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Berberine-induced apoptotic and autophagic
death of HepG2 cells requires AMPK activation
Rong Yu1,2, Zhi-qing Zhang3, Bin Wang1, Hong-xin Jiang1, Lei Cheng2* and Li-ming Shen2*
Abstract

Background: Hepatocellular carcinoma (HCC), the primary liver cancer, is one of the most malignant human
tumors with extremely poor prognosis. The aim of this study was to investigate the anti-cancer effect of berberine
in a human hepatocellular carcinoma cell line (HepG2), and to study the underlying mechanisms by focusing on
the AMP-activated protein kinase (AMPK) signaling cascade.

Results: We found that berberine induced both apoptotic and autophagic death of HepG2 cells, which was
associated with a significant activation of AMPK and an increased expression of the inactive form of acetyl-CoA
carboxylase (ACC). Inhibition of AMPK by RNA interference (RNAi) or by its inhibitor compound C suppressed
berberine-induced caspase-3 cleavage, apoptosis and autophagy in HepG2 cells, while AICAR, the AMPK activator,
possessed strong cytotoxic effects. In HepG2 cells, mammalian target of rapamycin complex 1 (mTORC1) activation
was important for cell survival, and berberine inhibited mTORC1 via AMPK activation.

Conclusions: Together, these results suggested that berberine-induced both apoptotic and autophagic death
requires AMPK activation in HepG2 cells.
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Background
Hepatocellular carcinoma (HCC), the primary liver cancer,
is one of the most malignant human tumors with ex-
tremely poor prognosis [1]. HCC accounts for over 80% of
all liver cancers and is diagnosed in over 600,000 people
annually [1]. HCC has become one of the leading causes of
cancer-related mortality in the United States and around
the world [1,2]. There is currently no clinically proved cur-
able therapy for the advanced HCC [1,3], and a large per-
centage of advanced HCC do not respond to any
chemotherapies, mainly due to the high level of intrinsic
and acquired chemo-resistances [4]. Thus, the develop-
ment of novel and effective therapeutic approaches for this
devastating disease is of utmost relevance [3,4].
Berberine, the isoquinoline alkaloid presented in

Huanglian (Coptis chinensis) and many Chinese medicinal
herbs, has shown significant anti-tumor activities both
in vitro and in vivo [5]. Its high anti-cancer efficiency is
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associated with its transcriptional and post-transcriptional
regulation of some oncogenes and carcinogenesis-related
genes, and its interactions with both DNA and RNA [5]. In
the current study, we aimed to investigate the anti-cancer
ability of berberine in a human HCC line (HepG2), and to
study the underlying mechanisms by focusing on the AMP-
activated protein kinase (AMPK) signaling cascade.
Under the metabolic stress conditions such as hypoxia,

heat shock, oxidative stress, and exercise where ATP is de-
pleted, AMPK is activated and functions as a major meta-
bolic switch to maintain energy homeostasis [6,7]. This
highly conserved heterotrimeric kinase has also been
shown to act as an intrinsic regulator of mammalian cell
cycle [6,7]. Moreover, AMPK plays a important role in
cancer cell survival and apoptosis. As a matter of fact, a
number of anti-cancer medicinal herb extracts activate
AMPK-dependent cell death pathways [8,9]. Recent stud-
ies have shown that berberine could also activate AMPK
[10,11], however, the potential roles and underlying mech-
anisms of AMPK in mediating berberine-induced cancer
cell death remain largely unknown. In this study, we found
This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:2979701309@qq.com
mailto:limingshensz@163.com
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Yu et al. Cancer Cell International 2014, 14:49 Page 2 of 8
http://www.cancerci.com/content/14/1/49
that AMPK activation is important for berberine-
induced both apoptotic and autophagic cell death in
HCC HepG2 cells.

Results
Berberine inhibits survival and proliferation of HepG2 cells
First we examined the effect of berberine on HepG2 cell
survival and proliferation. Cell viability “MTT” assay was
performed. Results in Figure 1A clearly showed that
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berberine dose-dependently suppressed HepG2 cell prolif-
eration (Figure 1C). Taken together, these results suggested
that berberine significantly inhibits survival and prolifera-
tion of HepG2 cells.

Berberine induces apoptotic and necrotic death of
HepG2 cells
The results above showed that berberine inhibited HepG2
cell survival and proliferation; next we tested whether cell
apoptosis was involved in such an effect. As shown in
Figure 1D and E, berberine (50 and 100 μM) induced both
early (Annexin V+/PI−) and late (Annexin V+/PI+) apoptosis
in HepG2 cells. Meanwhile, berberine also caused caspase-
3 cleavage and Bcl-2 degradation (Figure 1F). Interestingly,
we noticed that berberine also induced necrotic HepG2 cell
death (Annexin V−/PI+) (Figure 1D and E). Further, cell via-
bility assay results in Figure 1G showed that z-VAD-fmk,
the general caspase inhibitor, only suppressed (but not re-
versed) berberine-induced HepG2 viability loss, indicating
that both apoptotic and necrotic death also accounted for
berberine-induced cytotoxicity in HepG2 cells.

Berberine induces autophagic death in HepG2 cells
The above results showed that berberine induced both
apoptotic and necrotic death of HepG2 cells. Thus, we
tested autophagy induction in berberine-treated HepG2
cells. Expressions of Beclin-1 [12,13] and light chain 3
(LC3) B-II, two autophagy indicators, in berberine-treated
HepG2 cells were examined. Results in Figure 2A clearly
showed that berberine induced Beclin-1 and LC3B-II up-
regulation in HepG2 cells. Meanwhile, the number of
HepG2 cells with intense LC3B-GFP puncta was increased
dramatically after berberine treatment (Figure 2B). In
order to explore the role of autophagy in berberine-
induced HepG2 cell cytotoxicity, we first utilized caspase
inhibitor (z-VAD-fmk) to block cell apoptosis. In this con-
dition, we found that the autophagy inhibitors including
3-methyladenine (3-MA, an inhibitor of class III PI3-
kinase), Bafilomycin A1, (Baf A1, a proteolysis inhibitor)
and NH4Cl (another proteolysis inhibitor) significantly
inhibit berberine-induced viability loss (Figure 2C). Fur-
ther, siRNA-mediated silencing of LC3B or Beclin-1
(Figure 2D) also suppressed berberine-induced HepG2
cell death (Figure 2E). These results suggest that au-
tophagy activation is important for berberine-mediated
cytotoxicity.

Activation of AMPK is involved in berberine-induced
cytotoxicity in HepG2 cells
As shown in Figure 3A and B, berberine-induced signifi-
cant AMPK activation in HepG2 cells, as the expressions
of phosphorylated AMPKα and its downstream ACC
in HepG2 cells were significantly increased after berb-
erine treatment (Figure 3A and 3B). Importantly, AMPK
inhibition by its inhibitor compound C (AMPKi) or RNA
interference (AMPKα-RNAi) suppressed berberine-induced
cell viability loss (Figure 3C and D). Meanwhile, berberine-
induced apoptosis and caspase-3 cleavage were also inhib-
ited by AMPK inhibition (Figure 3E and F). Further, the
AMPK inhibitor or RNAi also reduced the number of LC3-
GFP puncta (autophagic) cells after berberine treatment,
indicating that AMPK is required for both apoptosis and
autophagy induction by berberine. The fact that the AMPK
activator 5-aminoimidazole-4-carboxyamide-1-β-D-ribofur-
anoside (AICAR) (Figure 3H) inhibited HepG2 cell survival
(Figure 3I) further confirmed that activation of AMPK is in-
volved in berberine-induced cytotoxicity in HepG2 cells.

mTORC1 activation is required for HepG2 cell survival,
inhibited by berberine
Activation of Akt and mammalian target of rapamycin
complex 1 (mTORC1) signaling plays a key role in liver
cancer cell survival, proliferation and apoptosis-resistance;
we then examined these signalings in berberine-treated
HepG2 cells. Western blot results in Figure 4A and B
showed that berberine induced Akt activation in a time
and dose-dependently manner in HepG2 cells. Note that
Akt activation was reflected by the increased expressions
of phospho (p)-Akt (Ser 473 and Thr 308). However, at
the same time, berberine significantly inhibited mTORC1
activation in HepG2 cells (Figure 4A and B), as p-S6 and
p-4E-BP1 downregulated sharply after high dose of ber-
berine (>50 μM) treatment. mTORC1 inhibition started with
0.5-1 hour after berberine (100 μM) treatment (Figure 4B).
These results together suggested that berberine acti-
vates Akt while inhibiting mTORC1 in HepG2 cells.
Similarly, RAD001 and rapamycin, two mTORC1 inhib-
itors blocked S6 phosphorylation and activated Akt in
HepG2 cells (Figure 4C), these two also inhibited HepG2
cell survival (Figure 4D). Interestingly, berberine-induced
mTORC1 inhibition was almost reversed by AMPK in-
hibitor compound C (Figure 4E), suggesting that AMPK
activation was required mTORC1 inhibition by berberine.
Together, these results suggested that berberine, via acti-
vating AMPK signaling, inhibits mTORC1 activation and
cell survival in HepG2 cells. Also, berberine-induced Akt
activation is probably through mTOR-dependent feedback
pathways [14].

Discussions
Although AMPK is generally recognized as the metabolic
switcher [6], a number of recent papers have suggested
that cellular stresses-activated AMPK also promotes cell
apoptosis [15], such an effect by AMPK is through regulat-
ing AMPK’s downstream signals, including c-Jun N-
terminal kinases (JNK) [16], p53 [17] and mTOR [15].
Meanwhile, anti-cancer chemotherapies such as taxol
[18,19] and temozolomide [20] activate AMPK-dependent
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apoptosis pathways. Meanwhile, resveratrol [21], capsaicin
[8] and EGCG [22] anti-cancer plant extracts induced can-
cer cell death also requires AMPK activation. In the
current study, we also observed a significant AMPK acti-
vation in berberine-treated HepG2 cells. Inhibition of
AMPK by RNAi or compound C suppressed berberine-
induced caspase-3 cleavage, apoptosis and autophagy in
HepG2 cells. Conversely, HepG2 cell viability was inhibited
by the AMPK activator AICAR. These results together sug-
gested that AMPK is required for berberine-induced anti-
cancer effects in HepG2 cells.
AMPK regulated cell death was, however, not solely rely

on apoptosis induction. As a matter of fact, recent studies
have indentified another way to promote cell death by
AMPK activation: autophagy [23,24]. Activation of AMPK
directly phosphorylates and activates Ulk1 to trigger cell au-
tophagy [23,24]. Meanwhile, AMPK-medicated mTORC1
inhibition also promotes autophagy, through removing Ulk1
inhibition by mTORC1 [23,25]. As a matter of fact, recent
studies have shown that anti-cancer agents (i.e. resveratrol
and ceramide) activate AMPK-dependent autophagic death
pathway [26,27]. Activation of AMPK by aspirin induces au-
tophagic cell death in colorectal cancer cells [28,29]. In the
current study, we also observed a significant autophagic cell
death by berberine in HepG2 cells, which was associated
with mTORC1 inhibition. Activation of AMPK appeared to
be important for the process, as inhibition of AMPK by
RNAi or compound C suppressed autophagy induction and
mTORC1 inhibition.
Activation of mTORC1 is important for HepG2 cell sur-

vival, proliferation and apoptosis resistance [30]. In the
current study, we found that two mTORC1 blockers
(rapamycin and RAD001) inhibited HepG2 cell survival.
Interestingly, although berberine or the two inhibitors al-
most blocked mTORC1 activation, it simultaneously acti-
vated Akt. These results suggested that berberine-induced
mTORC1 inhibition was not dependent on its effect on
Akt, rather Akt activation by berberine might be due to
mTORC1 or S6 inhibition [31]. Further, we provided evi-
dence to support that mTORC1 inactivation by berberine
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might be associated with AMPK, as inhibition of AMPK
reversed mTORC1 inhibition by berberine. It is known
that AMPK inhibits mTORC1 activation through the fol-
lowing two mechanisms: by phosphorylation and activa-
tion of TSC2 (tuberous sclerosis protein 2), the mTOR
inhibitory protein [32], or by phosphorylation of Raptor
(regulatory associated protein of mTOR) [33].
It should be noted that AMPK inhibition only reduced,

but not reversed HepG2 cytotoxicity-induced by berberine.
This could be due to the incomplete inhibition of AMPK
by the methods used in this study (RNAi or compound
C). However, it is more likely that AMPK activation is
among many mechanisms activated by berberine to medi-
ate HepG2 cell death [5]. Other signals independent of
AMPK activation are likely to participate in the process
[5]. Meanwhile, although studies including this study have
confirmed AMPK activation by berberine, the potential
upstream signal for this activation is not known.
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Conclusions
Together, these results suggested that berberine-induced
both apoptotic and autophagic death requires AMPK ac-
tivation in HepG2 cells.
Methods
Chemicals and reagents
Berberine hydrochloride, 5-aminoimidazole-4-carboxyami-
de-1-β-D-ribofuranoside (AICAR), 3-methyladenine (3-
MA), Bafilomycin A1, (Baf A1), NH4Cl and mouse
monoclonal β-actin antibody were purchased from Sigma
(Louis, MO). Z-VAD-fmk, compound C, rapamycin and
RAD001 were purchased from Calbiochem (Darmstadt,
Germany). Anti-Erk1/2 and Akt, AMPK, ACC and S6
antibodies were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA). All other phospho (p)- and non-
phospho-antibodies were purchased from Cell Signaling
Technology (Bevery, MA).
Cell culture
The HepG2 cell was obtained from Chinese Academy of
Sciences Cell Bank (Shanghai, China). Cells were main-
tained in DMEM medium (Sigma), supplemented with a
10% fetal bovine serum (FBS, Invitrogen, Carlsbad, CA),
Penicillin/Streptomycin (1:100, Sigma, St. Louis, MO) and
4 mM L-glutamine (Sigma), in a CO2 incubator at 37°C.
Cell viability assay
Cell viability was measured by the 3-[4,5-dimethylthylthia-
zol-2-yl]-2,5 diphenyltetrazolium bromide (MTT, Sigma)
assay as described before [34].

BrdU incorporation assay
HepG2 cells were seeded at a density of 1 × 105 cells/well
in 0.5 ml DMEM containing 10% FBS onto the 48-well tis-
sue culture plates, cells were serum-starved for 24 hours
and then exposed to various concentrations of Berberine
for 48 hours. The cell proliferation was assessed using
BrdU incorporation though the BrdU ELISA colorimetric
assay (Roche, Indianapolis, IN) according to the manufac-
turer’s protocol. The ELISA OD value of treatment group
was normalized to that of untreated control group. Each
condition was tested in triplicate.
Cell apoptosis assay
HepG2 cell apoptosis was detected by the Annexin V
Apoptosis Detection Kit (Beyotime, Shanghai, China) ac-
cording to the manufacturer’s protocol. Briefly, one million
HepG2 cells with indicated treatment were stained with
FITC-Annexin V and propidium iodide (PI) (Beyotime,
Shanghai, China). Both early (annexin V+/PI−) and
late (annexin V+/PI+) apoptotic cells were sorted by a
fluorescence-activated cell sorting (FACS) machine
(Becton Dickinson FACS Calibur).
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Trypan blue staining
The number of “dead” HepG2 cells (trypan blue dye
positive) after indicated treatment was recorded, and the
percentage of death HepG2 cells was calculated by the
number of the trypan blue dye positive cells divided by
the total number of the cells.

Quantification of autophagic cells
HepG2 cells were transfected with GFP-light chain 3
(LC3) in the pcDNA3 plasmid using Lipofectamine 2000
(Invitrogen, USA) in serum- and antibiotic-free medium
for 6 hours, followed by a 72 hours incubation in growth
medium (with FBS). Afterwards, cells were selected with
1 mg/ml G418 (Gibco, USA) to establish a stable cell line
expressing the GFP-LC3 fusion protein. Selected cells
were seeded onto confocal cover-slips and treated as de-
scribed in figure legends. The accumulation of GFP-LC3
was examined by fluorescence microscopy. Autophagic
cells were recorded by counting the percentage of cells
showing an accumulation of intense GFP-LC3 puncta,
analyzing 100 cells per preparation in three independent
experiments.

Western blot assay
As described before [34], aliquots of 30–40 μg of proteins
from each sample (treated as indicated in the legends) were
separated by 10% SDS–polyacrylamide gel electrophoresis
(SDS-PAGE), and transferred onto a polyvinylidene difluor-
ide (PVDF) membrane (Millipore, Bedford, MA). After
blocking with 10% of milk for 1 hour at room temperature,
the PVDF membrane was incubated with the indicated pri-
mary antibody overnight at 4°C, followed by incubation
with corresponding secondary antibody for 30 min to
1 hour at room temperature. Antibody binding was de-
tected with the enhanced chemiluminescence (ECL) detec-
tion system (Amersham Biosciences, Piscataway, NJ). The
intensity of indicated band was quantified using Image J
software (http://rsbweb.nih.gov/ij/download.html), and the
value was normalized to corresponding loading control,
and was expressed as fold change vs. control group.

RNA interference (RNAi)
The RNAi sequences (5′GCAUAUGCUGCAGGUAGA
U3′ [35] and 5′AAGGAAAGTGAAGGTGGGCAA3′ [36])
against human AMPK-α1/2 were synthesized by GENEWIZ,
Inc. (Suzhou, China). Non-sense control RNAi was pur-
chased from Santa Cruz and was used as RNAi-negative
control. Beclin-1 siRNA and LC3B siRNA were purchased
from Cell Signaling Tech (Shanghai, China). Transfection
was performed as described before [37]. Briefly, HepG2 cells
were cultured on a six-well plate with 60% confluence in
antibiotic- and serum-free medium. Targeted and control
RNAi (100 μM) and 3.0 μl of Lipofectamine PLUS Reagent
(Invitrogen, Carlsbad, CA) were diluted in 90 μl of siRNA
dilution buffer (Santa Cruz). To this was added 3 μl of Lipo-
fectamine LTX. The transfection complex was then added
to the well containing 1 ml of DMEM for 12 hours, with a
final RNAi concentration of 100 nM. Growth medium
was then added back to the cells, which were cultured for
additional 48 hours. Expression level of target proteins in
transfected cells was always tested by western blots. Only
cells with target protein significant-knockdown were used
for experiments.

Statistics analysis
All data were normalized to control values of each assay
and were presented as mean ± standard deviation (SD).
Data were analyzed by one-way ANOVA followed by a
Scheffe’s f-test by using SPSS software (SPSS Inc., Chicago,
IL, USA). Significance was chosen as p < 0.05.
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