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Abstract

Background: Alterations in the processing of the genetic information in carcinogenesis result
from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal
histones are central to proper gene expression and that aberrant DNA methylation of genes and
histone methylation plays important roles in tumor progression. To date, several histone lysine
methyltransferases (HKMTs) have been identified and histone lysine methylation is now considered
to be a critical regulator of transcription. However, still relatively little is known about the role of

HKMTs in tumorigenesis.

Results: We observed differential HKMT expression in a lung cancer model in which normal
human bronchial epithelial (NHBE) cells expressing telomerase, SV40 large T antigen, and Ras were
immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27
residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins
to the histone tails and regulate protein function and the position of lysine methylation marks a
gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs
(EZH2, G9A, SETDBI and SUV39HI) that are over-expressed in immortalized and transformed
cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We
also found that the suppression of H3-K9, G9A and SUV39HI| induced apoptosis and the

suppression of H3-K27, EZH2 caused G| arrest.

Conclusion: Our results indicate the potential of these HKMTs in addition to the other targets

for epigenetics such as DNMTs and HDAC:s to be interesting therapeutic targets.

Background stability genes as well as from potentially reversible epige-
Alterations in the processing of the genetic informationin ~ netic changes leading to modifications in gene function
carcinogenesis result from stable genetic mutations  [1,2]. It is well established that epigenetic modifications
involving tumor suppressor genes, oncogenes and DNA  of nucleosomal histones are central to proper gene expres-
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sion and aberrant DNA methylation of genes play an
important role in tumor progression. However, still rela-
tively little is known about histone modifications, espe-
cially methylation, with respect to tumorigenesis. The N-
terminus of histone tails is modified by amino-acid phos-
phorylation, acetylation or methylation to form a code for
specifying downstream events and consequently a certain
chromatin structure. Tens of histone lysine methyltrans-
ferases (HKMTs) have been identified and histone lysine
methylation is now considered to be a critical regulator of
transcription [3,4].

Histone lysine methylation may have positive or negative
effects on transcription depending on the methylation
sites and also methylation status [5,6]. To date, there are
five lysines within histone H3 (K4, K9, K27, K36 and K79)
that have been shown to be methylated by specific
HKMTs, such as SET9 (for K4), SMYD3 (K4), SUV39H
(K9), SETDB1 (K9), G9A (K9), Ezh2 (K27) and DOTIL
(K79) [7-13]. Recent advances has revealed that tri-meth-
ylations of H3-K27, H3-K9 and H3-K79 are associated
with gene repression, whereas mono-methylations of H3-
K27, H3-K9 and H3-K79 as well as methylations of H3-K4
are associated with activation [6]. Repressive histone
lysine methylation sites at H3-K9 and H3-K27 have been
detected at the promoter regions of aberrantly silenced
tumor suppressor genes in cancer cells, together with
increased DNA methylation and reduced amounts of acti-
vating chromatin modifications such as histone acetyla-
tion [14,15]. Therefore, HDACs and DNMTs already have
emerged as prominent drug targets in epigenetic cancer
therapy. Currently, it is apparent that certain histone
lysine methylation, along with DNA methylation, estab-
lishes the framework for long-term epigenetic mainte-
nance since recent studies have revealed a complex
process that controls aspects of short- and long-term tran-
scriptional regulation, in addition to the propagation of
bulk chromosome structure and stability [16].

In the present study, we observed high expression levels of
several HKMTs in non-small cell lung cancer (NSCLC) cell
lines. To elucidate the involvement of histone lysine
methyltransferases in tumorigenesis and to determine the
potential of these HKMTs as therapeutic targets, we evalu-
ated the effect of suppressing these HKMTs on cell prolif-
eration and tumorigenesis in a Ras-transformed model of
human bronchoepithelial cells. Based on an approach
established by others, we sequentially introduced human
telomerase (hT), SV40 large T antigen (LT) and activated
Ras into NHBE cells [17]. Introduction of hT and LT into
NHBE cells had immortalized them and additional intro-
duction of Ras had fully transformed them assessed by
colony formation in soft agar [18]. Then, we evaluated the
effect of siRNA mediated gene suppression of each HKMT
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on cell proliferation and tumorigenesis in Ras-trans-
formed model human bronchoepithelial cells.

Results

Differential Gene Expression of H3-KMTs in immortalized
LT-hT-NHBE cells, transformed Ras- LT -hT-NHBE cells
and NSCLC cell lines

First, we examined the expression levels of HKMTs in 5
non-small cell lung cancer cell lines, namely A549, Calu-
1, SK-LU-1, SK-MES-1 and SW900. Most HKMTs were up-
regulated in the majority of NSCLC cell lines compared to
NHBE cells, while only SET9 remained at the same level as
in NHBE cells (Fig. 1a). We next found that the expression
levels of H3-K4 MTs, SET9 and SMYD3 remained at simi-
lar ranges after introduction of LT and activated H-Ras
into NHBE cells, while all of the other HKMTs, i.e.; H3-K9,
H3-K27, H3-K79 HKMTs, increased after immortalization
and transformation (Fig. 1b).

Suppression of H3-K9 or H3-K27 HKMT resulted in
reduced cell proliferation in immortalized and transformed
NHBE cells

To evaluate the function of these HKMTs in the immortal-
ized and the transformed cells, we treated transformed
NHBE cells with siRNAs for 7 HKMTs, namely SET9,
SMYD3, SETDB1, SUV39H, EZH2, G9A and DOT1L (Fig.
2). The level of each gene mRNA expression was evaluated
by quantitative RT-PCR at 48 hours after transient trans-
fection of siRNA (Fig. 2A). Among the 3 or 4 siRNAs tested
for each HKMT, the most efficient siRNA sequence was
selected for each gene for further experiments. We then
evaluated cell proliferation using a colorimetric assay for
immortalized cells and transformed cells treated with
each siRNA. The cell proliferation was significantly
reduced in both immortalized and transformed NHBE
cells after 72 hours for the siRNA treatment of EZH2, G9A
and SUV39H compared to the random non-targeting con-
trol oligonucleotides treatment, while H3-K4 or H3-K79
knock down did not change the cell proliferation levels
(Fig. 2B and 2C). We also prepared cell growth curve for
immortalized and transformed NHBE cells treated with
siRNA. During the cultivation period, as we observed the
recovery of the mRNA expression levels had increased by
up to about 70% of the untreated level at day 7 (data not
shown), we performed a second transient siRNA transfec-
tion on day 8 to observe the cell growth only. The cell
growth rates for both immortalized and transformed
NHBE cells were significantly slowed by siRNA treatment
of EZH2, G9A and SUV39H compared to the control oli-
gonucleotide treatment, however, siRNA treatment of
SET9, SMYD3, SETDB1 and DOT1L did not alter the cell
growth rate (Fig. 2D and 2E). The reduction of cell growth
was more notable when a H3-K27 MT, EZH2, was
knocked down compared to when any other H3-K9 MTs
was suppressed.
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Figure | (see previous page)

Expression of Repressive Histone Lysine Methyltransferases (H3K9-MTs and H3K27-MTs) is increased in lung
cancer cell lines and after the immortalization and transformation in human bronchoepithelial cells. A. Quanti-
tative RT-PCR shows mRNA expression of HKMTs are overexpressed in non-small cell lung cancer cell lines A549, Calu-I,
SK-LU-1, SK-MES-I and SW900 except for H3-K4 MT SET9 which remained at the same level compared to NHBE cells.
Human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used for normalization of cDNA input. Fold differences of
mRNA expression compared with NHBE cells (arbitrarily assigned a value of ). B. Quantitative RT-PCR analysis shows
increased mRNA of SUV39H, SETDBI, G9A, EZH2 and DOT L after immortalization by introduction of hTERT (hT) and SV40
large T antigen (LT) and transformation by introduction of activated H-Ras (Ras) compared with parental Normal Human
Bronchoepithelial (NHBE) cells while transcription activating H3-K4 MTs (SET9 and SMYD3) mRNA expression stayed at a
similar range compared to NHBE cells. Columns, average from duplicate wells.

Suppression of H3-K9 or H3-K27MT attenuated
anchorage independent cell growth ability of transformed
NHBE cells

Since the expression levels of H3-K9 MTs and H3-K27 MT
were almost identical between the immortalized and the
transformed NHBE cells, the roles of these HKMTs for
transformation induced by activated H-Ras were not clear.
To determine if the H3-K9 and H3-K27 MTs play roles in
transformation after immortalization, we evaluated the
ability of anchorage independent cell growth of trans-
formed NHBE cells treated with siRNA for each HKMT.
Compared to control siRNA treated transformed NHBE
cells, The cells knocked down with siRNAs for either of 3
H3-K9 MTs or H3-K27 MT formed significantly reduced
number of colonies in soft agar compared to the cells
treated with the random control siRNA, while H3-K4 MTs
or H3-K79 MT knocked down cells did not show any
change in the number of colonies or the morphology of
the cells (Fig. 3A and 3B). Notably, SETDB1 is also essen-
tial for transformation, despite no apparent role in
immortalization.

Suppression of EZH2, but not of H3-K9 MTs, induced cell
cycle arrest in immortalized and transformed cells

We evaluated the DNA synthesis using a BrdU incorpora-
tion assay. DNA synthesis was reduced by suppression of
H3-K27 MT, EZH2, in both immortalized and trans-
formed NHBE cells. Meanwhile, suppression of H3-K9
MTs did not affect the DNA synthesis level in these cells
(Fig. 4A and 4B). We also evaluated the cell cycle, specifi-
cally G1 arrest, by calculating S phase cells based on cellu-
lar DNA content in immortalized and transformed cells
treated with siRNAs. We found results similar to those of
the BrdU incorporation assay, that is, total S phase was
only reduced in the cells treated with siRNA for EZH2 (Fig.
4C and 4D).

Apoptosis was induced by suppression of H3-K9 MTs, G9A
or SUV39H

Next, we analyzed apoptosis levels in cells treated with
siRNAs to ascertain whether the cell growth inhibition
observed was related to apoptosis. Although statistical sig-

nificance was not reached, apoptosis levels in G9A or
SUV39H knocked down cells were much higher than the
negative control in immortalized NHBE cells, while apop-
tosis levels appeared to be unaffected by suppressing any
HKMTs in transformed NHBE cells (Fig. 5A and 5B).

Discussion

Histone methylation is catalyzed by histone methyltrans-
ferases, which are a large family of enzymes that have spe-
cificity for a histone, the modification site (lysine or
arginine), and chromatin region [19]. The identification
of SUV39H1 and the finding that Heterochromatin Pro-
tein 1 (HP1) binds specifically to methylated H3-K9
revealed a critical role for H3-K9 methylation in hetero-
chromatin formation and epigenetic control of transcrip-
tion [9,20-24]. HP1 can associate with many other
proteins, including HDACs, and RNAs to suppress the
expression of certain genes [25,26]. In addition to
SUV39H, two other HKMTs, G9A and SETDBI1, have
HKMT activity toward H3-K9 [10,11]. There has been only
one major HKMT shown to have activity specific to H3-
K27. EZH2 is a SET domain containing HKMT and has
been established as a component of the minimum func-
tional core complex called polycomb repressive complex
2(PRC2) with SUZ12 and embryonic ectoderm develop-
ment (EED) exerting gene silencing [12,27]. SMYD3 (SET-
and MYND-domain containing protein 3) is a H3-K4 MT
and sequence-specific DNA binding protein that is over-
expressed in other cancers, such as colorectal and hepato-
cellular carcinomas. SMYD3 is involved in the activation
of oncogenes and genes associated with cell-cycle regula-
tion [8]. DotlL is a non-SET domain containing HKMT
specific to H3-K79 [13].

In the present study, we have clearly demonstrated that
transcriptionally repressive histone methyltransferases,
namely H3-K9 and H3-K27 MTs were increased after
sequential introduction of SV40 large T antigen and Ras
into NHBE cells whereas the active methyltransferases H3-
K4 MTs were not. Moreover, inhibiton of these repressive
HKMTs by siRNA lead to growth inhibiton of immortal-
ized as well as transformed human bronchoepithelial cells
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Figure 2 (see previous page)

Suppression of H3-K9 or H3-K27 HKMT resulted in reduced cell proliferation in immortalized and trans-
formed NHBE cells. A. Quantitative RT-PCR shows different level of knock-down efficiency for siRNAs designed specifically
to each target HKMT gene in Ras transformed human bronchoepithelial cells at 48 hours after the transfection of siRNAs.
Human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used for normalization of cDNA input. Relative expression
compared to siRandom non-targeting control treated Ras-LT-hT-NHBE transformed cells. Columns, averages from duplicate
wells.B.C. Colorimetric cell enumeration assay shows significant reduction of cell growth after 72 hours of the siRNA treat-
ment of EZH2, G9A and SUV39H compared to the random non-targeting control siRNA in both immortalized (B) and Ras
transformed bronchoepithelial cells (C) while interference of the other HKMTs did not affect cell growth rate in these cells.
Points, averages from duplicate plates; bars, SD. D.E. Direct cell number counts after a longer incubation period shows signifi-
cant reduction of cell growth with suppression of EZH2, G9A and SUV39H compared to the siRandom control in both immor-
talized (D) and transformed cells (E), consistent with colorimetric assay for a shorter incubation period. After a longer period
of incubation, inhibitory effect of growth became more prominent in the cells interfered with EZH2 expression than cells sup-
pressed with G9A or SUV39H expression. Meanwhile, siRNA treatment of SET9, SMYD3, SETDBI| and DOTIL did not alter
the cell growth rate. (M, black filled square), siRandom, ((J empty square), siSET9, (A empty triangle pointing up), siSMYD3,
(® open diamond), siSETDBI, (V empty triangle pointing down), siSUV39H, (O open circle), siG9A, (x cross), siEZH2, (®
filled diamond), siDOTIL.

and also lead to the suppression of anchorage independ-
ent cell growth of transformed cells.

stream targets of the EED/EZH2 complex [28], and EZH2
is crucial during embryonic development [29]. In breast
and prostate cancers, EZH2 over-expression is linked to

Introduction of SV40 large T antigen in NHBE cells
renders over-expression of H3-K27 MT, EZH2. It has been
shown that deregulation of EZH2 may result in alteration
of the chromatin structure and deregulation of the down-

aggressive tumor formation and poor prognosis [30,31]
and in a subset of cancers, the EZH2 locus is amplified
resulting in EZH2 over-expression [31,32]. We have dem-
onstrated here that the suppression of EZH2 function

A B
siRandom SiSETS ‘y_{.‘:; SISMYD3
[ -
=
o -
5 150
=1
[72]
g
c 4
S 1001 g SiSUY39H SSETDB1 SIGOA
0
o
[T,
o
|9
2
S
= . .
Z SIEZH2 SIDOTIL

Figure 3

Suppression of H3-K9 or H3-K27MT attenuated anchorage independent cell growth ability of transformed
NHBE cells. A. Anchorage independent growth on soft agar is inhibited in Ras transformed human bronchoepithelial cells
knocked down with all H3K9 MTs, SETDBI, G9A and SUV39H or H3K27 MT, EZH2 compared with the cells transfected with
siRandom non-targeting control, indicating that SETDBI is only required for anchorage independent growth as it did not affect
general cell growth while other H3K9 MTs are required for cell growth. Suppression of transcription activating H3KMTs;
SET9, SMYD3 or DOTIL did not reduce colony formation in soft agar. The experiments are done in triplicates and repeated
twice. Columns, averages; bars, SEM. B. Photographs of representative wells.
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Figure 4 (see previous page)

Suppression of H3K27-MT, EZH2, but not of H3-K9 MTs, induced cell cycle arrest in immortalized and trans-
formed cells. A.B. BrdU incorporation assay reveals DNA synthesis reduction by interfering with EZH2, a H3K27MT in both
immortalized (A) and Ras transformed human bronchoepithelial cells (B). Suppression of H3K9 MTs, SETDBI, G9A or
SUV39H did not affect the DNA synthesis level in either of these cells. The experiments are done in triplicates and repeated
twice. Columns, averages; bars, SD. C.D. Cell cycle analyses show total S phase reduction only after the treatment of siRNA
for H3K27 MT, EZH2 suppression, compared to the cells treated with siRandom non-targeting control both in immortalized
(C) and Ras transformed bronchoepithelial cells (D), consistent with the finding on BrdU incorporation assays. None of the
other cells interfered with other HKMTs shows total S phase reduction, again consistent with BrdU incorporation assays. (E)
Representative cell cycle analysis for the Ras transformed cells treated with siRandom negative control (left panel) and the cells

treated with siEZH2 (right panel).

leads to growth inhibition of immortalized and trans-
formed bronchoepithelial cells as well as the inhibition of
anchorage independent cell growth. We also showed that
the suppression of EZH?2 resulted in restricted cell cycle,
G1 arrest, which is consistent with the previous report
[33]. They found that Ezh2 acted down stream of the pRB-
E2F pathway and was required for entry into S phase. On
the other hand, it has been also shown that EZH?2 is tran-
scriptionally regulated by the pRB/E2F pathway [34,35],
and activated p53 has also been shown to suppress EZH2
expression [36]. In our model of immortalized LT-hT-
NHBE cells and transformed Ras-LT-hT-NHBE cells, both
PRB and p53 pathways were inactivated by the introduc-
tion of large T antigen [18]. Therefore, the suppression of
pRB and p53 also observed in most cancers results in up-
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regulation of EZH2, leading to deregulation of transcrip-
tional signals and playing a role in maintaining the
immortalized phenotype in cancer cells as well as in our
cells.

Recent advances in stem cell science have revealed that
polycomb group proteins including EZH2 are essential
epigenetic gene silencers critical for maintenance of
embryonic and adult stem cells [37-39]. This concept is
now suggested to be extended to cancer stem cells. Down
regulation of EZH2 may cause stem cells to be in a tran-
scriptionally active chromatin state and may cause them
to lose the character of stemness. This may be one of the
explanations as to why EZH2 inhibition exhibited the
strongest effects on cell proliferation and anchorage-inde-
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Apoptosis was induced by suppression of H3-K9 MTs, G9A or SUV39H. A. ELISA-based apoptosis analysis shows
much higher cytoplasmic histone-associated DNA fragments in the immortalized human bronchoepithelial cells knocked down
with G9A or SUV39H compared to the cells siRandom non-targeting control although statistical significance is not reached. B.
Apoptosis level seemed not be affected by suppressing any HKMTs in Ras transformed bronchoepithelial cells. The experi-
ments are done in triplicates and repeated twice. Columns, averages; bars, SD.
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pendent cell growth. It is possible that inhibition of EZH2
might affect the fate of cancer stem cells, although we were
unable to demonstrate the evidence for the existence of
stem cells in our experiments.

G9A, SUV39H1 and SETDB1 are also up-regulated in
immortalized bronchoepithelial cells and the suppression
of G9A or SUV39H1 function reduced cell proliferation
and restored apoptosis. While p53 is suppressed through
induction of SV40 large T antigen in these cells, it is sug-
gested that suppression of apoptosis induced by H3-K9
HKMTs and probably by H3-K9 methylation is p53 inde-
pendent. Suppression of pRB and p53 disrupts the prop-
erly regulated target gene repressions and may deregulate
GIA and SUV39H1 as a result. Recently, Kondo et al.
reported that knocked-down PC3 cells both for G9A and
SUV39H also showed inhibited cell growth, however, not
by induction of apoptosis but by cellular senescence [40].
The difference in the mechanisms for inhibition of cell
growth may be due to the cell types used and also due to
the techniques used for RNA interference. They estab-
lished stable clones of PC3 cells, in which either of 2
HKMTs was downregulated by shRNA, whereas we used
the cells with transient transfection of siRNAs. We also
found that suppressing all 3 H3-K9-HKMTs reduced
anchorage independent cell growth. As the suppression of
either G9A or SUV39H1 induced apoptosis in trans-
formed NHBE cells, this phenomenon might be explained
by the induction of apoptosis. However, as the suppres-
sion of SETDB1 was not shown to alter apoptosis levels in
these cells, there could be a different mechanism of action
to prevent anchorage independent cell growth by a spe-
cific SETDBI1 function.

As suggested by the normal expression in transformed
cells, these results show that suppression of H3-K4 HKMT
does not play a role in cell proliferation. H3-K4 tri-meth-
ylation is generally associated with a high transcriptional
activity [7]. Recently, it was observed that highly tri-meth-
ylated H3-K4 was associated with the actively transcribed
hTERT gene in telomerase-proficient tumor cells [41].
SMYD3-mediated tri-methylation of H3-K4 functions as a
licensing element for subsequent transcription factor
binding to the hTERT promoter [42]. The reason why the
suppression of SMYD3 did not alter cell proliferation in
transformed NHBE cells might be explained by the fact
that the hTERT was stably expressed in our hTERT-intro-
duced model.

DOTI1L is a non-SET methyltransferase with specificity for
H3-K79 and is the only known enzyme with this histone
specificity. Although DOTI1L contributes to leukemic
transformation through H3-K79 methylation [43], and is
over-expressed in our immortalized and transformed
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NHBE cells, Dot1L does not seem to promote the cell pro-
liferation of these cells.

It used to be simply thought that methylation of H3-K9
and H3-K27 was generally associated with repression,
whereas methylation of H3-K4, -K36, and -K79 was impli-
cated in the transcriptional activation process [44,45]
independent of methylation status, however, it has been
revealed that the situation is more complicated. Profiling
of histone methylations in the human genome by a com-
prehensive approach demonstrated that mono-methyla-
tions of H3-K27, H3-K9, H4-K20 and H3-K79 as well as
mono-, di- and tri-methylations of H3-K4 were linked to
gene activation, whereas tri-methylations of H3-K27, H3-
K9 and H3-K79 were linked to repression [6]. Tens of
genes responsible for histone lysine methylation have
been identified and classified so far [4], however, methyl-
ation pattern of each H3 lysine site by corresponding
HKMT is still controversial. So it will be important to
identify specific genes affected by the inhibition of
HKMTs and also to investigate methylation status of cor-
responded lysines of histone H3 by chromatin immuno-
precipitation assay to clarify the precise mechanism for
growth inhibition in our model system for further experi-
ments.

Conclusion

In conclusion, we have demonstrated that deregulation of
H3-K9 and H3-K27 contributes to oncogenic transforma-
tion of human bronchoepithelial cells. Anchorage-inde-
pendent cell growth was reduced by suppression of any
H3-K9 MTs (G9A, SUV39H1 or SETDB1) or H3-K27 MT
(EZH2) by inducing apoptosis except for SETDB1 or G1
arrest, respectively, though the precise mechanisms
remain to be elucidated. Thus, these HKMTs, either H3-
K27 or H3-K9 MTs, may be potential targets for therapeu-
tic drugs to treat lung cancer.

Methods

Transformed model of human bronchoepithelial cells
Phoenix producer cells were transfected with the follow-
ing plasmids using FuGene 6 (Roche Molecular Biochem-
icals, Indianapolis, IN, USA): pBABE-puro-hTERT and
PBABE-hygro-ras-V12 (kind gifts from RA Weinberg, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA),
and pBABE-puro-U19 and pLXSN-U19 (a kind gift from J
DeCaprio, Dana Farber Cancer Institute, Boston, MA,
USA). U19 is an SV40 large T (LT) antigen variant lacking
the SV40 origin DNA binding motif (Rios, 1990 J Cell
Physiol 145:434). Supernatants were used to infect NHBE
cells (TaKaRa Bio, Shiga, Japan).

Cell culture
Five NSCLC cell lines; A549, Calu-1, SK-MES-1, SK-LU-1
and SW-900, were cultured in complete Dulbecco's Mod-

Page 9 of 12

(page number not for citation purposes)



Cancer Cell International 2008, 8:15

ified Eagle Medium supplemented with 10% fetal bovine
serum and incubated at 37°C with 5% CO,. Immortal-
ized and transformed models of NHBE cells were cultured
in Small Airway Growth Medium (SAGM; TaKaRa Bio,
Shiga, Japan) at 37°C in 5% CO,. (Logarithmically grow-
ing cell cultures were used for all experiments described
below.)

Quantitative RT-PCR

Total cellular RNA was prepared from the cells by using an
RNeasy Mini Kit (Qiagen, Valencia, CA, USA) and 0.5 mg
of the RNA was then reverse transcribed to cDNA using an
Omniscript RT kit (Qiagen). For quantitative RT-PCR
analysis, the cDNA was combined with gene-specific for-
ward and reverse primers for each HKMT and a SYBR
Green PCR master mix and subjected to real time fluores-
cence detection PCR using an ABI Prism 7000 Sequence
Detection System (Applied Biosystems, Foster City, CA,
USA). Human glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) was used for normalization of cDNA
input. The thermal cycling conditions were as follows: ini-
tial denaturation at 95°C for 15 min, 45 cycles of 95°C
for 15 s, 58°C for 15 s and 72°C for 30 s, followed by
melting temperature analysis (72-99°C with 1°C incre-
ments). The amplification was specific as judged by melt-
ing temperature analysis and agarose gel analysis. The
experiments were performed in duplicate and twice. The
following oligonucleotides were used as primers.

SET9 forward primer: TTCACTCCAAACTGCATCTACGA
SET9 reverse primer: GGGTGCGGATGCATTITG

SMYD3 forward primer: CCCAACTGTTCGATTGTGTTCA
SMYD3 reverse primer: TCCTCTCCCACCTCGATGTC
SUV39H forward primer: CTGCCCATCTACGAGTGCAA

SUV39H
GATTTG

reverse primer: TACCCTTCTGTACCACAC-

SETDB1 forward primer: GACTCTCTGAGACAACTTC-
CAAGGA

SETDB1 reverse primer: CAGGGATTGAGGGAGGAACA
GIA forward primer: CTCCGCTGATTITCGAGTGTAA
GIA reverse primer: CTCTGTACGACCCGGTTCITG
EZH?2 forward primer: CAAGCAGTGCCCGTGCTA

EZH2 reverse primer: AGCGGCTCCACAAGTAAGACA

http://www.cancerci.com/content/8/1/15

DOTI1L forward primer: CATCCGATGGGTCTGTGA

DOTIL reverse
TAAAACGTAATTC

primer:  TGGTGTCATAGTCAAT-

Gene knockdown by siRNA

For siRNA-mediated down-regulation of HKMTs, each tar-
get specific sequence was designed using siDirect software
provided by RNAi Co., Ltd (Tokyo, Japan) and synthe-
sized by Proligo Japan KK (Kyoto, Japan). Three or four
target sequences were designed for each HMT gene and
transient transfection of siRNAs was performed. All siRNA
experiments were conducted at a final concentration of 20
nmol/L duplex siRNA. For transfection into the cells,
Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA, USA)
was used according to the manufacturer's protocol.
Knockdown of each HKMT expression was confirmed
using quantitative reverse transcription-PCR. Non-target-
ing control siRNA was provided by RNAi Co., Ltd as well.
The following were used as siRNA targeting sequences that
were most effective for each gene:

Non-targeting control; GUACCGCACGUCAUUCGUAUC
SET9; GGGAGUUUACACUUACGAAGA

SMYD3; CCGCGUCGCCAAAUACUGUAG

SUV39H; GAAAUGGCGUGGAUAUCCAGA

SETDB1; CAGCCCGGCGUCGAGUUAACC

GIA; CAUGACUGCGUGCUGUUAUUC

EZH2; GAAUGCCCUUGGUCAAUAUAA

DOT1L; GGCGAGCCAGUCAAUAGCAGC

Cell enumeration assay and cell growth rate analysis

Cell Proliferation Reagent WST-1 (Roche, Indianapolis,
IN, USA) was used for the colorimetric cell enumeration
assay according to the manufacturer's protocol. One day
before siRNA transfection, 1 x 104 cells were plated in 100
ul of the growth medium for each 96-well culture plate.
Following the siRNA transfection, cells were incubated for
24, 48, 72 and 96 hours at 37°C in a 5% CO, environ-
ment. WST-1 reagent was then added to each well, cells
were incubated for an additional 4 hours, and then the
absorbance of the samples was measured at a wavelength
of 450 nm against a background control using a micro-
plate reader (Bio-Rad Laboratories, Hercules, CA, USA).
For cell growth rate analysis, one day before siRNA trans-
fection, 3 x 105 cells were plated in growth medium in 12-
well culture wells and then the cells were collected by
trypsinization 48 hours, and 7, 10 and 14 days after the
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siRNA treatment and counted using a cell counter, Z1™
Series COULTER COUNTER® (Beckman Coulter, Fuller-
ton, CA, USA).

Soft agar colony formation assay

Three ml of 0.6% agarose containing SAGM per well was
prepared in a standard 6-well cell culture plate. Then, 1.5
ml of 0.3% agarose containing SAGM with a suspension
of 0.5 x 104 cells treated with siRNAs was added on top of
the basal 0.6% agarose containing medium. After 14 days
of incubation at 37°C in 5% CO,, colony growth in soft
agar was assayed by visually counting the colonies. A col-
ony was defined as >100 cells in one site. Experiments
were performed in triplicate with two independent exper-
iments.

BrdU incorporation assay

Cell Proliferation ELISA BrdU (Roche, Indianapolis, IN,
USA) was used for the BrdU incorporation assay. Cells (1
x 104) were plated in 100 pL of SAGM in 96-well culture
plates and cultured for 48 hours after the treatment at
37°C in a 5% CO, incubator. The newly synthesized
DNAs were labeled with BrdU for an additional 4 hours of
incubation, and then the cells were fixed and the DNA was
denatured. After incubation with anti-BrdU-POD for 90
minutes, a POD substrate (tetramethyl-benzidine) was
added to develop a color to be quantified by measuring
the absorbance at the 370 nm with a microplate reader
(Bio-Rad Laboratories, Hercules, CA, USA).

Cell cycle analysis

For starvation, 1.5 x 100 cells were incubated for 24 hours
in 1.0 ml of SAGM without growth supplements for each
6-well cell culture plate at 37°C in a 5% CO, incubator
before treatment with siRNAs. Forty-eight hours after the
siRNA transfection, the cells were trypsinized and resus-
pended in 0.5 ml of phosphate Buffered Saline (PBS) and
then fixed with 4.5 ml of 70% ethanol for 2 hours on ice.
After one wash with PBS, for DNA staining the fixed cells
were incubated with DNA fluorochrome, propidium
iodine (PI) along with 0.1% Triton X-100 and ribonucle-
ase A for over 30 min at room temperature. Cell fluores-
cence was measured by a flow cytometry, FACS Flow (BD
Biosciences, San Jose, CA, USA). Deconvolutions of the
DNA content frequency histograms were analyzed using
CellQUEST software (BD Biosciences).

Apoptosis assay

Apoptosis assay was performed using Cell Death Detec-
tion ELISA PLUS according to the manufacturers' protocol
(Roche, Indianapolis, IN, USA). Cells (1 x 10%4) were
plated in 100 pl of SAGM in each 96-well culture platse
and cultured for 48 hours after siRNA treatment at 37°C
in a 5% CO, incubator. After cell lysis, intact nuclei were
pelleted by centrifugation and then placed into a strepta-
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vidin-coated well of a microplate. A mixture of anti-his-
tone-biotin and anti-DNA-POD were added and
incubated. After unbound antibodies were removed by a
wash, POD retained in the immunocomplex was deter-
mined by adding substrates to develop a color to be quan-
tified by measuring the absorbance at 370 nm with a
microplate reader (Bio-Rad Laboratories, Hercules, CA,
USA).
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