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Abstract
The Signal Transducer and Activator of Transcription (STAT) proteins comprise a family of latent
transcription factors with diverse functions. STAT3 has well established roles in cell proliferation,
growth and survival, and its persistent activation has been detected with high frequency in many
human cancers. As constitutive activation of STAT3 appears to be vital for the continued survival
of these cancerous cells, it has emerged as an attractive target for chemotherapeutics. We
examined whether the inhibitory activities of bioactive compounds from cruciferous vegetables,
such as Benzyl isothiocyanate (BITC) and sulforaphane, extended to STAT3 activation in PANC-1
human pancreatic cancer cells. BITC and sulforaphane were both capable of inhibiting cell viability
and inducing apoptosis in PANC-1. Sulforaphane had minimal effect on the direct inhibition of
STAT3 tyrosine phosphorylation, however, suggesting its inhibitory activities are most likely
STAT3-independent. Conversely, BITC was shown to inhibit the tyrosine phosphorylation of
STAT3, but not the phosphorylation of ERK1/2, MAPK and p70S6 kinase. These results suggest that
STAT3 may be one of the targets of BITC-mediated inhibition of cell viability in PANC-1 cancer
cells. In addition, we show that BITC can prevent the induction of STAT3 activation by Interleukin-
6 in MDA-MB-453 breast cancer cells. Furthermore, combinations of BITC and sulforaphane
inhibited cell viability and STAT3 phosphorylation more dramatically than either agent alone. These
findings suggest that the combination of the dietary agents BITC and sulforaphane has potent
inhibitory activity in pancreatic cancer cells and that they may have translational potential as
chemopreventative or therapeutic agents.

Published: 27 August 2009

Cancer Cell International 2009, 9:24 doi:10.1186/1475-2867-9-24

Received: 17 September 2008
Accepted: 27 August 2009

This article is available from: http://www.cancerci.com/content/9/1/24

© 2009 Hutzen et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19712481
http://www.cancerci.com/content/9/1/24
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.cancerci.com
http://www.biomedcentral.com/info/about/charter/


Cancer Cell International 2009, 9:24 http://www.cancerci.com/content/9/1/24
Background
Despite major advances in the detection and treatment of
cancer in the past few decades, cancers of the pancreas are
still rarely curable; the five-year survival rate of pancreatic
cancer patients remains less than 5% [1]. Pancreatic can-
cers generally respond poorly to conventional treatment
modalities such as chemotherapy and radiation therapy,
necessitating the discovery and development of more
effective means for their treatment [2].

The etiology of pancreatic cancer is poorly understood,
but it involves the multi-stage development of aberrations
in signaling pathways that affect cell growth and prolifer-
ation [3]. Recent studies have revealed the identities of
several of these signaling proteins, including those associ-
ated with the ERK, AKT, mTOR and STAT3 pathways [4].
STAT3 is a member of the STAT family of transcription fac-
tors, which is transiently activated in response to cytokine
and growth factor receptor stimulation [5-8]. Although it
plays necessary roles in early development, the presence
of STAT3 in the majority of adult tissue and cell types is
mostly dispensable [9-11]. Constitutive STAT3 signaling
has been implicated as a contributor to oncogenesis for its
roles in stimulating cell proliferation, mediating immune
evasion, promoting angiogenesis, and conferring resist-
ance to apoptosis as induced by conventional therapies
[12-16]. Persistent activation of STAT3 is frequently
detected in a wide range of blood and solid tumors,
including those of the pancreas [17-20]. Consequently,
the inhibition of STAT3 by a variety of means has been
demonstrated to exert a potent anti-cancer effect
[15,21,22].

In the present study, we investigated the potential inhibi-
tory effects of BITC and sulforaphane on persistent STAT3
activation in the PANC-1 pancreatic carcinoma cell line.
BITC and sulforaphane are cruciferous vegetable-derived
compounds which have been shown to inhibit chemically
induced cancer in various animal models [23-28]. BITC is
known to up-regulate the cyclin dependent kinase (Cdk)
inhibitor p21Waf1/Cip1[29], induce a marked decline of
Cdk1, cyclin B1 and cell division cycle 25B, and inhibit
activation of nuclear factor κB (NF-κB) [30]. Sulforaphane
has also been shown to inhibit NF-κB [31], histone
deacetylase activity [32], and AKT phosphorylation [33],
and it possesses several other anti-cancer activities [34]. It
is presently unclear whether BITC or sulforaphane have
any inhibitory effect on STAT3 activation in pancreatic
cancers.

Results
Sulforaphane and BITC inhibit cell viability and induce 
apoptosis in PANC-1 pancreatic cancer cells
We first examined the effect of sulforaphane and BITC
treatment on the viability of PANC-1 as determined by
MTT assays. At day 3 post-treatment, 5, 10, and 20 μM

concentrations of sulforaphane inhibited approximately
30%, 50%, and 65% of cell viability respectively (Figure
1A). At day 5 post-treatment, 5 μM of sulforaphane was
found to inhibit approximately 65% of cell viability; con-
centrations of 10 μM and 20 μM reduced viability below
detectable levels (Figure 1A). We then investigated the
effect of sulforaphane treatment on the phosphorylation
status of STAT3. The activation of STAT3 is contingent
upon phosphorylation of tyrosine residue 705 (Y705), an
event typically preceded by the interaction of specific
cytokines and growth factors with their cognate receptors
[7,8]. Western blots were performed using lysates from
PANC-1 cells treated with various concentrations of sulf-
oraphane for 24 hours and a Y705-specific STAT3 anti-
body. Sulforaphane concentrations as high as 20 μM had
no discernable effect on levels of phosphorylated STAT3
(pSTAT3) and minimal inhibitory activity on phosphor-
ylated ERK 1/2, two closely related MAP kinases that are
also regulated in part by tyrosine phosphorylation (Figure
1B) [35]. Concentrations of 10 and 20 μM sulforaphane
were capable of inducing apoptosis in PANC-1 however,
as evidenced by increased cleavage of poly-(ADP-ribose)
polymerase (PARP), an early target of active caspases and
a marker for apoptosis (Figure 1B) [36]. Taken together,
these observations suggest that sulforaphane's inhibitory
activities against PANC-1 are achieved by means inde-
pendent of STAT3.

Similar experiments were performed with BITC concentra-
tions ranging from 5 to 30 μM. The addition of BITC to
the media likewise resulted in dose-dependent inhibition
of the PANC-1 cells' viability, albeit to a comparatively
lesser extent than that exhibited by sulforaphane (Figure
1C). In contrast to sulforaphane, Western blot analysis of
cell lysates from BITC-treated samples revealed that levels
of pSTAT3 dropped sharply at 20 μM BITC and were virtu-
ally undetectable at 30 μM (Figure 1D). Levels of phos-
phorylated ERK 1/2, however, remained relatively
consistent. BITC was also found to induce apoptosis as
determined by PARP cleavage (Figure 1D). These results
suggest that BITC-mediated inhibition of PANC-1 may be
at least partially dependent on suppression of activated
STAT3.

BITC treatment inhibits transcription of STAT3 target 
genes
To confirm our observations, we next performed non-
quantitative reverse transcriptase PCR (RT-PCR) with
cDNA generated from sulforaphane- and BITC-treated
PANC-1 cells. We limited our investigation to well-charac-
terized STAT3 target genes, such as the cell cycle regulator
Cyclin D1, the anti-apoptotic proteins Survivin and Bcl-
Xl, and the angiogenic mediator, vascular endothelial
growth factor (VEGF) [37,38]. Sulforaphane treatments as
high as 50 μM had marginal impact on the expression of
these genes, whereas equimolar concentrations of BITC
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resulted in their suppression (Figure 2). These results
again suggest that BITC-mediated inhibition of PANC-1
occurs through STAT3-dependent processes.

BITC prevents phosphorylation of STAT3 by IL-6
Interleukin-6 (IL-6), a pleiotropic and proinflammatory
cytokine, is known to be a potent activator of STAT3 [8].
Elevated serum levels of IL-6 are often associated with the
pathogenesis of many cancers, including those of the pan-
creas and breast [39,40]. Following the observation that
BITC could inhibit the phosphorylation of STAT3, we
investigated if this compound was also capable of pre-
venting STAT3 activation as mediated by IL-6. The already
high endogenous levels of pSTAT3 in PANC-1 necessi-
tated use of another cell line for these experiments. MDA-
MB-453, a breast carcinoma cell line, was chosen due to
its lack of detectable pSTAT3 in the absence of specific
external factors. The addition of 50 ng/ml of IL-6 to the
media of the MDA-MB-453 cells leads to rapid induction

The viability of PANC-1 pancreatic cancer cells is negatively impacted by sulforaphane and BITCFigure 1
The viability of PANC-1 pancreatic cancer cells is negatively impacted by sulforaphane and BITC. (A) PANC-1 
cells were treated with 5, 10, and 20 μM of sulforaphane for 3 and 5 days, after which MTT assays were used to assess cell via-
bility. (B) Treatment of PANC-1 with 2.520 μM sulforaphane results in a marked increase in cleaved PARP, but otherwise has 
little to no impact on levels of phospho-ERK1/2 and pSTAT3. (C) Treatment of PANC-1 with 5, 10 and 20 μM BITC lowers 
PANC-1 viability to a lesser extent than that exhibited by sulforaphane. (D) BITC reduces levels of pSTAT3 in a dose-depend-
ent fashion and increases levels of PARP cleavage, but has minimal effect on levels of phospho-ERK1/2.

BITC impacts expression of STAT3 target genesFigure 2
BITC impacts expression of STAT3 target genes. 
Non-quantitative RT-PCR shows BITC, but not sulforaphane, 
reduces transcription of several STAT3 target genes after 24 
hours of treatment. NT = untreated. Neg. = no cDNA nega-
tive control.
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of pSTAT3, with maximum phosphorylation levels peak-
ing within approximately 30 minutes (data not shown).
When we pre-treated MDA-MB-453 cells with 50 μM con-
centrations of sulforaphane or BITC for two hours prior to
the addition of 50 ng/ml IL-6 exposure, phosporylation of
STAT3 was almost completely nullified by BITC (Figure
3). The molecular underpinnings for this inhibition
remain to be elucidated, but given the short timeframe in
which BITC is able to inhibit IL-6 mediated pSTAT3, BITC
might be expected to somehow interfere with proper
assembly or functioning of the IL-6 receptor complex, or
perhaps disrupt the subsequent interaction of an IL-6-
dependent kinase with STAT3. There is also the possibility
that BITC directly interfaces with STAT3 itself. These
hypotheses await further experimentation.

The combination of sulforaphane and BITC is more potent 
than either agent alone
Finally, we investigated whether BITC and sulforaphane
had synergistic qualities. We again performed MTT viabil-
ity assays using 10 μM concentrations of sulforaphane
and BITC, both alone and in conjunction. Following three
days of treatment, 10 μM concentrations of BITC or sulf-
oraphane reduced viability in PANC-1 cells by approxi-
mately 20% and 50% respectively (Figure 4A). PANC-1
cells treated with 10 μM BITC and 10 μM sulforaphane in
conjunction displayed a greater than 80% reduction in
viability (Figure 4A). This observation correlated with
decreased levels of pSTAT3 and an increase in PARP cleav-
age as determined by Western blot (Figure 4B), as well as
drastic alterations in morphology and overall cell number
(Figure 4C).

Discussion
Each year, approximately 40,000 individuals in the
United States are diagnosed with pancreatic cancer [1].
Despite advancements in detection and treatment, the
majority of these pancreatic cancer cases carry a grim prog-

nosis. Even when detected early, cancer of the exocrine
pancreas is rarely curable and has an overall survival rate
of less than 4%. For patients with localized disease and
small cancers (< 2 cm) with no lymph node metastases
and no extension beyond the capsule of the pancreas,
complete surgical resection can yield actuarial 5-year sur-
vival rates of only 18% to 24% [41]. For those patients
with advanced cancers, the 5-year survival rate of all stages
plummets to less than 1%, reflective of the poor response
to chemotherapy and radiation therapy as conventionally
used [2,42,43]. There is thus an urgent need to identify
and develop more effective treatments for pancreatic can-
cer.

We identified a novel function of BITC to inhibit the tyro-
sine phosphorylation of STAT3 and prevent its induction
by IL-6. BITC and sulforaphane were both capable of
inhibiting cell viability and inducing apoptosis in PANC-
1. Sulforaphane had minimal effect on the direct inhibi-
tion of STAT3 tyrosine phosphorylation, however, sug-
gesting its inhibitory activities are most likely STAT3-
independent. Conversely, BITC was shown to inhibit the
tyrosine phosphorylation of STAT3, but not the phospho-
rylation of ERK1/2. These results suggest that STAT3 may
be one of the targets of BITC-mediated inhibition of cell
viability in PANC-1 cancer cells. Our results also suggest
that the combination of bioactive compounds such as
BITC and sulforaphane from cruciferous vegetables have
potent inhibitory activity in human pancreatic cancer cells
and may have potential as preventative or therapeutic
agents.

Materials and methods
Cell Culture
PANC-1 pancreatic cancer cells and MDA-MB-453 breast
cancer cells were acquired from ATCC. These cells were
maintained in 1× Dulbecco's Modified Eagle's Medium
(DMEM) supplemented with 10% fetal bovine serum
(FBS) (Invitrogen), 4.5 g/L, L-glutamine, & sodium pyru-
vate (Mediatech) and 1% Penicillin/Streptomycin in cell
culture incubators set at 37°C and 5% CO2.

Western blot analysis
PANC-1 cells were treated with sulforaphane or BITC
(Sigma-Aldrich) for 24 hours. In combination experi-
ments, PANC-1 cells were treated with 10 μM of sulforap-
hane and/or 10 μM of BITC for 24 hours. For IL-6
experiments, MDA-MB-453 cells were pre-incubated with
50 μM sulforaphane or BITC for 2 hours before addition
of 50 ng/ml IL-6 (Cell Sciences, Canton, MA). Western
blots were conducted following SDS-PAGE of 100 μg of
total lysate per sample. Membranes were blotted with
antibodies specific for pSTAT3 Y705, STAT3, phospho-
ERK1/2, cleaved PARP (Cell Signaling Tech) and GAPDH
(Chemicon International Inc.). Membranes were ana-

Sulforpahane and BITC inhibit phosphorylation of STAT3 by IL-6Figure 3
Sulforpahane and BITC inhibit phosphorylation of 
STAT3 by IL-6. The addition of 50 ng/ml of interleukin-6 
stimulates STAT3 phosphorylation in MDA-MB-453 breast 
cancer cells. Pre-treatment of these cells with 50 μM sulf-
oraphane or BITC resulted in the reduction or complete 
abrogation of pSTAT3 respectively.
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lyzed with enhanced chemiluminescence Plus reagents
and scanned with a Storm phosphorimager (Amersham
Pharmacia Biotech Inc.).

MTT Cell Viability Assay
PANC-1 cells were seeded in 96-well plates (6000 cells/
well) in 10% FBS DMEM. After 24 hours, the media was
replaced with 5% FBS DMEM and 0, 5, 10, and 20 μM sul-
foraphane or BITC for 3 or 5 days. In separate experi-
ments, 10 μM of sulforaphane and BITC, either alone or
in combination was added to PANC-1 cells for 3 days. At
the end of each time point, 25 μl of MTT (Thiazolyl Blue
Tetrazolium Bromide) was added to each well of the plate
and incubated for 3.5 hours. Afterwards, 100 μl of N, N-
dimethylformamide (Sigma-Aldrich) solubilization solu-
tion was added to each well. Plates were left at room tem-
perature overnight to allow complete cell lysis, and read at
450 nm the following day. All experiments were repeated
three times. Results are presented as averages with error
bars representing one standard deviation.

Reverse-transcriptase PCR
RNA was collected from PANC-1 cells with RNeasy Kits
(Qiagen) following 24 hours of treatment with sulforap-
hane or BITC. cDNA was generated from 500 ng sample
RNA using Omniscript RT (Qiagen). Two μl of cDNA was
subsequently used for PCR. PCR amplifications were per-
formed as follows: 5 min at 94°C followed by 25 cycles of
[30 sec at 94°C, 30 sec at 55°C, 30 sec at 72°C] and a final
extension at 72°C for 5 min. The PCR products were then
run on 2% agarose gels, stained with ethidium bromide
and visualized under UV light. Primer sequences and
source information are available on request.

Bright Field Microscopy
4 × 104 PANC-1 cells/well were seeded in six-well plates in
10% FBS DMEM and treated 24 hours later with sulforap-
hane and/or BITC. After four days of incubation, the cells
were washed with PBS before being photographed under
bright field microscopy at 100× magnification. Images
were taken with a Model 9.0 Monochrome-6 camera on a
computer equipped with Spot Advanced imaging software

The combination of sulforaphane and BITC inhibit cell viability to a greater extent than either agent acting separatelyFigure 4
The combination of sulforaphane and BITC inhibit cell viability to a greater extent than either agent acting 
separately. (B) Western blot analysis of PANC-1 samples 24 hours post-treatment with the listed agents. (C) Sulforaphane 
and BITC alter the morphology and density of PANC-1 cells. Photographs were taken four days after treatment.
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(Diagnostic Instruments Inc., Sterling Heights, MI). Three
images of each treatment were taken from randomly cho-
sen fields, and a representative image was selected for dis-
play in the figure.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
BH and WW carried out experiments for Western blotting
and data analysis. SJ, SD, and BF carried out experiments
for cell viability using MTT assays. LC, BH and JL contrib-
uted to the writing of the manuscript and participated in
experimental designs. All authors read and approved the
final manuscript.

Acknowledgements
This work was supported in part by the National Foundation for Cancer 
Research and Susan G. Komen Breast Cancer Foundation grants to Jiayuh 
Lin.

References
1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer

statistics, 2008.  CA: a cancer journal for clinicians 2008, 58(2):71-96.
2. Kelsen D: The use of chemotherapy in the treatment of

advanced gastric and pancreas cancer.  Seminars in oncology
1994, 21(4 Suppl 7):58-66.

3. Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J: Cancer: a
Systems Biology disease.  Bio Systems 2006, 83(23):81-90.

4. Pham NA, Schwock J, Iakovlev V, Pond G, Hedley DW, Tsao MS:
Immunohistochemical analysis of changes in signaling path-
way activation downstream of growth factor receptors in
pancreatic duct cell carcinogenesis.  BMC cancer 2008, 8:43.

5. Copeland NG, Gilbert DJ, Schindler C, Zhong Z, Wen Z, Darnell JE
Jr, Mui AL, Miyajima A, Quelle FW, Ihle JN, et al.: Distribution of the
mammalian Stat gene family in mouse chromosomes.
Genomics 1995, 29(1):225-228.

6. Ihle JN: The Stat family in cytokine signaling.  Current opinion in
cell biology 2001, 13(2):211-217.

7. Darnell JE Jr, Kerr IM, Stark GR: Jak-STAT pathways and tran-
scriptional activation in response to IFNs and other extracel-
lular signaling proteins.  Science (New York, NY) 1994,
264(5164):1415-1421.

8. Zhong Z, Wen Z, Darnell JE Jr: Stat3: a STAT family member
activated by tyrosine phosphorylation in response to epider-
mal growth factor and interleukin-6.  Science (New York, NY)
1994, 264(5155):95-98.

9. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N,
Kishimoto T, Akira S: Targeted disruption of the mouse Stat3
gene leads to early embryonic lethality.  Proceedings of the
National Academy of Sciences of the United States of America 1997,
94(8):3801-3804.

10. Akira S: Roles of STAT3 defined by tissue-specific gene tar-
geting.  Oncogene 2000, 19(21):2607-2611.

11. Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara
AB, Sung B, Ichikawa H: Targeting signal-transducer-and-activa-
tor-of-transcription-3 for prevention and therapy of cancer:
modern target but ancient solution.  Annals of the New York Acad-
emy of Sciences 2006, 1091:151-169.

12. Real PJ, Sierra A, De Juan A, Segovia JC, Lopez-Vega JM, Fernandez-
Luna JL: Resistance to chemotherapy via Stat3-dependent
overexpression of Bcl-2 in metastatic breast cancer cells.
Oncogene 2002, 21(50):7611-7618.

13. Shen Y, Devgan G, Darnell JE Jr, Bromberg JF: Constitutively acti-
vated Stat3 protects fibroblasts from serum withdrawal and
UV-induced apoptosis and antagonizes the proapoptotic
effects of activated Stat1.  Proceedings of the National Academy of
Sciences of the United States of America 2001, 98(4):1543-1548.

14. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhatta-
charya R, Gabrilovich D, Heller R, Coppola D, et al.: Regulation of
the innate and adaptive immune responses by Stat-3 signal-
ing in tumor cells.  Nature medicine 2004, 10(1):48-54.

15. Buettner R, Mora LB, Jove R: Activated STAT signaling in
human tumors provides novel molecular targets for thera-
peutic intervention.  Clin Cancer Res 2002, 8(4):945-954.

16. Alas S, Bonavida B: Inhibition of constitutive STAT3 activity
sensitizes resistant non-Hodgkin's lymphoma and multiple
myeloma to chemotherapeutic drug-mediated apoptosis.
Clin Cancer Res 2003, 9(1):316-326.

17. Scholz A, Heinze S, Detjen KM, Peters M, Welzel M, Hauff P, Schirner
M, Wiedenmann B, Rosewicz S: Activated signal transducer and
activator of transcription 3 (STAT3) supports the malignant
phenotype of human pancreatic cancer.  Gastroenterology 2003,
125(3):891-905.

18. Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, Peng Z, Huang S,
Xiong HQ, Abbruzzese JL, et al.: Stat3 activation regulates the
expression of vascular endothelial growth factor and human
pancreatic cancer angiogenesis and metastasis.  Oncogene
2003, 22(3):319-329.

19. Greten FR, Weber CK, Greten TF, Schneider G, Wagner M, Adler G,
Schmid RM: Stat3 and NF-kappaB activation prevents apopto-
sis in pancreatic carcinogenesis.  Gastroenterology 2002,
123(6):2052-2063.

20. Huang C, Cao J, Huang KJ, Zhang F, Jiang T, Zhu L, Qiu ZJ: Inhibition
of STAT3 activity with AG490 decreases the invasion of
human pancreatic cancer cells in vitro.  Cancer science 2006,
97(12):1417-1423.

21. Mora LB, Buettner R, Seigne J, Diaz J, Ahmad N, Garcia R, Bowman
T, Falcone R, Fairclough R, Cantor A, et al.: Constitutive activation
of Stat3 in human prostate tumors and cell lines: direct inhi-
bition of Stat3 signaling induces apoptosis of prostate cancer
cells.  Cancer research 2002, 62(22):6659-6666.

22. Calvin DP, Nam S, Buettner R, Sekharam M, Torres-Roca J, Jove R:
Inhibition of STAT3 activity with STAT3 antisense oligonu-
cleotide (STAT3-ASO) enhances radiation-induced apopto-
sis in DU145 prostate cancer cells.  International Journal of
Radiation Oncology*Biology*Physics 2003, 57(2, Supplement
1):S297-S297.

23. Pham NA, Jacobberger JW, Schimmer AD, Cao P, Gronda M, Hedley
DW: The dietary isothiocyanate sulforaphane targets path-
ways of apoptosis, cell cycle arrest, and oxidative stress in
human pancreatic cancer cells and inhibits tumor growth in
severe combined immunodeficient mice.  Molecular cancer ther-
apeutics 2004, 3(10):1239-1248.

24. Hecht SS, Kenney PM, Wang M, Upadhyaya P: Benzyl isothiocy-
anate: an effective inhibitor of polycyclic aromatic hydrocar-
bon tumorigenesis in A/J mouse lung.  Cancer letters 2002,
187(12):87-94.

25. Kuroiwa Y, Nishikawa A, Kitamura Y, Kanki K, Ishii Y, Umemura T,
Hirose M: Protective effects of benzyl isothiocyanate and sul-
foraphane but not resveratrol against initiation of pancreatic
carcinogenesis in hamsters.  Cancer letters 2006, 241(2):275-280.

26. Sticha KR, Staretz ME, Wang M, Liang H, Kenney PM, Hecht SS:
Effects of benzyl isothiocyanate and phenethyl isothiocy-
anate on benzo[a]pyrene metabolism and DNA adduct for-
mation in the A/J mouse.  Carcinogenesis 2000, 21(9):1711-1719.

27. Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson
KK, Talalay P, Lozniewski A: Sulforaphane inhibits extracellular,
intracellular, and antibiotic-resistant strains of Helicobacter
pylori and prevents benzo[a]pyrene-induced stomach
tumors.  Proceedings of the National Academy of Sciences of the United
States of America 2002, 99(11):7610-7615.

28. Chung FL, Conaway CC, Rao CV, Reddy BS: Chemoprevention of
colonic aberrant crypt foci in Fischer rats by sulforaphane
and phenethyl isothiocyanate.  Carcinogenesis 2000,
21(12):2287-2291.

29. Zhang R, Loganathan S, Humphreys I, Srivastava SK: Benzyl isothio-
cyanate-induced DNA damage causes G2/M cell cycle arrest
and apoptosis in human pancreatic cancer cells.  The Journal of
nutrition 2006, 136(11):2728-2734.

30. Srivastava SK, Singh SV: Cell cycle arrest, apoptosis induction
and inhibition of nuclear factor kappa B activation in anti-
proliferative activity of benzyl isothiocyanate against human
pancreatic cancer cells.  Carcinogenesis 2004, 25(9):1701-1709.
Page 6 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18287387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18287387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8091242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8091242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16426740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16426740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18254976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18254976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18254976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8530075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8530075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11248555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9108058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9108058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10851059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10851059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17341611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17341611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17341611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12400004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12400004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11171987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11171987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11171987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14702634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14702634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14702634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11948098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11948098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11948098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12949733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12949733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12949733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12545153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12545153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12545153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17054436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17054436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17054436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12438264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12438264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12438264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15486191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15486191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15486191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12359355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12359355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12359355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16386831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16386831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16386831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12032331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12032331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12032331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11133820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11133820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11133820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17056792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17056792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17056792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117814


Cancer Cell International 2009, 9:24 http://www.cancerci.com/content/9/1/24
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

31. Xu C, Shen G, Chen C, Gelinas C, Kong AN: Suppression of NF-
kappaB and NF-kappaB-regulated gene expression by sulf-
oraphane and PEITC through IkappaBalpha, IKK pathway in
human prostate cancer PC-3 cells.  Oncogene 2005,
24(28):4486-4495.

32. Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E: Sulforaphane
inhibits histone deacetylase activity in BPH-1, LnCaP and
PC-3 prostate epithelial cells.  Carcinogenesis 2006,
27(4):811-819.

33. Chaudhuri D, Orsulic S, Ashok BT: Antiproliferative activity of
sulforaphane in Akt-overexpressing ovarian cancer cells.
Molecular cancer therapeutics 2007, 6(1):334-345.

34. Fimognari C, Hrelia P: Sulforaphane as a promising molecule
for fighting cancer.  Mutation research 2007, 635(23):90-104.

35. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Mor-
genbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos
GD: ERKs: a family of protein-serine/threonine kinases that
are activated and tyrosine phosphorylated in response to
insulin and NGF.  Cell 1991, 65(4):663-675.

36. Scovassi AI, Poirier GG: Poly(ADP-ribosylation) and apoptosis.
Molecular and cellular biochemistry 1999, 199(12):125-137.

37. Frank DA: STAT3 as a central mediator of neoplastic cellular
transformation.  Cancer letters 2007, 251(2):199-210.

38. Kanda N, Seno H, Konda Y, Marusawa H, Kanai M, Nakajima T,
Kawashima T, Nanakin A, Sawabu T, Uenoyama Y, et al.: STAT3 is
constitutively activated and supports cell survival in associa-
tion with survivin expression in gastric cancer cells.  Oncogene
2004, 23(28):4921-4929.

39. Okada S, Okusaka T, Ishii H, Kyogoku A, Yoshimori M, Kajimura N,
Yamaguchi K, Kakizoe T: Elevated serum interleukin-6 levels in
patients with pancreatic cancer.  Japanese journal of clinical oncol-
ogy 1998, 28(1):12-15.

40. Chiu JJ, Sgagias MK, Cowan KH: Interleukin 6 acts as a paracrine
growth factor in human mammary carcinoma cell lines.  Clin
Cancer Res 1996, 2(1):215-221.

41. Yeo CJ, Abrams RA, Grochow LB, Sohn TA, Ord SE, Hruban RH,
Zahurak ML, Dooley WC, Coleman J, Sauter PK, et al.: Pancreati-
coduodenectomy for pancreatic adenocarcinoma: postoper-
ative adjuvant chemoradiation improves survival. A
prospective, single-institution experience.  Annals of surgery
1997, 225(5):621-633. discussion 633-626.

42. Conlon KC, Klimstra DS, Brennan MF: Long-term survival after
curative resection for pancreatic ductal adenocarcinoma.
Clinicopathologic analysis of 5-year survivors.  Annals of surgery
1996, 223(3):273-279.

43. Lillemoe KD: Current management of pancreatic carcinoma.
Annals of surgery 1995, 221(2):133-148.
Page 7 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15856023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15856023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15856023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16280330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16280330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16280330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17134937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17134937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2032290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2032290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2032290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10544961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17129668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17129668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15077160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15077160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15077160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9491135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9491135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9816109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9816109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9193189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9193189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9193189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8604907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8604907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8604907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7531966
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Sulforaphane and BITC inhibit cell viability and induce apoptosis in PANC-1 pancreatic cancer cells
	BITC treatment inhibits transcription of STAT3 target genes
	BITC prevents phosphorylation of STAT3 by IL-6
	The combination of sulforaphane and BITC is more potent than either agent alone

	Discussion
	Materials and methods
	Cell Culture
	Western blot analysis
	MTT Cell Viability Assay
	Reverse-transcriptase PCR
	Bright Field Microscopy

	Competing interests
	Authors' contributions
	Acknowledgements
	References

