from samples with multiple alleles per locus (all data) and from a restricted data set in which
only the dominant allele at each locus was used (dominant only). One out of the 12 published P. falciparum loci (TA40) [27] was not used as this was found not

to amplify.

Mann-Whitney U tests were used to compare mean
MOI between districts and age groups.

Diversity at microsatellite loci was examined by calcu-
lating the expected or “virtual” heterozygosity (Hg) cal-
culated as Hr = [n/(n-1)][1-Zp;’] where # is the number
of samples or alleles detected and p; is the frequency of
the ith allele in the population. Expected heterozygosity
was calculated using all alleles detected in all samples,
including multiple alleles detected in a single sample,
and also from a restricted data set in which only the
dominant allele at each locus was included. Similarity
(S) between 6-locus haplotypes was measured using the
Jaccard similarity measure or simple matching coeffi-
cient [29] and the distance measure 1-S was used to
cluster samples, using the unweighted arithmetic aver-
age. Clustering calculator was used to calculate similar-
ity indices and for the clustering process [30]. Trees
were drawn using Treeview v1.6.6 [31].

Population differentiation between districts and
villages was assessed using Weir and Cockerham’s 6
estimator [32] of Wright's Fst statistics, implemented in
FSTAT version 2.9.3.2 [33,34]. Between district values
were calculated using all six-locus haplotype data whilst
between village values were calculated for villages with
seven or more P. malariae samples. Significance testing
was carried out by bootstrapping loci 900 times. To test
for linkage disequilibrium between pairs of loci, the log-
likelihood ratio G-statistic was calculated from observed
data and from randomized data sets permuted 300
times, using FSTAT Version 2.9.3.2 [33,34]. The p-value
was estimated as the proportion of statistics from rando-
mized data sets that are larger or equal to the observed.
Overall multi-locus linkage disequilibrium amongst
6-locus haploytpes was assessed using a standardized

index of association (I,5), implemented in LIAN v3.5
[35,36]. The variance of the number of alleles shared
between all pairs of haplotypes in the observed data
(Vp ) was compared with the variance expected under
random association of alleles (V¢ ) as follows:

(1% = (Vp/Vg -1)(r-1), where r is the number of loci
analysed. Observed data were reshuffled 10,000 times.
Separate analyses were carried out for all haplotypes and
on a reduced data set where duplicate haplotypes (found
in more than one sample) were represented only once,
to remove any effect of haplotype sharing. A significance
level for p-values of 0.05 was used throughout.

Results

From amongst the 2,918 samples collected from parti-
cipants resident in Dedza and Mangochi districts of
Malawi during the study, 60.4% were P. falciparum
and 9.4% P. malariae positive by diagnostic PCR,
Figure 1. Clinical and parasitological differences
between the two districts and amongst the three trans-
mission settings within these districts have been
described previously [25].

Plasmodium malariae and P. falciparum genotyping

In order to compare the population structure of
P. malariae and P. falciparum in Dedza and Mangochi
districts we genotyped each species using species-speci-
fic microsatellite makers. Multi-locus genotyping was
carried out at six P. malariae loci [17] and at 11 P. falci-
parum loci [27]. Microsatellite results were obtained
from at least one locus in 93% of P. malariae infections
detected using diagnostic PCR. Complete microsatellite
data for all six P. malariae loci were obtained from 164
samples. Data from a small subset of these samples (41



Bruce et al. Malaria Journal 2011, 10:38
http://www.malariajournal.com/content/10/1/38

| 2918 samples collected |

<

276 samples P. malariae
positive by diagnostic PCR
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least one of six P. malariae
microsatellite loci

1763 samples P. falciparum
positive by diagnostic PCR
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P. malariae samples by age,
gender and village of residence

v

257 samples genotyped for at
least one of eleven
P. falciparum microsatellite loci

v

six of eleven P. falciparum
microsatellite loci selected for
population analysis
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all six P. malariae and
P. falciparum microsatellite
loci

D Full data set
D Restricted data set

Figure 1 Flow diagram showing the number of samples collected
and analysed for P. malariae and P. falciparum infections.
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out of 257) have been reported previously [17]. An
equivalent number of P. falciparum samples (n = 257)
were genotyped using eleven P. falciparum microsatel-
lites. In order to minimize the effect of the epidemiolo-
gical differences between the two Plasmodium species
on measurements of population structure, P. falciparum
samples were matched to P. malariae samples by age,
gender and village of residence (and hence also trans-
mission region and district), Figure 1.

A sub-set of six P. falciparum loci (TAA42, 377,
TAA60, TAA109, TAA81, ARA2) were selected for use
in population measurements on the basis of allele
numbers and heterozygosity being similar to the six
P. malariae microsatellite loci, Table 1. Allele frequen-
cies for P. malariae and the selected P. falciparum loci
are shown in Figure 2. Complete six-locus P. falciparum
genotype data were obtained for 78% of selected
P. falciparum samples. The full two-species data set
comprises of 257 sample pairs for which one or more
microsatellite loci were typed for both species.
A restricted data set comprises of those matched sample
pairs for which all six-locus genotypes for both P. falci-
parum and P. malariae were available, Figure 1. P. ovale
was detected by diagnostic PCR in 16.5% of all the sam-
ples genotyped for P. falciparum and P. malariae, but
these infections were not genotyped and were ignored
for the purposes of all analyses as their presence has
been previously shown to be not associated with clinical
malaria in these samples [25].

Forty-four percent of genotyped samples were from
Mangochi district and 56% from Dedza district. Within
Dedza district, more than 80% of samples (both full
and restricted data sets) came from the high intensity
seasonal transmission region (HIST) rather than the
low intensity seasonal transmission region (LIST) [25]
owing to the greater prevalence of P. malariae in this
region.
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including all those from samples with multiple alleles per locus.

Allele size (base pairs)
Figure 2 Allele frequencies of matched P. malariae (top) and P. falciparum (bottom) loci.

Frequencies shown are for all alleles detected,
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Multiplicity of infection

The blood stages of Plasmodium are haploid. Therefore,
detection of multiple alleles at any locus in one sample
indicates the presence of multiple, genetically distinct
parasites (genotypes) of that species. The number of differ-
ent genotypes per sample - MOI [28] - was greater for
P. falciparum than for P. malariae. Maximum MOI in any
single P. malariae sample was five and for any
P. falciparum sample was 7 - the greatest overall genotype
complexity (combined P. malariae and P. falciparum
MOI) in samples containing co-infections was 9. The per-
centage of samples that contained multiple genotypes (>1
genotype per species) was high for both species: 59.1% of
P. malariae and 80.2% of P. falciparum samples in the full
data set and 73.2% and 86.0%, respectively for the
restricted six-locus genotype data set.

The percentage of samples with multiple P. malariae
genotypes did not differ between Dedza and Mangochi
districts (60.0% vs. 58.0%, p = 0.751) nor between chil-
dren and adults (p = 0.060), Table 2. Despite the epide-
miological differences between districts, mean MOI for
P. malariae (estimated from the restricted data set) was
similar in both districts (Dedza, 2.11; Mangochi, 2.12;
p = 0.809) and did not differ significantly between chil-
dren and adults (p = 0.764). Use of the full data set,
containing samples with missing data at some loci, did
not alter these findings, Table 2.

The percentage of samples with P. falciparum multiple
infections was also not significantly different between
Mangochi and Dedza (84.8% vs. 76.6%, p = 0.099), but in
contrast to P. malariae, multiple P. falciparum genotypes

Table 2 P. malariae and P. falciparum multiplicity of
infection (MOI)

Dedza Mangochi
Number of P. P. P. P.
genotypes malariae falciparum malariae falciparum
1 31 (58) 15 (34) 13 (47) 13 (17)
2 41 (50) 47 (57) 29 (45) 23 (30)
3 23 (26) 24 (31) 14 (16) 20 (25)
4 10 (10) 14 (15) 34 18 (20)
5 01 5(0) 0 (0) 11 (13)
6 0 (0) 303 0 (0) 6 (6)
7 0 (0) 0 (0) 0(0) [HQ)
Total 105 (145) 108 (145) 59 (112) 92 (112)
>1 genotype 74 (87) 93 (111) 46 (65) 79 (95)
Mean MOI children  2.09 (1.98) 2.56 (2.44) 211 (1.85) 3.39 (3.26)
(6 months - 14
years)
Mean MOI adults 217 (185 271 (2.22) 220 (153) 1.62 (1.95)
(154 years)
Total Mean MOI 211 (194) 259 (2.37) 212 (1.79) 3.14 (3.04)

Genotypes per sample and mean MOI as determined from six matched
microsatellite loci. Values in brackets include samples from the full data set
that have missing data at some loci.
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were more common amongst children than adults
(p < 0.01). In contrast to P. malariae, mean MOI for
P. falciparum (estimated from samples with six-locus
genotype) was greater in Mangochi compared with Dedza
district (Mangochi 3.14; Dedza, 2.59, p = 0.008), Table 2.
P. falciparum mean MOI was greater in children com-
pared with adults in Mangochi (p < 0.001) but not in
Dedza (p = 0.895), Table 2. Children in Mangochi had sig-
nificantly greater P. falciparum mean MOI than children
in Dedza (p < 0.001). These findings were not altered by
use of the full data set, Table 2. For 59 individual samples
containing P. falciparum/P. malariae co-infections, full
six-locus genotypes were available for both species.
Amongst these samples the number of P. malariae geno-
types and the number of P. falciparum genotypes were
not correlated in either district (Mangochi: n = 20, Spear-
man rank correlation, 0.101, p = 0.672; Dedza: n = 39,
Spearman rank correlation, 0.045, p = 0.786).

Univariate and multivariate regression analyses were
carried out separately for P. malariae and P. falciparum
MO, employing all clinical, parasitological and demo-
graphic variables used in previously published epidemio-
logical regression analyses [25]. Levels of clinical malaria
and anaemia in this region has been previously
described [25] but for the subset of people in this study
mild anaemia (Hb < 11.0 g/dl) was detected in 52.7% of
individuals, moderate anaemia (Hb < 8.0 g/dl) was seen
in 8.4% and fever (temperature > 37.5°C) was observed
in 14.3% of cases.

Only village of residence and age were associated with
P. malariae MOI and the best multivariate model com-
bined these two variables, Table 3. In a similar analysis
for P. falciparum the following variables were signifi-
cantly associated with MOI: district, age, age group,
child/adult group, Hb concentration, anaemia, number
of species detected by PCR and religion, Table 4. The
best P. falciparum multivariate model contained district
and child/adult group variables with a district*child/
adult group interaction.

To determine if P. malariae MOI, P. falciparum MOI
or combined P. malariae-P. falciparum MOI were pre-
dictive of the clinical outcomes of fever or anaemia we
carried out logistic regression. None of the MOI vari-
ables was significantly associated with either fever or
anaemia.

Haplotype analysis and population differentiation
Six-locus haplotypes were generated for P. malariae and
P. falciparum from each sample where full genotype
data were available. If multiple genotypes were detected
in a single sample the dominant allele at each locus was
used to generate a single haplotype (see materials and
methods). For both P. malariae and P. falciparum there
was a high proportion of unique haplotypes.
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Table 3 Univariate and multivariate regression analyses of P. malariae MOI

Univariate Effect Multivariate Model
Variable Beta +/- 95%ClI P Beta +/- 95%ClI P
District -0.143 0.223 0.207 - - -
Village* - - 0.037 - - 0.028
Gender 0.207 0222 0.068 - - -
Age (years) -0.010 0.009 0.023 -0.011 0.009 0.015
Age Group* - - 0.269 - - -
Child/Adult Group -0.163 0.255 0.209 - - -
Fever (Temperature = >37.5°C) 0.082 0316 0.608 - - -
Hb concentration (g/dl) 0.001 0.057 0972 - - -
Anaemia (Hb concentration < = 8 g/dl) -0.054 0.388 0.784 - - -
Treated 0.126 0239 0.299 - - -
Log10 parasite density -0.098 0.235 0411 - - -
Log10 parasite density estimate including diagnostic PCR data 0.079 011 0.165 - - -
Number of species detected by PCR 0.156 0.228 0.181 - - -
Religion*® - - 0.162 - - -
Fever in last 2 weeks 0.086 0.230 0465 - - -
Anti-malarial taken in last 2 weeks -0.291 0.804 0477 - - -
Painkiller taken in last 2 weeks 0.061 0.268 0.655 - - -
Sleep regularly under bednet 0.118 0.804 0.773 - - -

Model Adjusted R? = 0.070

* Individual beta values are not reported for all comparisons between categories.

From the 164 P. malariae samples with six-locus
genotype data, 116 different haplotypes were detected.
Of these, 89 haplotypes (76.7%) were unique i.e.
found only in a single sample and 27 were repeated
in more than one sample. The most common

haplotype was found in six samples. The expected
frequency of each of the repeated haplotypes was cal-
culated using allele frequencies from the restricted
data set. The combined observed frequency of
repeated haplotypes was in excess of their combined

Table 4 Univariate and multivariate regression analyses of P. falciparum MOI

Univariate Effect Multivariate Model

Variable Beta +/- 95%CI p Beta +/- 95%CI p
District 0.663 0325 < 0.001 2.257 0.981 < 0.001
Village* - - 0.086 - - -
Gender -0.190 0335 0.266 - - -
Age (years) -0.022 0.012 < 0.001 - - -
Age Group* - - 0.010 - - -
Child/Adult Group -0.700 0372 < 0.001 0.797 0.449 0318
Fever (Temperature = >37.5°C) -0.046 0484 0.853 - - -
Hb concentration (g/dl) -0.130 0.086 0.003 - - -
Anaemia (Hb concentration < = 8 g/dl) 0.638 0615 0.042 - - -
Treated 0.064 0.365 0.731 - - -
Log10 parasite density -0.142 0315 0373 - - -
Log10 parasite density estimate including diagnostic PCR data 0016 0.152 0.836 - - -
Number of species detected by PCR 0412 0.248 0.001 - - -
Religion* - - 0.009 - - -
Fever in last 2 weeks -0.242 0.347 0.170 - - -
Anti-malarial taken in last 2 weeks -0.509 0.790 0.206 - - -
Painkiller taken in last 2 weeks 0.100 0410 0633 - - -
Sleep regularly under bednet -0.964 1.020 0.064 - - -
Interaction of District and Child/Adult Group - - - 0.338 0.394 0.006

Model Adjusted R> = 0.111
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expected frequency assuming random assortment of
alleles (p > 0.001).

The proportion of samples with unique P. malariae
haplotypes was not different between Dedza and Man-
gochi p = 0.748). Of the 27 haplotypes found in more
than one sample (ie not unique), 16 (59.3%) were found
in both districts. Of the 23 haplotypes that were found
in multiple samples from the same district, 16 (69.6%)
were found in different villages. Of the seven haplotypes
that were found in multiple samples from the same
village, only one haplotype was found in more than one
individual from the same household. Even when multi-
ple infections were taken into consideration, out of 49
households in which >1 individual was parasitaemic
only eight households (16.3%) included individuals
harbouring potentially the same haplotype.

From the 200 P. falciparum samples with six-locus
genotype data, 193 different haplotypes were detected.
Of these, the majority, 186 haplotypes (96.3%), were
unique whilst seven were repeated in more than one
sample. The seven repeated haplotypes were each found
in two samples. As with P. malariae, the combined
observed frequency of repeated haplotypes was in excess
of their combined expected frequency, assuming random
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For P. falciparum, as for P. malariae, the number of
samples with unique haplotypes was not different
between Dedza and Mangochi (p = 0.417). Of the seven
haplotypes found in more than one sample, five (83.3%)
were found in only one district and of these, three
haplotypes were found in different villages. The two
haplotypes found in multiple samples from the same vil-
lage were detected in individuals living in the same
households.

Similarity analysis was used to determine genetic
relationships between haplotypes and to examine how
these were spatially distributed within villages and dis-
tricts. No within-district or within-village clustering of
P. malariae haplotypes was evident. Likewise, no within
district clustering was detected for P. falciparum
haplotypes and there was only limited within-village
clustering (6 out of 20 samples from a single village,
Mpamanda, Mangochi). Two out of these six samples
were from individuals living in the same household.
Population sub-structuring was assessed by measuring
population differentiation between samples from differ-
ent villages and districts. Co-ancestry coefficients (0)
were low or negative for both species for all village com-
parisons and also for between district comparisons,

assortment of alleles (p > 0.001). Table 5. None of these comparisons reached
Table 5 P. malariae and P. falciparum population differentiation
Species District Population 1 2 3 4 5 6 7 8 9
P. malariae Dedza 1 Chinthankwa -
2 Kaphala -0.021 -
3 Kumfunda 0.016 0.004 -
4 Makakhula 0.023 0.014 0.015 -
5 Thambolagwa 0.003 -0.008 0.059 -0.012 -
Mangochi 6 Katema -0.020 -0.025 0.007 0.014 -0.020 -
7 Makawa -0.037 -0.053 -0.015 0.021 -0.020 -0.072 -
8 Matenganya -0.001 0.001 0.021 0.009 0.036 0.011 -0.049 -
9 Mkali A -0.021 -0.035 -0.083 -0.001 -0.022 -0.038 -0.043 0.008 -
10 Mpamanda -0.010 -0.007 0.040 -0.017 0.013 0.009 -0.029 -0.074 0.004
Between Districts 0.008
P. falciparum Dedza 1 Chinthankwa -
2 Kaphala 0013
3 Kumfunda -0.034 -0.010 -
4 Makakhula -0.011 -0.002 -0.017 -
5 Thambolagwa 0.005 0.000 -0.009 0.036 -
Mangochi 6 Katema 0013 0.018 0.003 -0.011 0.030 -
7 Makawa 0.028 0.001 -0.011 0.044 -0.033 0.010 -
8 Matenganya 0013 0.001 -0.004 -0.002 -0.014 -0.018 -0.003 -
9 Mkali A -0.008 -0.004 -0.025 -0.031 0.009 -0.010 0.018 0.002 -
10 Mpamanda 0.027 0.032 -0.012 0.035 -0.001 0.003 0.008 0.010 0.027
Between Districts 0.003

Pairwise between-village and between-district population differentiation for P. malariae and P. falciparum. Values are Weir and Cockerham’s 0 estimator of
Wright's Fst statistic [32]. Between-district values were calculated using all 6-locus haplotype data whilst between village values were calculated for villages with
greater than seven P. malariae samples (five villages each from Dedza and Mangochi district; P. malariae, Dedza n = 83 and Mangochi n = 45; P. falciparum,
Dedza n = 89 and Mangochi n = 72). P values did not reach significance for any comparisons.
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significance, therefore there is no evidence to suggest
the presence of population differentiation at the village
or district level for either P. malariae or P. falciparum.

Linkage disequilibrium

Pairwise comparisons of the 6 microsatellite loci using
re-sampling of the original data provided no evidence
for linkage disequilibrium between any pairs of loci for
eitherP. malariae or P. falciparum. Global multi-locus
linkage analysis of haplotypes showed linkage equili-
brium among alleles in P. malariae haplotypes in both
the full data set and in a restricted data set in which
duplicate haplotypes were represented only once,
Table 5. The same analysis for P. falciparum revealed
a significant positive association of alleles in the full
haplotype data set, which could be attributed to link-
age disequilibrium amongst haplotypes in Dedza dis-
trict only, where transmission is seasonal, Table 6. The
value of the standardized index of association (I,° ) in
these analyses were low suggesting limited linkage
disequilibrium.

Human population movement

Movement of the human population could potentially
affect parasite population structure by increasing admix-
ture. To assess the extent of human movement partici-
pants were asked how often they spent a night away
from home and where they visited. Few people (less
than 3%) from either district had spent a night away
from home in the previous four weeks, and more than
50% of those that did, travelled only within their own
district.

Discussion
Plasmodium malariae is the human malaria parasite
that gives rise to quartan malaria and the infection is

Table 6 Multi-locus linkage analysis of P. malariae and
P. falciparum haplotypes

All data Unique haplotypes

1.5 p-value 1a° p-value
P. malariae Both Districts  -0.003  0.650 -0.022 0.994
Dedza -0009  0.765 -0.026 0.986
Mangochi -0.003 0.575 -0.032 0.992
P. falciparum Both Districts 0012 < 0.05 0.009 < 0.05
Dedza 0016 < 0.05 0.012 0.055
Mangochi 0.007 0.181 0.004 0.304

The standardized index of association (I,°) measures linkage disequilibrium by
comparing the variance in the number of shared alleles between all pairs of
haplotypes with the variance within the randomized data. Unique haplotypes
are a subset of the data, in which haplotypes found in more than one sample
are represented only once. P. malariae, all data: Dedza n = 108, Mangochi n =
59; unique haplotypes: Dedza n = 81, Mangochi n = 35. P. falciparum, all data:
Dedza n = 108, Mangochi n = 92; unique haplotypes: Dedza n = 106,
Mangochi n = 87.
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also associated with chronic nephropathy in children.
This parasite is distributed worldwide within the tropics
and is most commonly found as a co-infection with

P. falciparum. P. malariae differs from P. falciparum
in a number of fundamental biological features. Parasite
density is lower, there is a slower growth rate [37],
gametocyte production is delayed [38] and duration of
infection is longer and often chronic [39]. Until the
advent of PCR based diagnostics the low level parasitae-
mia of P. malariae was difficult to detect and its preva-
lence and contribution to the burden of malaria disease
underestimated. The inability to culture the parasite has
also hampered its study and comparatively little is
known about the epidemiology and population structure
of this parasite.

This is the first large scale population genetic study of
P. malariae and the first to compare the population
structure of sympatric malaria species in Africa. This
study describes the population structures of P. falci-
parum and P. malariae, the most common African
malaria co-infections, within the same human popula-
tion in two sites in rural Malawi. Previously, only the
sympatric species combination of P. falciparum and P.
vivax has been studied at the genetic level [13,40]. Cau-
tion is needed when interpreting the results of cross-
species analyses owing to the many human population,
epidemiological and biological differences between spe-
cies that can confound comparisons. During sample
selection we have taken multiple steps to reduce such
possible biases and have used genetic markers of similar
diversity to analyse the parasite populations. The micro-
satellite markers we have used for the analysis are not
orthologs. Even if orthologous loci for both species were
available, this would not guarantee similar allelic diver-
sity or heterozygosity, or immune/evolutionary pressure
on such markers in both species. The P. falciparum loci
used here, although of generally comparable diversity to
those of P. malariae, are slightly more variable and this
has been considered in the interpretation of the results.

A previous study described a lower parasite density
and a five-times lower PCR prevalence of P. malariae
compared with P. falciparum among the same samples
from the study sites with perennial (Mangochi district)
and seasonal (Dedza district) transmission regions [25].
The high proportion of multiple genotypes in P. falci-
parum infections shown in the present study is in line
with results from other sites in Africa [4]. However, the
high degree of multiple genotype infections also found
in P. malariae infections was surprising, given the lower
prevalence and density (and therefore potential for
transmission) of this species, Table 2.

Mean MOI was only marginally greater for P. falci-
parum than P. malariae in Dedza (seasonal transmis-
sion) and this difference may be in part attributable to
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the slightly greater diversity of the P. falciparum micro-
satellite markers. The finding that the mean MOI was of
a similar value between the two species is surprising,
given the dissimilarity in their biology and epidemiology.
The lower prevalence and transmission potential of P.
malariae might be expected to result in lower MOI.

The greater mean P. falciparum MOI in Mangochi
compared with Dedza is indicative of the perennial nat-
ure of transmission in this district and probably results
from the cumulative effects of super-infection. However
no parallel increase in P. malariae MOI was observed -
this value being similar to that for Dedza. The absence
of an increase in P. malariae MOI with increased trans-
mission may be due to differential transmission effi-
ciency of P. malariae and therefore insensitivity to this
factor, compared with P. falciparum. Decreasing P. falci-
parum MOI with age, as seen in Mangochi and in pre-
vious studies [41,42], is thought to result from the
effects of acquired immunity under intense malaria
transmission. The absence of a reduction in P. malariae
MOI with age may result from limited acquired immu-
nity to this species, which may also contribute to the
longevity of the infection.

Regression analyses revealed a negative association of
P. falciparum MOI with the host’s blood Hb concen-
tration as well as associations with age and district of
residence. Previous analysis of Hb concentration
showed complex relationships with transmission
intensity, number of infecting species and age [25]. No
relationship between P. malariae MOI and Hb concen-
tration was observed. This may be due to the relatively
low blood density of this parasite compared with
P. falciparum. However, the chronic nature of P.
malariae infections may still have an impact on Hb
concentration over the long term. Neither species-
specific nor combined MOI measurements were pre-
dictive of the malaria symptoms of fever or anaemia.
This is in contrast to a previous study in which a
reduction of P. malariae MOI in symptomatic fever
cases compared with asymptomatic ones was observed
[17]. In this previous study, symptomatic cases from
Gambia and Thailand were compared with asympto-
matic ones from Malawi and the lower endemicity of
P. malariae infections in Gambia and Thailand may
underlie this difference.

Plasmodium falciparum levels of population differen-
tiation between villages and districts were similar to
those found between geographically close African popu-
lations described previously [4]. The analyses presented
here revealed no indication of population sub-structur-
ing for either P. malariae or P. falciparum across village
or district levels. P. falciparum had a higher proportion
of unique samples compared with P. malariae but most
haplotypes (>75%) of both species were unique. A few
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haplotypes for either species were shared within villages
or households but no significant clusters of haplotypes
could be detected at village or district levels. The obser-
vation that the frequency of repeated P. malariae and
P. falciparum haplotypes exceeds that expected given
random assortment of alleles suggests the over-represen-
tation in the human population of such halpotypes. This
could occur either through sustained transmission via
selfing during sexual replication in the mosquito or in
the few cases where the same haplotypes are found
within members of the same household, through multi-
ple infectious bites from the same mosquito. Together,
these lines of evidence suggest that there is sufficient
admixture within both species to break down any sub-
structuring across the 100 km distance between the dis-
tricts but that long term persistence of clonal or closely
related parasites in a single location is uncommon.
Admixture is unlikely to be significantly attributable to
human movement as this was low and mostly within
district.

Linkage disequilibrium (LD) between P. falciparum
loci was found only in Dedza district where there is sea-
sonal transmission. Such findings have been found in
other seasonally endemic sites in Africa [4]. Absence of
P. falciparum LD in Mangochi probably results from a
higher degree of out-crossing due to greater transmis-
sion intensity. In contrast to P. falciparum, LD between
P. malariae loci was not detected despite the lower
transmission (and hence lower out-crossing) potential of
this species. Alternatively the difference in LD observed
between the species may stem from differences in link-
age between loci due to the non-orthologous nature
of the markers. The chromosomal position of the
P. malariae markers is not known and so it is not possi-
ble to compare the physical linkage of the two sets of
markers.

The results of this study, showing high levels of diver-
sity and recombination along with a lack of sub-struc-
turing within P. malariae populations is in stark
contrast to recent findings for another low prevalence
species, P. ovale, which is also found across Africa.
Population analysis of globally distributed isolates have
shown complete segregation amongst six dimorphic loci
between classic and variant morphological types of
P. ovale indicating that these are two non-interbreeding,
sympatric species, which have been named P. ovale cur-
tisi and P. ovale wallikeri respectively [43]. Further
investigation using more highly variant microsatellite
markers is required to validate the apparent lack of
recombination within each new species but current data
indicates clonal population structures. Clearly, distinct
evolutionary mechanisms are acting across P. malariae
and P. ovale species to result in such contrasting popu-
lation structures within the same human hosts but the
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nature of such mechanisms are currently only
speculative.

This study took place during the wet season when
transmission in both districts is at its peak. A compari-
son of dry season samples would be useful to determine
the differences in the population structure of these
co-infections when transmission is either absent or sub-
stantially lowered and would shed light on the dynamics
of infection over a year.

Conclusions

This study shows that the population structure of
P. malariae has similarities to P. falciparum that are
surprising, considering the biological differences
between these species that might favour lower transmis-
sion and lower potential for out-crossing of P. malariae.
These results raise the question of how P. malariae
achieves such high multiple infection rates or admixture
despite its lower prevalence and low parasite densities
in human infections. One possibility is that this parasite
has evolved a method of increased transmission effi-
ciency in the presence of a co-infecting parasite of
another species. A phenomenon of this kind has been
observed in murine experimental models of malaria, in
which the minority (lower density) species in a mixed
infection showed greater transmission potential than the
majority species and enhanced transmission compared
to single infections [44]. Another explanation is that the
chronic nature of P. malariae infections may result in
more prolonged transmission opportunities than
P. falciparum.

Despite the similarities in some aspects of P. malariae
and P. falciparum population structure there were also
noticeable differences. P. falciparum showed changes in
MOI with host age and transmission seasonality whereas
P. malariae did not. These contrasting findings might be
a result of differences in the infection or transmission
dynamics and immune regulation of the two species.
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