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Abstract
Background: We describe an alternative method to determine mRNA half-life (t1/2) based on the
Real-Time RT-PCR procedure. This approach was evaluated by using the β-actin gene as a
reference molecule for measuring of mRNA stability.

Results: Human leukemia Nalm-6 and CCRF-CEM cells were treated with various concentrations
of Actinomycin D to block transcription and aliquots were removed periodically. Total RNA was
isolated and quantified using the RiboGreen® fluorescent dye with the VersaFluor Fluorometer
System. One µg of total RNA was reverse transcribed and used as template for the amplification
of a region of the β-actin gene (231 bp). To generate the standard curve, serial ten-fold dilutions
of the pBactin-231 vector containing the cDNA amplified fragment were employed, β-actin mRNAs
were quantified by Real-Time RT-PCR using the SYBR® Green I fluorogenic dye and data analyzed
using the iCycle iQ system software. Using this method, the β-actin mRNA exhibited a half-life of
6.6 h and 13.5 h in Nalm-6 and CCRF-CEM cells, respectively. The t1/2 value obtained for Nalm-6
is comparable to those estimated from Northern blot studies, using normal human leukocytes (5.5
h).

Conclusions: We have developed a rapid, sensitive, and reliable method based on Real-Time RT-
PCR for measuring mRNA half-life. Our results confirm that β-actin mRNA half-life can be affected
by the cellular growth rate.

Background
Determination of mRNA half-life is important to our un-
derstanding of gene expression and mechanisms involved
in the regulation of the level of transcripts in response to
environmental changes or developmental cues. In addi-
tion, the stability of mRNA may determine how rapidly
the synthesis of the encoded protein can be shut down af-
ter transcription ceases. mRNA half-life can be determined
by densitometric analysis of in situ hybridization histo-

chemistry [1] or by Northern blot analysis [2] of RNA
samples removed from cells treated with transcriptional
inhibitors such as actinomycin D (ActD) [3], α-amanitin
[4], or 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole
(DRB) [5]. Although reliable, these multi-step methods
are laborious and time-consuming. The advent of new
technologies such as the Real-Time PCR allows rapid and
exact measurement of copy number of molecules present
in the sample [6]. Real-Time Reverse Transcriptase PCR
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(RT-PCR) allows precise and reproducible quantitative
determination of the number of mRNA transcripts synthe-
sized [7,8]. We have developed a rapid and reliable Real-
Time quantitative RT-PCR approach to determine mRNA
half-life based on the SYBR® Green I fluorogenic dye (Mo-
lecular Probes, Inc., Eugene, OR, USA) and relative to the
amount of total RNA per cell samples.

To evaluate that approach, the β-actin gene was used as a
reference molecule for mRNA stability. Actin proteins are
components of the microfilament which play a crucial
role in maintaining cell shape and motility. Expression of
β-actin has been shown to be relatively constant as cells
progress through the cell cycle [9] and has been used as a
standard for an unchanging protein and mRNA in studies
of gene regulation. In this study, we used the human
leukemia cell lines CCRF-CEM (T-cell lineage, Acute Lym-
phoblastic Leukemia (ALL)) and Nalm-6 (B-cell precur-
sor, ALL) that respond differently to antifolate drugs, such
as methotrexate (MTX). Nalm-6 cells were shown to be
more sensitive to MTX when compared to CCRF-CEM
[10].

Results and Discussion
The β-actin mRNA half-life was determined from CCRF-
CEM and Nalm-6 cell lines treated with 0.5 µM, 1 µM, and
5 µM ActD (Sigma-Genosys, Woodlands, TX, USA). Under
these conditions, Naml-6 cells were more sensitive than
CCRF-CEM cells as measured by viable cell counts. It has
been shown that ActD inhibits cell proliferation by form-
ing a stable complex with single-stranded DNA and block-
ing the movement of RNA polymerase that interferes with
DNA-dependent RNA synthesis [11]. Based on their re-
spective IC50 for ActD, β-actin mRNA half-life was evalu-
ated from Nalm-6 cells treated with 0.5 µM and 1 µM
ActD, and from CCRF-CEM cells treated with 1 µM and 5
µM ActD. Twenty-four h before treatment, the cells were
transferred to a tissue culture flask at a concentration of 6
× 105 cells/ml, and aliquots of 3 × 106 cells were collected
every 2 or 4 h for a period of 8 to 24 h. Total RNA was iso-
lated and its concentration determined as described in
Materials and Methods. For each sample, the amount of β-
actin mRNA was quantified relative to 1 µg of total RNA
by Real-Time RT-PCR. First-strand cDNA was synthesized
using 1 µg of total RNA (DNase-treated) and a region of
the β-actin mRNA was amplified using primers BA67 and
BA68 [12]. Serial ten-fold dilutions (104 to 109 mole-
cules) of pBactin-231 were used as a reference molecule
for the standard curve calculation (Figure 2). All Real-
Time PCR quantitations were performed using the BIO-
RAD iCycler iQ system (BioRad, Hercules, CA, USA). A
representative example of RT-PCR amplification plots is
shown in Figure 1. A fluorescence threshold value (Ct)
was calculated for each samples. For each standard curve,
the correlation coefficients ranged from 0.988 to 0.995 in-

dicating a high degree of confidence for the measurement
of the copy number of molecules in the samples. As
shown in Figure 2, the number of β-actin mRNA mole-
cules ranged between 107 to 108 molecules/µl of cDNA
for most of the cDNA preparations. Melting curves con-
firmed the presence of a single amplification product.
Amounts of β-actin mRNA molecules were calculated for
each time-point and plotted as a function of time (Figure
3). In Nalm-6 cells, the β-actin mRNA exhibited a half-life
of 6.6 h. This result is comparable to the previously report-
ed published value of approximately 5.5 h [13] using the
traditional Northern blot procedure. A significant higher
half-life value of ~13.5 h was obtained with the CCRF-
CEM cells. It is interesting to observe a two-fold difference
for β-actin mRNA half-life between these two cell lines.
This difference cannot be explained by the concentrations
of the ActD used to block transcription because similar
half-life values were obtained with different ActD concen-
trations (see Figure 3). However, since the expression of
the β-actin gene is regulated as a function of the cell cycle
with transcription in the G1 phase and mRNA decay in G2
phase [14,15], it is possible that this difference in β-actin
mRNA half-life could be explained by their respective cel-
lular growth rate. Indeed, CCRF-CEM and Nalm-6 cells ex-
hibited different cellular growth rate with generation
times of 24 and 36 h, respectively. Taken together, this
suggests that cells growing at a slower rate such as Nalm-
6 would process the β-actin mRNA at a faster rate in order
to respond to its cytoskeleton requirement. Future experi-
ments will address this issue.

Conclusions
In summary, we described an alternative method using
Real-Time RT-PCR to determine the rate of mRNA degra-
dation by accurately measuring the number of mRNA
molecules relative to total RNA. Using this approach, we
obtained a values for the β-actin mRNA half-life in Nalm-
6 cells that are comparable to those estimated from North-
ern blot studies using normal human leukocytes [13].
Therefore, Real-Time RT-PCR is a reliable method for
measuring mRNA half-life. Because of its sensitivity, half-
life of mRNAs expressed at very low level can be deter-
mined in cases in which Northern blots may not be sensi-
tive enough. The length of the amplified fragment is
important to determine the mRNA half-life because in-
complete or degraded mRNA can interfere with the meas-
urement of the actual mRNA half-life. Ideally, full-length
cDNA molecules should be amplified to ensure integrity
and identity of the mRNA species. The use of the fluoro-
genic SYBR Green I dye limits the length of the amplified
product (cDNA recommended to be less than 200 bp).
However, the use of TaqMan® (Applied Biosystems, Foster
City, CA, USA), molecular beacons (Molecular Probes,
Inc., Eugene, OR, USA), or fluorescence resonance energy
transfer (FRET) probes (Roche Molecular Biochemicals,
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Indianapolis, IN, USA) could overcome this limitation
and allow amplification of longer PCR products. In addi-
tion, since multiplex Real-Time RT-PCR can be achieved
in the same reaction tube using different fluorogenic dyes,
this method could be modified to simultaneously esti-
mate mRNA half-life of several genes. Thus, our approach
represents a rapid and sensitive assay to determine mRNA
half-life.

Materials and Methods
Leukemia cell Lines
The human leukemia cell lines CCRF-CEM (T-cell, ALL)
and Nalm-6 (B-cell precursor, ALL) were obtained from
the American Type Culture Collection (ATCC, Rockville,
MD, USA) and DSMZ (Braunschweig, Germany), respec-
tively. Both cell lines were grown in RPMI 1640 (Sigma-
Genosys, Woodlands, TX, USA) supplemented with 10%
fetal bovine serum at 37°C under a 5% CO2 atmosphere.

Figure 1
Real-Time RT-PCR amplification plot of β-actin mRNA. Representative RT-PCR plot resulting from the amplification
of β-actin cDNA templates (1/20 volume) synthesized from 1 µg of total RNA (see Materials and Methods for details). For
each time point, the cDNA was generated and quantified from three independent experiments and run in triplicates. The calcu-
lated cycle threshold (Ct = 99) provides an arbitrary cut off point at which a Ct value is assigned for each sample.

Figure 2
Real-Time RT-PCR quantification of β-actin mRNA. Standard curve showing amplification efficiencies of ten-fold serial
dilutions of the pBactin-231 template. Real-Time PCR amplifications were performed using β-actin specific primers BA67 and
BA68. The calculated Ct values were plotted versus the log of the initial amount of pBactin-231 molecules (104 to 109) to gen-
erate the standard curve. Squares and circles represent β-actin standards and mRNA samples, respectively.
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Culture medium was changed according to standard tis-
sue culture techniques to insure cellular integrity. Trypan
blue exclusion methodology was used to assess cell viabil-
ity.

RNA isolation and Real Time RT-PCR
Total RNA was isolated using the RNeasy kit (Qiagen, Inc.,
Valencia, CA, USA) and its concentration determined us-
ing the RiboGreen® fluorescent dye (Molecular Probes,
Inc., Eugene, OR, USA) with the VersaFluor Fluorometer
System (BioRad, Hercules, CA, USA). Quality and integri-
ty of total RNA was assessed on 1% formaldehyde-agarose
gels. First-strand cDNA was synthesized using 1 µg of total

RNA (DNase-treated) in a 20 µl reverse transcriptase reac-
tion mixture as described by Leclerc and Barredo [16]. A
region of the β-actin mRNA was amplified using primers
BA67 (5'-GCGGGAAATCGTGCGTGACATT) and BA68
(5'-GATGGAGTTGAA GGTAGTTTCGTG), as described by
Lenz et al. [12]. The cDNA amplified fragment (231 bp)
was cloned into the pCR2.1-TOPO vector (Invitrogen,
Carlsbad, CA, USA) to generate the plasmid pBactin-231
(4139 bp). Serial ten-fold dilutions (104 to 109 mole-
cules) of pBactin-231 were used as a reference molecule
for the standard curve calculation (Figure 2). All Real-
Time PCR reactions were performed in a 25 µl mixture
containing 1/20 volume of cDNA preparation (1 µl), 1X

Figure 3
Half-life of β-actin mRNA in Nalm-6 and CCRF-CEM cells. The CCRF-CEM cells were treated with 5 µM (squares) or
1 µM (circles) Act-D for various times to block mRNA synthesis. Similarly, the Nalm6 cells were treated with 1 µM (lozenges)
or 0.5 µM (triangles) Act-D. Total RNA, cDNA, and Real-Time PCR amplification were performed as described in the text.
The values represent the mean (±) the standard deviation (SD) of the β-actin RNA copy number per µg of total RNA from
three independent experiments. Triplicate determinations were averaged at each data-point. The inset shows the calculated
half-life for the β-actin mRNA in each cell line for each treatment.
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SYBR Green buffer (PE Applied Biosystems, Foster City,
CA, USA), 4 mM MgCl2, 0.2 µM of each primers (BA67
and BA68), 0.2 mM dNTPs mix and 0.025 Unit of Ampli-
Taq Gold® thermostable DNA polymerase (Applied Bio-
systems, Foster City, CA, USA). Real-Time quantitations
were performed using the BIO-RAD iCycler iQ system
(BioRad, Hercules, CA, USA). The fluorescence threshold
value was calculated using the iCycle iQ system software.
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