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Abstract

Background: Pregnancy associated malaria is a severe clinical syndrome associated with sequestration of
Plasmodium falciparum-infected erythrocytes in the placenta. Placental binding is mediated by VAR2CSA, which
adheres to chondroitin sulphate A (CSA). VAR2CSA is a large and polymorphic protein that has six Duffy binding-
like (DBL) domains. There is still limited understanding as to how effective individual VAR2CSA domains are at
generating inhibitory antibodies or the number of domain variants needed for universal vaccine coverage.

Methods: To investigate the immunogenic properties of single domain VAR2CSA recombinant proteins, rats or
rabbits were immunized with five of the six VAR2CSA domains produced in Pichia pastoris. Immune plasma was
analysed against a geographically diverse panel of CSA-binding lab lines to assess antibody breadth and inhibitory
activity.

Results: Of the five domains, DBL3, and to a lesser extent DBL5, induced antibodies that cross-reacted on five
diverse CSA-binding parasite lines by flow cytometry. By comparison, anti-DBL6 antibodies were highly strain-
specific and anti-DBL1 and anti-DBL4 antibodies were poorly reactive by flow cytometry. From this series of
recombinant proteins, adhesion-blocking activity was restricted to a single rat immunized against a DBL4
recombinant protein.

Conclusions: Single domain VAR2CSA recombinant proteins produced in P. pastoris had limited efficacy in eliciting
adhesion blocking antibody responses, but VAR2CSA DBL3 and DBL5 domains contain strain-transcendent epitopes
that can be targeted by vaccination and may have application for vaccine development.

Background
Despite important advances, the burden of malaria
remains very high, with more than 2.4 billion people at
risk of malaria. Approximately 50 million women of
child-bearing age are exposed to this risk of malaria
every year [1,2]. Pregnancy associated malaria is a major
cause of poor mother and child health and leads to
maternal anemia, prematurity, low birth weight and
increased infant morbidity and mortality [3]. This syn-
drome is associated with Plasmodium falciparum
infected erythrocytes (IEs) that selectively sequester in
the placenta via binding chondroitin sulfate A (CSA)
[4,5]. Women become resistant to pregnancy malaria

over the course of multiple pregnancies as they acquire
antibodies that recognize placental isolates from geogra-
phically diverse regions [6-8], suggesting it may be feasi-
ble to develop a vaccine. Antibodies are thought to
contribute to protection by blocking adhesion of IEs to
CSA and by opsonizing IEs for phagocytosis [6,7,9-11].
Placental binding is associated with an unusually con-

served var gene, VAR2CSA, which is transcriptionally
up-regulated in CSA binding parasites and expressed at
the surface of placental IEs [12,13]. Genetic disruption
of var2CSA largely abolishes CSA-binding [14-16] sug-
gesting it is the major var encoded product associated
with placental sequestration. These findings support the
development of a VAR2CSA-based vaccine against pla-
cental malaria. However, sequence analysis has revealed
diversity among global isolates [17-19], which poses
challenges for developing a universal vaccine.
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The VAR2CSA extracellular region contains six Duffy
binding-like (DBL) adhesion domains [13]. Several indi-
vidual DBL domains (DBL2, DBL3, and DBL6) have
been reported to bind to CSA and a co-crystal has been
solved for VAR2CSA DBL3-CSA [20,21]. However, it
has been questioned whether binding interactions of sin-
gle domains are physiologically relevant because many
randomly expressed DBL domains from other members
of the var gene family also bind to CSA [22,23].
Furthermore, the full-length VAR2CSA protein binds
with much greater specificity and affinity than individual
domains [24,25]. Thus, it remains unclear whether
VAR2CSA has one or multiple CSA-interaction sites,
and binding site(s) in the full-length DBL1-6 recombi-
nant protein remains uncharacterized.
Immunization of animals with single domain

VAR2CSA recombinant proteins produced in Baculo-
virus [26], Escherichia coli [27,28] and Pichia pastoris
[29,30] demonstrate that it is possible to generate anti-
bodies reactive with native VAR2CSA at the IE surface.
However, there has been limited investigation into the
breath of antibody reactivity and it remains difficult to
induce inhibitory antibodies. To date, few DBL recombi-
nant antigens have induced anti-adhesive antibodies
[28,31,32], except for an IT4-DBL4-VAR2CSA recombi-
nant protein produced in Baculovirus [31], and a
refolded IT4-DBL5 recombinant protein produced in
Escherichia coli [33]. However, adhesion-blocking
responses have been variable between different DBL4
and DBL5 antigen preparations and sensitive to con-
struct boundaries [32,34]. The best DBL4 recombinant
protein induced a broad adhesion blocking response to
a range of different placental isolates [34], but not all
parasites isolates were inhibited [34], and inhibitory
antibodies were only observed against one of four differ-
ent DBL4 alleles tested [32]. Thus, this approach has
potential but more work is needed to optimize single
domain immunogens for pregnancy malaria vaccine
development.
In this study, the immunogenicity of single domain

VAR2CSA recombinant proteins was investigated by
immunizing rats and rabbits with P. pastoris DBL engi-
neered immunogens. Immune sera were examined
against both the homologous parasite line and a diverse
panel of CSA binding parasite lines to identify DBL
domains that elicited a broader antibody response and
to define extracellular regions that contained adhesion-
blocking epitopes.

Methods
Recombinant protein expression in Pichia pastoris
Cloning and production of 7G8-VAR2CSA recombinant
proteins was done in Pichia pastoris as previously
described [29,35]. Construct boundaries are indicated in

Figure 1. Recombinant proteins were analysed in 4-20%
SDS-PAGE gels under non-reducing conditions. Gels
were stained with Gel Code Blue Reagent or transferred
to a nitrocellulose membrane and detected by Western
Blot using anti-His tag antibodies (Invitrogen). The
identity of recombinant proteins was confirmed by mass
spectrometry analyses. Purified proteins were stored at
-80°C in 1× phosphate buffered saline.

Animal immunization
Immunizations were performed at R&R Rabbitry
(Washington, USA) according to animal immunization
guidelines. Immunizations were approved by the Insti-
tute Animal and Care Use Committee at Seattle Biome-
dical Research Institute and at R&R Rabbitry (Vendor’s
PHS assurance # A3982-01 and USDA registration 91-
R-0038). In brief, three rabbits or three rats per group
received the recombinant protein in complete Freund’s
adjuvant for the first immunization and were boosted
with antigen in incomplete Freund’s adjuvant. Each ani-
mal received the antigen subcutaneously every three
weeks, for a total of four times for rats and four to five
times for rabbits (Table 1). All injections followed the
same protocol and the same dose was administrated for
priming and boosts. Rabbits received between 50 to
100 μg of recombinant protein while rats received
between 20 to 40 μg. Pre-immune and immune plasma
were heat-inactivated for 45 min at 57°C and stored at
-20°C. Prior to serological assays, plasma were preab-
sorbed twice on uninfected O+ erythrocytes.

Parasites lines
Plasmodium falciparum parasites were grown in O+

erythrocytes and 5% human plasma. CSA binding
laboratory lines, IT4/FCR3-CSA (origin ambiguous)
[36], 7G8-CSA (South America) [29], HB3-CSA allele
A and HB3-CSA allele B (Central America) [29],
Pf2004-CSA (West Africa) [37,38] and Pf2006-CSA
(West Africa) [37,38], were maintained by periodic
selection on CSA. For non-CSA binding controls, two
CD36-binding parasite lines were employed that are
isogenic to IT4/FCR3. A4ultra expresses IT4var14 and
ItG-ICAM-1 expresses IT4var16. Genotyping of para-
sites was done with MSP1/MSP2 primers according to
published approaches [39]. At the time of antibody
assays, RNA was collected and var2CSA gene transcrip-
tion was assessed by qRT-PCR using universal primers
against the DBL4 domain, as described previously [29].

Flow cytometry assay on infected erythrocytes
Mature-stage IEs were grown in O+ blood and incu-
bated with rat or rabbit plasma that had been preab-
sorbed twice on uninfected O+ erythrocytes. For each
assay, 10 million erythrocytes at between 5-8%
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trophozoites were incubated with a 1/20 dilution of rat
plasma or a 1/25 dilution of rabbit plasma. Bound anti-
bodies were detected by adding Alexafluor 488 conju-
gated goat anti-rat IgG (A-11006, Molecular Probes, 1/
500) or Alexafluor 488 conjugated goat anti-rabbit IgG
(A-11034, Molecular Probes, 1/500). Samples were ana-
lysed in an LSRII (Becton Dickinson) and analysed using
FLOWJO 8.1 software (Tree Star Inc). Binding is pre-
sented as the mean of the adjusted geometric mean of
fluorescence intensity (MFI) for plasma run in duplicate.
The adjusted MFI = (IEi-UEi) - (IEp-UEp) where IEi =
MFI of infected erythrocytes following incubation in
immune plasma, UEi = MFI of uninfected erythrocytes
following incubation in immune plasma, IEp = MFI of
infected erythrocytes following incubation in preimmune
plasma, UEp = MFI of uninfected erythrocytes following
incubation in preimmune plasma.

Infected erythrocyte binding and antibody binding
inhibition assays
Infected erythrocyte binding was performed on CSA-
coated bacterial petri dishes as previously described [29].
In brief, infected erythrocytes were tested for binding to
10 μl spots of 0.05 mg/ml bovine CSA (Fluka Biochem-
ika) or 0.05 mg/ml rCD36-Fc (R&D, USA). Binding
assays were performed with 10 μl of 1×107 IEs/ml
enriched to 25% to 50% parasitaemia via pork gelatin
flotation [40]. Rabbit or rat polyclonal plasma were
tested individually or as a pool of plasma at 1/10 final
dilution. In antibody binding inhibition assays, IEs were
preincubated with immune plasma for 30 minutes
before IEs were added to the CSA spots. Binding assays
were performed in the presence of immune plasma. The
percentage of binding inhibition was calculated relative
to a control anti-IT4var22 DBL3 immune plasma.
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Figure 1 Expression of VAR2CSA-DBL recombinant proteins in P. pastoris. A) Protein schematic of VAR2CSA. The original DBL domain
boundaries are indicated by black rectangles. Revised domain boundaries as described [35] are indicated in grey and numbered for the 7G8-
VAR2CSA allele. The first and last amino acids of constructs are indicated below the schematic. The thin line refers to the non-var2csa encoded
protein IT4var22 DBL3. B) 1 μg of His-tagged recombinant proteins were analysed under non-reducing conditions in a 4-20% SDS-PAGE gel and
stained by Gel Code Blue Reagent or detected by immunoblot via anti-His tag antibodies. New 7G8-VAR2CSA and IT4var22 DBL3 recombinant
proteins generated for this study are shown. Other recombinant proteins were described previously [35].
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ELISA assay
To determine an ELISA titer, rat and rabbit immune
plasma were tested against their corresponding
P. pastoris DBL recombinant protein. Assays were per-
formed using the rabbit (#80160) or rat (#80155)
serum antibody detection ELISA kit (Alpha Diagnostic
International). Briefly, 96-well ELISA plates (Nunc)
were coated with 200 ng recombinant DBL protein
and incubated at 4°C overnight. Plates were blocked
with a milk-based blocking buffer provided with the
kit for 2 hr at room temperature and then serial
diluted plasma from 1/500 to 1/512000 was added to
antigen-coated wells in duplicate for 1 hr at room tem-
perature. After washes with wash buffer, plates were
incubated with horseradish peroxidase-conjugated, goat
anti-rabbit IgG or anti-rat IgG diluted 1/2000 for 1 hr,
washed for 30 min, and then exposed to Ready-to-Use
tetramethylbenzidine substrate for 15 min. Absorbance
was read at 450 nm using a microplate reader (Mole-
cular Devices) and analysed by SOFTmaxPRO version
5. Data were graphed with a 4-pt fit curve and anti-
body titer calculated at 0.1 OD.

Results
Production of DBL recombinant proteins in Pichia pastoris
To produce single domain VAR2CSA recombinant pro-
teins, constructs were secreted from the methylotrophic
yeast P. pastoris. Five of six DBL domains (DBL1 and
DBLs 3 to 6) were produced from the 7G8-VAR2CSA
allele (Figure 1). Yields ranged from 1 mg/L for DBL1
and DBL5, 2 and 3 mg/L for DBL4 and DBL3, and over
10 mg/L for DBL6 domain under routine shaker flask
conditions (Figure 1). In contrast, the DBL2 domain
could not be produced from 7G8-VAR2CSA, or from
two other VAR2CSA alleles previously (IT4/FCR3 or
3D7) [35], despite repeated attempts with different con-
struct boundaries. As a negative control protein for
immunization, IT4var22 DBL3 was produced in the
same system (Figure 1). IT4var22 DBL3 was expressed
at a relatively weak level (< 0.5 mg/L). Under non-
reducing conditions, most of the proteins ran at the
expected size of monomers (Figure 1). However, a por-
tion of DBL1, DBL3 and DBL6 recombinant proteins
migrated at a larger molecular size, possibly due to
dimerization, and remained even after boiling and

Table 1 Immunization protocol

Immunogen VAR2CSA Animal Number of injections 1 Vaccination doses (μg)

Prime 2 Boost 3

DBL1 7G8 3 rabbits 4 5 100 100

3 rats 4 20 20

IT4 2 rabbits 5 6 500 250

DBL3 7G8 3 rats 4 20 20

IT4 3 rabbits 4 50 50

DBL4 short IT4 3 rats 4 20 20

2 rabbits 5 6 500 250

DBL4 long 7G8 3 rats 4 20 20

IT4 3 rats 4 20 20

DBL4+DBL5 7G8 3 rats 4 20+20 20+20

DBL5 7G8 3 rabbits 4 5 100 100

3 rats 4 20 20

IT4 3 rabbits 4 5 25 25

3D7 3 rabbits 4 5 50 50

3 rats 4 20 20

DBL6 7G8 3 rats 4 20 20

IT4 2 rabbits 5 6 500 250

3 rats 4 20 20

Immunogen control var22

DBL3 IT4 3 rabbits 4 5 50 50

3 rats 4 20 20

1. Animals were immunized subcutaneously.

2. Recombinant protein in Complete Freund’s adjuvant.

3. Recombinant protein in Incomplete Freund’s adjuvant.

4. As previously published [30].

5. As previously published [29].
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reducing conditions. Overall, five of the six 7G8-
VAR2CSA DBL domains could be produced as single
domain recombinant proteins from P. pastoris.

VAR2CSA recombinant proteins produced in P. pastoris
displayed differential ability to elicit surface-reactive
antibodies to the homologous parasite
To investigate the immunogenic properties of single
domain proteins, rats were immunized with the five
7G8-VAR2CSA domains or IT4var22 DBL3 control pro-
tein (Table 1). In addition, one group of rats received a
combination of equal amount of 7G8 DBL4 and 7G8
DBL5 proteins (denoted 7G8 DBL4+5) because these
domains have been found to induce adhesion blocking
antibody responses in some instances [31,33]. By ELISA,
the end point titer of most rat immune plasma ranged
between 1 × 104 and 2 × 105 against the corresponding
VAR2CSA immunogen (Figure 2). The control plasma
anti-IT4var22 DBL3 reacted well against its homologous
protein IT4var22 DBL3 but not against VAR2CSA
Pichia 7G8 DBL5 recombinant protein.

To measure surface reactive antibodies, immune
plasma were first examined by flow cytometry against
the homologous parasite line. As expected, the control
anti-IT4var22 DBL3 plasma did not react with 7G8-CSA
infected erythrocytes (Figure 3). Of the five VAR2CSA
domains, DBL3, DBL5, and DBL6 recombinant proteins
induced the strongest antibody reactivity against the
homologous 7G8-CSA parasite (Figure 3), and did not
cross-react against two different CD36-binding negative
control parasite lines (Figure 4). In contrast, 7G8-DBL1
recombinant protein did not induce good surface reac-
tive antibodies against 7G8-CSA IEs in any of three rats
and only one of three rats immunized with 7G8-DBL4
(rat# 1) was reactive with 7G8-CSA (Figure 3). Lastly,
the equal mixture of 7G8-DBL4 and 7G8-DBL5 proteins
did not produced a greater surface reactivity against the
homologous parasite than the DBL4 or DBL5 antigen
alone (Figure 3B). Thus, the five proteins differed in
their ability to induce surface reactive antibodies.
For comparison, rats or rabbits were immunized with

recombinant proteins from a second VAR2CSA allele,
IT4-VAR2CSA (Figure 1). In this case, two different ver-
sions of IT4-VAR2CSA DBL4 were employed (Figure 1),
consisting of a “longer” version (D4L; S1594-L1926)
containing the predicted C-terminal cysteine and a
“short” version (D4S; S1594-V1888) lacking the final
two predicted cysteine residues. Similar to the 7G8
recombinant proteins, antibodies to the DBL3 and DBL6
recombinant proteins were strongly reactive with the
homologous parasites, but the DBL1, DBL4S, and
DBL4L recombinant proteins did not induce significant
reactivity against the homologous parasite line (Figure
3B). Furthermore, rabbits immunized with the IT4-
DBL5 domain produced strong antibody responses to
the homologous parasite line [30]. Thus, in two different
instances, DBL3, DBL5, and DBL6 recombinant proteins
produced in P. pastoris were superior to DBL1 and
DBL4 in eliciting antibodies against the homologous
parasite line.

VAR2CSA DBL3 and DBL5 recombinant proteins induce
cross-reactive antibodies to diverse CSA binding parasite
lines
To identify whether any of the VAR2CSA domains
induced cross-reactive antibodies, immune sera were
tested against a panel of five CSA-binding lines from
diverse geographic regions and two CD36 binding con-
trol parasite lines. As observed for homologous parasite,
DBL1 and DBL4 recombinant proteins generally induced
weak or no antibody responses against heterologous
CSA binding lines (Figure 4). In addition, anti-DBL6
plasma made against either an IT4-DBL6 or a 7G8-
DBL6 recombinant protein did not cross-react on het-
erologous CSA binding parasite lines (Figure 4), possibly
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Figure 2 Endpoint titers of anti-VAR2CSA plasma as
determined by ELISA. The endpoint titers of anti-VAR2CSA plasma
at OD 0.1 is shown. Individual animals are indicated by dots. Mean
values are indicated by bars. Rat and rabbit immune plasma were
tested against their corresponding P. pastoris DBL recombinant
protein at 200 ng (e.g. immune plasma/recombinant protein).
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because DBL6 is the most polymorphic extracellular
domain [18]. In contrast, anti-DBL3 and anti-DBL5
plasma from both rats and rabbits cross-reacted on
diverse CSA-binding parasite lines (Figure 4). The extent
of antibody cross-reactivity differed between parasite
lines, and DBL3 immunogens induced greater breadth
than DBL5. Lastly, an equal mixture of 7G8-DBL4 and
7G8-DBL5 proteins did not produce greater surface
reactivity with the 7G8-CSA parasite line than DBL4 or
DBL5 alone (Figure 4). Previous sequence comparisons
showed that VAR2CSA DBL3, DBL4, and DBL5
domains are slightly more conserved than other extra-
cellular domains (82-88% amino acid identity versus 60-
80% for other domains) [18]. Within the parasite panel,
DBL3 sequences averaged 87% amino acid identity
(range 81-91%) and DBL5 sequences had 86% amino
acid identity (range 83-99%). Thus, despite the presence
of sequence polymorphisms, VAR2CSA DBL3 and

DBL5 domains contain cross-reactive epitope(s) that are
widely geographically distributed in different CSA-
binding parasite lines. In contrast, such broad cross-
reactivity was never observed after immunizing with a
DBL1, DBL4 or DBL6 recombinant protein in rats or
rabbits.

Individual VAR2CSA DBL domains were ineffective in
generating adhesion blocking antibodies
To investigate if DBL recombinant proteins produced in
P. pastoris induced antibodies that could inhibit infected
erythrocyte binding to CSA, an in vitro binding inhibi-
tion assay was performed using 4 CSA-binding lines
(7G8-CSA, IT4-CSA, Pf2004-CSA, Pf2006-CSA). For
these assays, pooled plasma was used, except for rat
anti-DBL4. In this case, pooled anti-DBL4 plasma was
compared to the single rat #1 that was positive by flow
cytometry (Figure 3). Binding inhibition was analysed
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relative to rats immunized with a non-CSA-binding con-
trol protein (pooled rat anti-var22 DBL3 plasma). The
corresponding pooled preimmune plasma were tested as
well but were negative. As shown in Figure 5, the only
plasma that exhibited modest inhibition activity was rat
#1 anti-DBL4 (60 ± 14% inhibition of 7G8-CSA). How-
ever, activity was largely restricted to the homologous
parasite line (Figure 5), and binding inhibition was
reduced to less than 20% after pooling the three rat’s
anti-DBL4 plasma. In addition, anti-DBL5 and anti-
DBL6 plasma gave minimal inhibition (< 30%) against
one of the four CSA-binding parasite lines. Most other
plasma had little to no inhibitory activity (≤ 20%) against
both homologous and heterologous parasite lines. This
low level is considered non-significant because it does
not correlate with antibody reactivity against the same
parasite lines by flow cytometry (Figure 4) and was simi-
lar to the negative control CD36 binding parasite line to
CD36 (Figure 5). Furthermore, a combination of plasma
to 7G8 DBL1, DBL3, DBL4, DBL5, and DBL6 had less

than 10% inhibitory activity on the homologous 7G8-
CSA parasite line (Figure 5), similar to the negative con-
trol anti-IT4 var22 DBL3 plasma. Therefore, most single
domain immunogens produced in P. pastoris were inef-
fective in inducing inhibitory antibodies, except for a
single rat immunized with a DBL4 recombinant protein.

Discussion
The development of a pregnancy malaria vaccine will
require the identification of immunogen(s) that can
induce broad reactivity to diverse placental isolates. In
malaria endemic regions, pregnant women are exposed
to many different placental genotypes/VAR2CSA alleles
in a single pregnancy [41-43]. Although this cumulative
exposure eventually leads to immunity [3], it may be dif-
ficult to replicate in a vaccine with mixtures of
VAR2CSA recombinant proteins. It is not yet clear
whether the extensive breadth of acquired antibodies
represents a few highly conserved epitopes or is an
accumulation of many different antibody specificities.
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In addition, the epitopes targeted by adhesion-blocking
antibodies are not yet defined. Thus, a pregnancy
malaria vaccine may need to induce a response that is
qualitatively or quantitatively different from natural
infections [44]. Furthermore, the feasibility of developing
a pregnancy malaria vaccine may depend on identifying
structurally or functionally conserved epitopes that will
not vary under vaccine pressure.
Because it is not yet known with certainty which regions

of VAR2CSA bind to CSA, a reductionist approach has
been taken to identify VAR2CSA domains that can induce
adhesion blocking antibody responses. Recent work sug-
gests that DBL4 and DBL5 recombinant proteins can
induce inhibitory antibodies [31,33,34], sometimes of sig-
nificant breadth [34], but inhibitory responses have been
inconsistent between different antigen preparations. In

addition, a full set of VAR2CSA domains has only been
analysed from the Baculovirus system or by DNA vaccina-
tion, and differences have already been observed between
different expression platforms [26,29,32]. This is an impor-
tant consideration because the DBL domain has a highly
complex protein fold with multiple disulfide bonds [45]
and some expression systems may be more commercially
scalable than others.
This study reports on the immunogenicity of single

domain recombinant proteins produced in P. pastoris,
which has also been employed to produce functionally
active DBL domains from erythrocyte invasion ligands
[45-47]. Antibody cross-reactivity was characterized on a
panel of five heterologous CSA-binding parasites from
different regions of the world. VAR2CSA recombinant
proteins differed significantly in immunogenicity. DBL1
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and DBL4 domains elicited very weak or no antibody
responses against the homologous CSA-binding para-
site, while the DBL6 domain elicited a strong antibody
response to the homologous parasite variant, but did
not cross-react against heterologous CSA-binding
lines, possibly due to the greater polymorphism of this
domain [18]. The DBL5 and especially the DBL3
domains were exceptional in that a single immunogen
induced cross-reactive antibodies to diverse CSA-
binding parasite lines in both rat and rabbit immuniza-
tions. Intriguingly, DBL3 and DBL5 are also the major
targets of maternal antibodies cloned from pregnant
women [48], indicating these domains are highly
immunogenic in natural infections. Similar to vaccine
antibodies, maternal monoclonal antibodies against
DBL3 and DBL5 have only weak adhesion blocking
activity [49], but recognize epitopes that are at least
partially shared between different VAR2CSA alleles.
While adhesion blocking antibodies are thought to
make a major contribution to protection [6,7], cyto-
phillic antibodies are the predominant isotype in preg-
nant women [50] and may also have a role in both
protection [10] and monocyte-driven inflammatory
complications of placental infections. It will be inter-
esting to learn more about the specificity of vaccine
induced DBL3/DBL5 antibodies compared to naturally
acquired antibodies, and if these responses could be
harnessed for vaccine development by accelerating
phagocytic clearance of placental infected erythrocytes
in primigravid women before severe inflammation
develops.
In the full series of different DBL domains, inhibitory

antibody responses were only observed in a single rat
immunized with a 7G8-DBL4 recombinant protein.
Altogether, five of the six DBL domains from 7G8-
VAR2CSA were tested, but the DBL2 domain could not
be produced and it was possible not evaluate whether it
has potential to elicit adhesion blocking antibodies. The
FCR3-DBL4 domain that has worked for others was
also tested [31], but did not elicit inhibitory antibodies.
However, but the DBL2 domain could not be produced
and it was not possible to evaluate whether the two
protein expression systems could not be directly com-
pared. It has recently been reported that a full-length
VAR2CSA extracellular domain (DBL1-6) induced
potent adhesion blocking antibodies and was even more
effective than the isolated DBL4 domain against the
homologous parasite [24]. Thus, anti-VAR2CSA antibo-
dies can block CSA-binding, but a challenge will be to
focus antibodies on inhibitory epitopes in larger
VAR2CSA vaccine immunogens or to define smaller
immunogens that can consistently induce a broad inhi-
bitory antibody response.

Conclusions
This study assessed the immunogenicity of single
domain VAR2CSA constructs produced in P. pastoris.
Overall, single domain constructs were poor immuno-
gens for adhesion blocking antibody responses, but
DBL3 and DBL5 recombinant proteins induced cross-
reactive antibodies to diverse CSA-binding parasite
lines. Although VAR2CSA is unusually conserved for
the var gene family, it is relatively polymorphic com-
pared to most parasite proteins. The finding that
VAR2CSA displays widely strain-transcendent antibody
epitopes may have application for pregnancy malaria
vaccine development.
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