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Abstract

Background: There has been much debate about the appropriate statistical methodology for the evaluation of
malaria field studies and the challenges in interpreting data arising from these trials.

Methods: The present paper describes, for a pivotal phase III efficacy of the RTS, S/AS01 malaria vaccine, the
methods of the statistical analysis and the rationale for their selection. The methods used to estimate efficacy of
the primary course of vaccination, and of a booster dose, in preventing clinical episodes of uncomplicated and
severe malaria, and to determine the duration of protection, are described. The interpretation of various measures
of efficacy in terms of the potential public health impact of the vaccine is discussed.

Conclusions: The methodology selected to analyse the clinical trial must be scientifically sound, acceptable to
regulatory authorities and meaningful to those responsible for malaria control and public health policy.

Trial registration: Clinicaltrials.gov NCT00866619

Background
In May 2009, the first large scale, phase III efficacy trial
assessing a candidate malaria vaccine was launched across
seven countries in sub-Saharan Africa. The vaccine candi-
date RTS, S/AS01 targets the pre-erythrocytic stage of the
Plasmodium falciparum parasite. This phase III trial is
designed to determine the efficacy of the vaccine against
clinical malaria in young children to support the file sub-
mission for regulatory review by European and African
regulatory authorities. Additionally, a broad range of sec-
ondary efficacy endpoints are included to evaluate the full
potential direct impact of the vaccine on child health.
These include severe malaria and malaria-specific mortal-
ity as well as all-cause hospitalization and mortality.
Malaria is a common disease in sub-Saharan children

and so it may at first appear relatively simple to design
trials to demonstrate the effects of interventions with rea-
sonable sample sizes. However, the design of such trials
comes with specific statistical challenges. All individuals

are not at the same level or risk of malaria disease; trans-
mission varies widely across trial sites. Malaria control
measures are being scaled-up across sub-Saharan Africa,
but at differing rates and coverage. Statistical methods
must be able to adjust for the confounding effect of
explanatory variables and take into account the fact that
multiple events within the same individual are not
independent.
Phase II data suggest that while RTS, S/AS01 offers

approximately 50% protection against clinical malaria
disease, the likely mechanism of protection is reduction
in the risk of disease associated with an infectious bite in
all individuals rather than complete protection in 50% of
individuals. A vaccine with this kind of effect is often
referred to as a “leaky vaccine”. A consequence of the use
of a leaky malaria vaccine is that over time both vacci-
nated and comparator children will continue to experi-
ence malaria episodes and that in high transmission areas
following sufficient exposure and extended follow-up, all
individuals will experience an infection, regardless of
whether they were vaccinated or not. However, this does
not mean that vaccination would not provide public
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health benefit, since the number of episodes could be sig-
nificantly reduced as well as the risk of complications.
In endemic areas, young children may experience sev-

eral episodes of malaria per year and gradually acquire
immunity against malaria disease through repeated expo-
sure to parasites. Naturally acquired immunity is predo-
minantly directed to the blood stage of the infection, in
contrast to the vaccine, which induces protection
through an effect on the pre-erythrocytic stage. Vaccine
trials are conducted superimposed on this background
making long-term vaccine efficacy difficult to disentangle
from protection acquired by exposure to infection.
Vaccine efficacy is calculated as VE = 1 - R where R may

be a ratio of risks, rates or hazards. All of these methods
have been used to license vaccines. The choice of method
is dependent upon the data, but it is also important that
the output is meaningful to the end user: those making
vaccine policy decisions and eventually parents. In this
trial, vaccine efficacy is calculated using comparison of
risks, rates, or hazards depending on the endpoint. The
purpose of this paper is to set out the statistical methods
that will be used to estimate the efficacy of RTS, S/AS01.
The choice of statistical analysis for endpoints in the RTS,
S/AS01 phase III trial is used to illustrate the advantages
and disadvantages of each method.

Trial design
The RTS, S/AS01 pivotal phase III trial is a double-blind
(observer-blind), randomized, controlled study conducted
in 11 centres located across seven countries in sub-
Saharan Africa enrolling children in two age categories:
6-12 weeks and 5-17 months old with a minimum of
6,000 subjects in both age categories up to a maximum
of 16,000 children and infants overall. In both age cate-
gories, the subjects are randomized to one of the three
study groups in a 1:1:1 ratio; (i) RTS/SAS01 given in a
0,1,2-month schedule + a RTS, S/AS01 booster dose at
Month 20 (group R3R); (ii) RTS/SAS01 given in a 0,1,2-
month schedule + a booster dose of control vaccine at
Month 20 (group R3C); (iii) control vaccine given in a
0,1,2-month schedule + a booster dose of control vaccine
at Month 20 (group C3C) [1]. Children in the 6-12 week
age group receive the primary course of RTS, S/AS01 co-
administered with their routine infant immunizations
(diphtheria, tetanus, whole cell pertussis, hepatitis B,
Haemophilus influenzae type B and oral polio vaccines).
The full list of efficacy endpoints is given in Table 1.

Case definitions are given in the companion papers
including those for clinical malaria and other morbidity
endpoints [1] and severe malaria [2].
The co-primary endpoints are efficacy against clinical

malaria for 12 months post Dose 3 in both the 6-12
weeks and 5-17 months age groups. The analysis of effi-
cacy will be carried out when 6,000 children in an age

category have been enrolled and followed up for
12 months post Dose 3. Vaccine efficacy (VE) against
first or only episodes will be determined using a standard
formula: VE = 100 × (1 - HR)% where HR is the hazard
ratio estimated from Cox regression model. Following an
episode of malaria, an individual will be removed from
the risk set and subjects who are lost to follow-up, who
are withdrawn, or who die will be included up to the date
of loss, withdrawal or death [3]. Sites are considered as
strata, thus allowing for the fact that the temporal pattern
of incidence rate in the control group may vary from site
to site. The time scale for analysis is the elapsed time
since 14 days after dose 3 (for the ATP analysis), and
elapsed time after dose 1 (for the ITT analysis), rather
than calendar time. This allows all randomized subjects
to be included in the risk set at the start of follow-up,
and it simplifies analysis of duration of protection.
A common case definition will be applied in all sites,
chosen to have high specificity in all sites.
The primary analysis will be stratified for study site and

unadjusted for other covariates; however, vaccine efficacy
estimates adjusted for covariates will also be presented. As
there are two co-primary endpoints, 97.5% confidence
intervals (CIs) on VE will be calculated, ensuring an over-
all 2-sided 5% alpha-level. Therefore, p-values lower than
0.025 will be considered significant for the primary end-
points. Assuming at least 5400 evaluable subjects (rando-
mized 2:1), an attack rate in controls of 10/100 per child
year at risk (cyr) over the follow-up period from 2 weeks
post Dose 3 to 1 year post Dose 3 and a true vaccine effi-
cacy of 30%, the study has 90% power to detect a lower
limit of the 97.5% CI around estimated VE above 0%. All
secondary endpoints will be evaluated using 95% CIs.
VE against all episodes will be calculated by an inci-

dence rate ratio (IRR) using a negative binomial regres-
sion model controlling for interdependence between
episodes within the same subject. The 95% CI and
p-values on VE estimates, defined as 100 × (1 - IRR)%,
will be calculated from this model. Events occurring
within 14 days following a malaria episode meeting the
malaria case definition under evaluation will not contri-
bute, to minimize counting treatment failures as an epi-
sode resulting from a new infection and the total time at
risk will be adjusted.
VE against severe malaria will be evaluated when 250

subjects have reported an episode of severe malaria meet-
ing the primary case definition. Recruitment of 250
affected subjects provides 90% power to detect 30% VE
with a lower limit of 95% CI above 0%. The primary analy-
sis will compare the pooled RTS, S/AS01 groups versus
the control group (R3R + R3C vs C3C). VE against severe
malaria will be estimated as 1 - RR where RR is the risk
ratio (proportion of subjects reporting severe malaria in
the RTS, S/AS01 group over the proportion in the control
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group) together with 95% CIs. Analysis of all events will be
performed in a similar way as for clinical malaria disease.
Table 2 summarizes the analytic approach of efficacy
applied to each endpoint.
The benefit of the booster dose will be evaluated by

the comparison of RTS, S/AS01 recipients receiving a
booster dose compared to control booster (R3R vs R3C)
over the 12 months following booster dose. Children
receiving a primary schedule with or without booster
dose will be compared to controls as well (R3R vs C3C
and R3C vs C3C).
At 18 and 30 months post primary immunization, a

cross sectional survey will sample all participating chil-
dren to assess vaccine efficacy against prevalent parasi-
taemia and anaemia. This will be estimated by the
prevalence ratio with 95%CI.
The primary efficacy analysis will be performed on the

according to protocol (ATP) population over the period
starting 14 days post Dose 3. The ATP population
includes all subjects meeting the inclusion criteria who
received all vaccinations according to protocol and

Table 1 Efficacy endpoints

Primary Efficacy
Endpoint

Efficacy against clinical malaria when primary immunization starts at 6-12 weeks, or 5-17 months of age
Occurrence of cases of malaria meeting the primary case definition for clinical malaria over a period starting 14
days post Dose 3 for 12 months in children aged 6-12 weeks

Occurrence of cases of malaria meeting the primary case definition for clinical malaria over a period starting 14 days
post Dose 3 for 12 months in children aged 5-17

Secondary Efficacy
Endpoints

Efficacy against severe disease
Occurrence of severe malaria meeting the primary and secondary case definitions

Efficacy against incident severe anaemia and malaria hospitalization
Occurrence of incident severe anaemia and malaria hospitalization meeting the primary and secondary case definitions

Duration of efficacy of a primary course
For a primary schedule without a boost, the occurrence of clinical malaria meeting the primary case definition analysed
over the time periods starting 14 days post Dose 3 until boost, boost until study end and 14 days post Dose 3 until
study end

Potential added benefit of a booster dose
For a primary schedule with and without a boost, the occurrence of clinical malaria meeting the primary case definition
analysed over the time period starting at boost until study end

Efficacy under different transmission settings
For each site, occurrence of clinical malaria disease meeting the primary case definitions

Efficacy against secondary case definitions of clinical malaria
Occurrence of clinical malaria disease meeting the secondary case definitions

Efficacy against prevalence of parasitaemia
Presence of parasitaemia at 18 months and 30 months post Dose 3 and 12 months after the booster dose

Efficacy against prevalence of moderate and severe anaemia
Presence of moderate and severe anaemia at 18 months and 30 months post Dose 3 and 12 months after the booster
dose

Efficacy against other serious illness
Occurrence of other serious illness meeting the primary and secondary case definitions. Other serious illness is all
medical hospitalization, sepsis and pneumonia

Efficacy against fatal malaria and all-cause mortality
Occurrence of fatal malaria (meeting the case definitions) and all-cause mortality

Effect on growth
Compare the height/length, weight and mid-upper arm circumference for age z-score

Gender-specific efficacy
In male and female children, the occurrence of clinical malaria disease meeting the primary case definition

Table 2

Endpoint

Risk ratio At least one episode:

Comparison of proportion
affected

Severe malaria

Incident severe anaemia

Malaria mortality

All cause mortality

Prevalent P. falciparum
infection

Prevalent anaemia

Rate ratio All episodes:

Negative binomial regression
model

Clinical malaria

Severe malaria

Malaria hospitalization

All cause hospitalization

Sepsis

Pneumonia

Hazard Ratio First or only episode:

Cox regression model Clinical malaria
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contribute to time at risk starting 14 days post dose 3.
The choice to perform the primary analysis on the ATP
population reflects the thought that the main outcome is
to describe vaccine efficacy for a vaccinated population.
However, analyses will also be conducted on a modified
intention to treat (ITT) population, which includes all
subjects who received at least one dose of vaccine. The
ITT population will be analysed by randomization assign-
ment and start time at risk from the day of first vaccina-
tion. Subjects randomized but not vaccinated are not
under efficacy surveillance.

Assessment of vaccine efficacy against clinical
malaria
Case definitions - malaria is characterized by fever caused
by parasitaemia. In malaria endemic regions it is not
uncommon for children to carry asymptomatic infections
with P. falciparum. Fever in these children may be caused
by disease other than malaria. In order to improve speci-
ficity, cases in this trial are defined as children who are
unwell and have presented to the clinic with fever and
parasite density above a threshold value [4]. A common
parasite density threshold (>5,000/mcl) was chosen to
have good specificity in all sites, recognizing that this
means sensitivity will vary from site to site. Secondary
case definitions include other thresholds [1].
The percentage of children free of malaria by the end of

the trial can be compared but efficacy will depend on the
level of incidence and the duration of the trial so this mea-
sure of efficacy is difficult to compare between trials and it
does not reflect the reduction in disease burden due to
vaccination. As a primary analysis, vaccine efficacy is esti-
mated by evaluating the hazard ratio of first or only epi-
sodes, allowing evaluation of the direct effect of the
vaccine. This is in line with the hypothesized mechanism
of RTS, S/AS vaccination, namely that rather than provid-
ing complete protection to half of the individuals (all or
nothing type vaccine), it protects by reducing the risk of
disease following an infectious bite by a certain proportion
for all individuals. The Cox model allows for different
levels of baseline risk across study sites and can include
baseline covariates. Under the assumption that vaccine
efficacy is not different across study sites and the hazard
ratio is constant over time, it is a good method to reduce
variability and control for confounding, particularly as
data for the primary endpoint will be pooled across multi-
ple transmission settings. Also, analysis on vaccine efficacy
by study site is a secondary analyses planned for by the
protocol. This methodology is well established and has
been broadly used to evaluate previous malaria interven-
tions [5-13] and to license many drugs and vaccines. This
method is acceptable to regulatory authorities and WHO
as a measure of VE [1,14], although a shortcoming of the

vaccine efficacy calculated from hazard ratios could be
that it is not intuitively understood.
Vaccine efficacy is also calculated against all episodes of

clinical malaria. The methodology used to do this must
take into account the fact that the risk in all individuals is
not equal; some individuals are more susceptible than
others related to host factors such as genetic background,
health and behaviour or to the level of exposure to bites
by infectious mosquitoes in the community. Moreover, the
risk of malaria may not be constant over subsequent epi-
sodes. Vaccine efficacy is calculated by comparing inci-
dence rates using a negative binomial regression model
allowing for individual heterogeneity arising from non-
independence of multiple episodes within the same sub-
ject. This model accounts for heterogeneity among indivi-
duals and considers non-independent multiple episodes
[15,16]. Vaccine efficacy based on a comparison of inci-
dence rates is perceived as a straightforward measure that
is meaningful to policy makers and can be used for the
evaluation of the economic consequences of vaccine
introduction.

Assessment of vaccine efficacy against severe
malaria
Unlike uncomplicated clinical malaria, which is a rela-
tively common disease from which patients usually
recover completely with treatment, severe malaria is a
rare event associated with a high case fatality rate even
in the presence of optimal treatment and repeated epi-
sodes in the same individual are uncommon [17]. As
such, severe malaria remains an important cause of
childhood mortality in sub-Saharan Africa [18,19].
Vaccine efficacy against severe malaria disease will be

analysed as a risk ratio, comparing the proportion of chil-
dren affected by at least one episode of severe malaria in
each group. The key advantage of this measure is that it is
readily interpretable; the vaccine reduces the risk of severe
disease over the specified time frame by a proportion. This
methodology is also used for each of the endpoints, which
share the same features of being rare and life-threatening
(Table 2).
In a secondary analysis, all episodes of severe malaria

will be investigated in the same way as all episodes of
clinical malaria.

Assessment of vaccine protection over time
The assessment of the evolution of vaccine efficacy against
clinical malaria over time is the most challenging aspect of
the analysis; it is not a limitation of the statistical metho-
dology but of the data set itself. Two analytic methods will
be used to evaluate the evolution of protection against
clinical malaria over the 30-month follow up period. The
first will compare the study groups R3C and C3C from the
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beginning to the end of the study and the second will esti-
mate vaccine efficacy over shorter time periods; from 14
days post dose 3 to 17 months and from 18 months to 30
months. To evaluate duration of protection, analyses of all
events is more informative than first or only episodes.
The challenge lies in the interpretation of the results

that these analyses will provide because neither methodol-
ogy is able to disentangle the effects of vaccine induced
immunity and naturally acquired protection. In most parts
of Africa, children acquire a high level of protection
against the severe forms of malaria in early childhood as a
result of repeated exposure to blood stage parasites. It is
expected that the vaccinees also acquire immunity as a
result of exposure to infection. The difficulty is that there
is no immunological assay that can tell whether vaccinees
have acquired natural immunity at the same rate as con-
trols and allow adjustment for this in the analysis. If nat-
ural immunity is acquired at a similar rate in controls and
vaccines, then estimates of vaccine efficacy will approxi-
mate true vaccine efficacy, but if vaccinees and controls
acquire natural immunity at a different rate, estimates will
not reflect true vaccine efficacy. Although efficacy esti-
mates based on first or only episodes may not be very
informative of duration of protection, the Cox propor-
tional hazards method allows to investigate whether the
proportionality of hazards remains constant over time (i.e.
that observed vaccine effect remains constant) by examin-
ing cumulative incidence plots, Schoenfeld residuals and
models with time-dependent covariates. If there is no sup-
port from the data that the HR changes over time, one
could assume a constant effect over the follow-up. How-
ever, the opposite is not true: violating the proportionality
of hazards assumption does not necessarily mean waning
efficacy. Violating a proportionality of hazards assumption
in the presence of declining attack rates may suggest
decreasing susceptibility or heterogeneity in exposure
rather than waning vaccine efficacy. The approach of
breaking the surveillance period into shorter time periods,
sometimes described as “resetting the clock”, is intuitive.
However, the interpretation remains complicated by the
fact that the control group is no longer directly compar-
able in the second time period due to different exposure
in the first time period and the concomitant development
of natural immunity.
As relevant to policy makers as the evolution of vaccine

efficacy over time, is the presentation of results addressing
the fundamental hypothesis underlying the development
strategy for RTS, S/AS01. The hypothesis is that a partially
efficacious vaccine would be of great value in endemic
areas, if it was able to be given to young children and pro-
vide them with protection against the severe life-threaten-
ing forms of the disease until they had acquired natural
protection. This can be assessed by presenting an analysis
of the number of cases averted by the vaccine over time.

Covariates
A covariate can be defined as a qualitative factor or a
quantitative variable that is expected to have an influ-
ence on study endpoint(s) to be analysed. Covariates
can be highly variable and may include disease charac-
teristics, social or economic factors and geographic or
demographic data [20].
Study centres participating in this trial represent a range

of malaria transmission intensities across sub-Saharan
Africa, including the intense seasonal transmission of
West Africa and perennial transmission in East Africa.
Other factors might influence the pattern of malaria dis-
ease in a population and may be taken into account as
covariates for data analyses. The importance to controlling
for heterogeneity in malaria risk to avoid underestimating
vaccine efficacy has been highlighted earlier [21].
All the covariates collected in this trial have known

associations with malaria risk. Cox regression allows for
seasonal variation of malaria incidence and adding study
centres as a covariate allows for different levels of base-
line risk and different patterns of seasonality. The trial
collected a number of potential covariates including age,
bed net use [22-24], distance from nearest inpatient/out-
patient facility [25], pneumococcal vaccination status
[26,27], ethnicity [28,29] and nutritional status [30,31].

Conclusion
In conclusion, the analytic methods selected to analyse
the results of the RTS, S/AS01 phase III clinical trial
must be scientifically sound, acceptable to regulatory
authorities and meaningful to those responsible for
malaria control and public health policy. These needs
have been taken into account and resulted in a list of pri-
mary and secondary endpoints, each with their appropri-
ate analytic methods. Finally, an understanding of the
biological action and full benefit/risk profile of the vac-
cine will only be gained by looking at the full picture that
is painted by the entire range of predefined endpoints
and planned analyses.
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