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Abstract

Tumors are not merely masses of neoplastic cells but complex tissues composed of cellular and noncellular
elements. This review provides recent data on the main components of a dynamic system, such as carcinoma
associated fibroblasts that change the extracellular matrix (ECM) topology, induce stemness and promote
metastasis-initiating cells. Altered production and characteristics of collagen, hyaluronan and other ECM proteins
induce increased matrix stiffness. Stiffness along with tumor growth-induced solid stress and increased interstitial
fluid pressure contribute to tumor progression and therapy resistance. Second, the role of immune cells, cytokines
and chemokines is outlined. We discuss other noncellular characteristics of the tumor microenvironment such as
hypoxia and extracellular pH in relation to neoangiogenesis. Overall, full understanding of the events driving the

resistance and improving patient outcome.

Therapy resistance

interactions between tumor cells and their environment is of crucial importance in overcoming treatment
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Background

Tumor progression is partly a result of evolving cross-
talk between different cell types within the tumor and
its surrounding supportive tissue or tumor stroma [1].
Invasive tumor cells interact with the microenviron-
ment and remodel it into a milieu supportive of tumor
growth and tumor progression. The altered environ-
ment is recognizable under light microscope as desmo-
plasia and this is used for assessing invasion [2]. The
importance of the microenvironment in tumor progres-
sion is shown using model systems. It has been shown
on animal xenografts that injection of purified malig-
nant epithelial cells results in the formation of histologi-
cally complex tumors, with 80% of the cells being
stromal [3]. Further, injection of non-transformed mam-
mary epithelial cells into irradiated mammary stromal

* Correspondence: jan.bouchal@gmail.com

'Laboratory of Molecular Pathology, Institute of Molecular and Translational
Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc,
Czech Republic

Full list of author information is available at the end of the article

( BioMVed Central

fat pads, resulted in increased tumor growth compared
to those injected into contralateral, non-irradiated
mammary fat pads. Irradiated stromal cells altered the
microenvironment and this resulted in tumor promotion
[4]. Genetic alterations that initiate carcinoma, occur in
the epithelium but events that promote tumor progression
involve the stroma. In some cases, the trigger for neoplas-
tic progression is speculated to come from signals within
the stromal microenvironment [5]. Cancer cells release
stroma-modulating growth factors such as fibroblast
growth factor, members of the VEGF family, PDGE, EGFR
ligands, interleukins, colony-stimulating factors, trans-
forming growth factor f and many others [6]. These fac-
tors act in a paracrine manner, disrupt normal tissue
homeostasis, resulting in stromal reactions such as angio-
genesis and the inflammatory response [7,8].

Fibroblasts in tumor progression and therapy resistance
Carcinoma associated fibroblasts (CAF) are believed to in-
fluence tumor behavior and outcome and thus knowledge
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of their biology is of importance to an overall understand-
ing of cancer. CAFs are large, spindle-shaped mesenchy-
mal cells that share characteristics with smooth muscle
cells and fibroblasts [6]. They constitute a significant com-
ponent of the stroma and represent the cells responsible
for the change of extracellular matrix composition into
one with increased amounts of collagens (desmoplastic re-
sponse) [3]. Currently, no precise definition of CAFs exists
because of the different cellular origin and markers
expressed: CAFs are likely to derive from resident fibro-
blasts and marrow-derived mesenchymal precursor cells,
whereas their generation through epithelial-mesenchymal
transition (EMT) of tumor cells is more controversial
[6,9,10]. CAFs are not only phenotypically but also func-
tionally distinct from their normal counterparts and are
identified immunocyto-/histochemically based on differ-
ent markers such as a-smooth muscle actin (x-SMA),
vimentin, desmin, fibroblast specific protein -1, PDGFR «
and f3, and fibroblast activation protein or their combina-
tions; CAFs generally lose caveolin 1, PTEN, p21, or have
mutated TP53 [11,12]. Some of these differences are re-
versible, whereas others persist when the fibroblasts are
removed from the vicinity of the carcinoma cells. Their
gene expression differences are due to epigenetic and gen-
etic alterations [13,14] and relate to the stage of their dif-
ferentiation [15]. The evidence above shows that CAFs,
like tumor cells, are heterogenous, not only between dif-
ferent but also within the same type of cancer.

CAFs promote tumor progression in several ways such
as secretion of multiple factors and MMPs, inducing
stemness, EMT, epigenetic changes, etc. [11,16]. Recent
breast cancer gene expression profiles of the stromal
compartment, have revealed significantly different gene
sets than normal mammary stroma, with increased cyto-
kines, ECM molecules and proteases [17,18]. They alter
the three dimensional ECM scaffold and support tumor
cells that eventually metastasize and activate immune
cells to enhance the ECM-degrading capacity [19]. Se-
creted ECM components such as tenascin reveal pro-
migratory activity [20]. TGF-p induces HGF expression
by fibroblasts and also induces the transition of fibro-
blasts to myofibroblasts by increasing a-SMA and tenas-
cin C expression [21]. Gene expression changes, reported
by Rajski et al., [22], which were induced by IGF-I in hu-
man breast fibroblasts, contained several soluble factors,
such as periostin which is involved in bone metastasis and
angiogenesis [23-25], tenascin, which enhances tumor
cell proliferation [26], as well as LOXL1, a member of
the lysyl oxidase family. LOXL1 like LOXL2, may act in
the vicinity of epithelial cells during tissue remodeling
and collagen cross-linking. LOXL2 has been reported
to be involved in invasiveness [27] and specifically
expressed by fibroblasts in tumor tissue [28]. The pres-
ence of these factors indicates that the IGF-I activated
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stroma enhances proliferation and the metastatic poten-
tial of the cancer cells. In this sense, periostin and tenas-
cin C also activate developmental pathways for the
viability of metastasis-initiating cells in the lungs [29].
In the pulmonary parenchyma, TGF-B3 stimulates myo-
fibroblasts to produce periostin which binds stromal
Wnt factors Wntl and Wnt3a for presentation to stem-
like metastasis-initiating cells [30]. Myofibroblasts and
the cancer cells themselves also produce tenascin C which
promotes the intracellular functioning of the Wnt and
Notch pathways [29]. The Wnt pathway is known to con-
trol stem cell maintenance in a variety of tissues [31] and
tumors [32,30,33,34]. We previously identified another
cancer associated extracellular matrix protein, asporin
which may interact with the Wnt pathway [35-38].
Asporin was also identified as one of the most CAF-
enriched molecules using gene ontology analysis and fur-
ther suggested as a possible EMT marker due to colocali-
zation with ZEB1 both in the stroma and epithelium of
prostate cancer [39]. In breast and prostate carcinomas,
mutations of critical tumor suppressor genes like PTEN
and TP53 have been reported to occur in either epithelial
or stromal cells in a mutually exclusive fashion [40,41].
Such findings indicate establishment of a vicious circle, in
which mutations in the carcinoma drive alterations in the
stroma that again promote carcinoma progression [40,41].
According to Dudley et al. [42], breast CAFs possess a
nonmutated but functionally deficient form of p53 and
TP53 mutation status may be a predictor of CAF-
mediated chemoresistance [43]. The role of CAFs in
chemo/endocrine and target resistance is well-reviewed in
Mao et al. [11] using breast cancer as example. Besides
the genetic mechanisms described above, there is also evi-
dence supporting the involvement of epigenetic changes
in the cancer stroma as a contributor to cancer progres-
sion. These include histone modifications and alterations
in the expression of DNA methyltransferases, chromatin
modifying factors and microRNAs [11]. Direct contact be-
tween stromal and tumor cells allows minor populations
of the latter to evade chemotherapy. For example, adhe-
sion of melanoma cells to fibroblast monolayers through
N-cadherin activates AKT, which blocks BAD and signifi-
cantly reduces the cytotoxic effects of the chemotherapy
drug, cisplatin [44]. In summary, CAFs play a critical role
in determining many aspects of tumor behavior and over-
all outcome.

Matrix topology, stiffness and solid stress

Cancer initiation and progression are largely dependent
on the physical and chemical features of the adjacent
environment particularly matrix topology (architecture)
and stiffness. These features are determined by the size
of biopolymer (proteins, proteoglycans and glycosamino-
glycans) fibers and the density of the fiber network [45].



Kharaishvili et al. Cancer Cell International 2014, 14:41
http://www.cancerci.com/content/14/1/41

Connective tissue is characterized by different fiber ar-
rangements ranging from loose or random to highly
aligned structures. ECM topology can provide important
regulation of cell motility through physical cues that
geometrically constrain adhesion sites to guide direc-
tional migration [46]. Cancer cells display aligning be-
havior, called contact guidance through which they
actively remodel the ECM fibers surrounding a tumor,
using contractile force to align the fibers perpendicularly
to the tumor [47,45]. Dense fibrous collagen that is char-
acteristic of breast cancer stroma forms radial patterns
extending away from tumors [48]. On the other hand,
the reticular orientation of the collagen matrix sur-
rounding mammary glands may anchor and/or restrain
cells. Thus, non-linear matrix reduces invasion while lin-
ear structure promotes it (reviewed in [46]).

Matrix concentration and post-translational modifica-
tions such as glycosylation and cross-linking (e.g. by
LOXL1 and LOXL2) affect the mechanical properties, in-
cluding visco-elasticity or stiffness (reviewed in [49]). Tu-
mors are stiffer than their normal adjacent tissue. For
example, healthy mammary gland is highly compliant
(elastic modulus E = ~200 Pa), while the average tumor is
over an order of magnitude stiffer (E =~4,000 Pa). Both
the tumor-surrounding stroma and vasculature exhibit
increased stiffness (E = ~800—-1,000 Pa and ~450 Pa, re-
spectively) [47]. Increased matrix stiffness is also ob-
served in fibrotic lungs, scar tissue and irradiated or
aged tissue [50].

ECM topology and stiffness can influence mechano-
sensing and activate intracellular signaling to promote
directional cell migration. Integrin receptors and the
physical arrangement of adhesions could trigger orien-
tation of the cytoskeleton, and matrix orientation can
also stabilize leading edge protrusions to promote dir-
ectionally persistent migration in which specific signal-
ing pathways (via vinculin, talin, FAK, p130CAS and
filamin A) are involved [45,46]. Cancer cells recognize
an increase in ECM stiffness and respond by generating
increased traction forces on their surroundings by regu-
lating focal adhesion formation and growth factor sig-
naling. For this purpose, the cell has several options: it
can either force the network fibers apart and remodel
the shape until it can pass through the pore, or tumor
cell degrades the fiber matrix with the help of proteo-
lytic enzymes (reviewed in [45]). This in turn, enhances
growth, survival, and invasion of tumor cells by pro-
moting focal adhesion maturation and signaling through
actomyosin contractility [51]. Increased tumor tissue
stiffness has been linked to tumor progression, direct
stem cell differentiation, cell-cell and cell-matrix ad-
hesion, hyaluronan synthesis, and expression of genes
that play important roles in invasion and metastasis
[52-54].
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Another important tumor characteristic is growth-
induced solid stress (Figure 1). As tumor cells proliferate
they sequentially create new solid material (i.e. cells and
matrix components) which pushes against the surround-
ing tumor microenvironment. In normal tissue, the expan-
sion of the tumor microenvironment is resisted by the
enclosing microenvironment. However, cancer cells prolif-
erate uncontrollably, ignoring contact inhibition and their
expansion imposes elastic strain on the surrounding
tumor microenvironment, storing stress through the de-
formation of compliant structures and collapsing more
fragile structures, such as blood and lymphatic vessels
(Figure 1). Interestingly, this solid stress is accumulated
within the tumor and maintained even after the tumor is
excised [55]. The known contribution of the ECM to solid
stress includes both collagen and hyaluronan. Collagen re-
sists tensile stress because it becomes stiffer as it is
stretched. This finding is true for both capsular and inter-
stitial collagen because the ECM in tumors is extensively
cross-linked. Whereas hyaluronan resists compression, its
negatively charged chains repel, owing to electrostatic re-
pulsion and trap water, forming a poorly compressible
matrix [55]. The compression of vessels by solid stress
creates two potential barriers to drug delivery. First, the
collapse of blood vessels hinders access of systemically
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Figure 1 Schematic of the biomechanical forces in the tumor
microenvironment. As tumor cells proliferate they sequentially
create new solid material (i.e. cells and matrix components) which
generate radial and circumferential solid stresses. In the tumor
center, circumferential and radial stresses are compressive while in
the periphery, radial stress is compressive and circumferential stress
is tensile (direction indicated with arrows). Compressive stresses in
the tumor interior squeeze tumor components, including lymphatic
and blood vessels (note compressed lumen of blood vessel and
high density of cells and extracellular matrix in dark green). After the
tumor is cut and the stresses are released, the tumor interior
decompresses (note extended lumen of blood vessel, relaxed cells
and extracellular matrix in light green). Reproduced and modified
with permission from Prof. Rakesh K. Jain [55].
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administered drugs. This collapse might explain, in part,
the fact that tumors with more ECM might be more re-
sistant to treatment. For instance, pancreatic ductal
adenocarcinomas, chondrosarcomas, and chordomas are
rich in ECM and refractory to chemotherapy [56-58]. Sec-
ond, the lack of lymphatic vessel function reduces drain-
age, leading to uniformly elevated interstitial fluid pressure
(please see below). As a result, the transport of therapeu-
tics, like antibodies and nanoparticles, is reduced because
the dominant means of transport becomes diffusion which
is a very slow process for large particles and macromole-
cules [59]. In this sense, decreasing solid stress by the in-
expensive angiotensin inhibitor, losartan, enhances drug
delivery and potentiates chemotherapy by decompressing
tumor blood vessels [60].

Immune cells in tumor microenvironment

Besides endothelial cells and fibroblasts, the tumor
microenvironment also harbors innate and adaptive im-
mune cells. It is a complex and highly dynamic system
that should concomitantly work to eradicate a tumor.
However, once a system is deformed, immunity becomes
a benefit for the tumor and provides a very important
cue to its development and progression [61]. The
tumor-promoting effect of chronic inflammation has
been reported many times [62,63]. However, how tumors
promote inflammation and engage inflammatory cells in
this process, is still being intensively studied. Macrophage
density in the tumor generally negatively correlates with
relapse-free and overall survival but localization also
seems to be important. The association between TAM
(tumor associated macrophage)-density and survival of
cancer patients depends on the intratumoral or peritu-
moral macrophages counted [15]. TAMs promote the
metastatic capacity of cancer cells in stromal or perivascu-
lar areas, while around the necrosis, in a hypoxic state,
they stimulate angiogenesis [64]. A fibroblast secreted
protein-1 (FSP1), also called SI00A4 and mtsl, is secreted
by both fibroblasts and cancer cells, and also possibly by
macrophages [65], making the environment more
favourable to tumor progression by regulating inflamma-
tion and angiogenesis and promoting metastasis [66,67].
FSP1 is proangiogenic, possibly mediated either by the ac-
tivation of plasminogen or through the transcriptional up-
regulation of MMP13 [68]. Both of these proteinases play
a role in endothelial cell invasion [5].

Immune cells, particularly macrophages and neutrophils
are sources of chemokines, growth factors and proteases, as
well as DNA-damaging reactive oxygen and nitrogen spe-
cies. The gene expression profile of macrophages isolated
from malignant tumors significantly differs from wound or
resting peritoneal macrophage profile, with increased num-
ber of proliferation-associated genes [69]. Chemokines are
produced not only by activated macrophages but by stromal
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and even cancer cells themselves. As an example, CXCL12
activates CXCR4 both on the surface of immune cells and
on hematopoetic and endothelial precursors. The receptor
is also expressed in some cancer cells. Accordingly,
CXCL12 has several consequences: i) attraction of immune
cells leading to tissue destruction, favoring invasion and
metastasis; ii) promotion of growth and survival of cancer
cells expressing the CXCR4 receptor; iii) recruitment of
precursor cells for vasculogenesis; iv) activation of CXCR4
may also lead to greatly increased production of TNFa
which itself exhibits other effects. Inflammatory cytokines,
overexpressed by tumor cells recruit monocytes (macro-
phages), lymphocytes and neutrophils to tumor stroma,
where they release VEGE, HGE, metalloproteinase 2 and
interleukin 8 which affect endothelial cells and contribute
to tumor progression [70]. Up-regulation of tumor-
regulated interleukins 6 andl1p is also associated with the
inflammatory network, tumorigenesis, angiogenesis, and
metastasis in breast, prostate, and pancreatic cancers [19].
Breast CAFs initiate and mediate tumorigenesis through a
macrophage-recruitment inflammatory signature and is
dependent on NF-kB signaling [71]. Recent studies demon-
strate that colony stimulating factor (CSF)-1 which repre-
sents the main growth and differentiation factor for
macrophages is overexpressed in breast, ovarian and pros-
tate cancers [72]. Granulocyte CSF and granulocyte-
macrophage CSF also contribute to progression of various
cancers through recruitment of monocytes, macrophages
and neutrophils into the tumor vicinity (reviewed in
[6,73,74]).

Tumor vasculature, hypoxia and interstitial fluid pressure
Tumor angiogenesis is an important factor in prolifera-
tion, metastasis, and drug sensitivity. Primary tumors
without vasculature are small and dormant, while the
growth of the tumor mass creates hypoxic conditions in
the center of the tumor that induce expression of VEGF
and subsequent tumor vascularization [75]. CAFs are
also suggested to be an important source for growth fac-
tors and cytokines recruiting endothelial cells. These are
involved in the establishment of the cancer stem cell
niche and metastatic spread of tumor cells into distant
organs [76]. Angiogenesis in malignant tumors, as mea-
sured by microvessel density correlates with clinicopath-
ological factors or poor survival in many cancer types
(reviewed in [77]). Tumor-endothelial cell interactions
are mediated mostly by cell surface adhesion molecules
(ie. integrins, cadherins, immunoglobulins and selectins)
[78,79]. CD34, CD31, and factor-VIII-related antigen are
commonly used as tumor endothelial cell markers and
microvessel density is determined by immunodetection
of blood vessels with these markers. However, the markers
identify not only neovessels but also pre-existing large
ones [80]. Nestin has recently received attention as a
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marker of newly formed endothelial cells [81,82] and
seems promising in the evaluation of neoangiogenesis of
different tumors.

Hypoxia is also characteristic of abnormal tumor micro-
environment that is intrinsically linked to the formation of
neovasculature and is clinically associated with metastasis
and poor patient outcome [83,84]. Diffusion-limited hyp-
oxia is a consequence of tumor cells that are distant from
the vascular supply. Such cells are exposed to prolonged
or chronic hypoxia and tumor cells are viable in such en-
vironments for hours or a few days [85,86]. Hypoxia in-
duces oncogene expression, enhances DNA mutation rate,
and selects for cells with increased apoptotic thresholds
[83,87]. Hypoxia drives tumor progression through in-
creased matrix deposition, cross-linking and remodeling
and, enhances collagen turnover and its fibril deposition
[88]. Hypoxia-inducible factor (HIF)-1a plays an integral
role in the body’s response to low oxygen. It is one of the
primary genes involved in the homeostatic process which
can increase vascularization in hypoxic areas. HIF-1a al-
lows for survival and proliferation of cancer cells due to
its angiogenic properties and its inhibition prevents the
spread of cancer [89]. Many of the responses implicated in
resistance to anti-angiogenic therapy may be mediated by
HIF-1a activated genes [90]. The well-described inducers
of EMT, Snail, Slug and Twist are themselves induced by
hypoxia [91]. Hypoxia may also affect stem cells [92], and
studies on this particular subpopulation of cells in tumors
would be relevant to the metastatic process as cells surviv-
ing under hypoxic conditions become aggressive and
pluripotent. Development of novel hypoxia-targeted ther-
apies include bioreductive prodrugs, HIF-1 targeting, and
genetic engineering of anaerobic bacteria [93].

Low extracellular pH is another consequence of the ab-
normal metabolism in the tumor and supportive factor for
its progression. Products of anaerobic glycolysis - lactic
acid and carbonic acid (produced by carbonic anhydrase
from CO2 and H20), are the known sources of H + ions
in tumors [94,95]. The imbalance between increased pro-
duction of H + ions and their reduced removal, lowers the
extracellular pH in tumors. The mean pH profiles also de-
crease in tumors with increasing distance from nearest
blood vessels. Low extracellular pH causes stress-induced
alteration of gene expression, including the upregulation
of VEGF and IL-8 in tumor cells in vitro [96]. Coordinated
study of pH, pO2, and VEGF expression in vivo [97] indi-
cated that in low pH or oxygenated regions, tissue pH, but
not pO2, regulates VEGF promoter activity. Conversely, in
hypoxic or neutral pH regions, tissue pO2 and not pH reg-
ulates VEGF expression [97]. Tissue pO2 and pH appear
to regulate VEGF transcription in tumors independently.
These data suggest that these key microenvironmental pa-
rameters in solid tumors regulate angiogenic factors in a
complementary manner.
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Another feature of the pathophysiology of the tumor
microenvironment, is elevated interstitial fluid pressure
(IFP) ranging from 10 to 100 mmHg [98,99] while IFP of
normal tissue is around zero [100]. It is thought that the
tumor vasculature is the driving force in increasing
tumor IFP [101,102]. In contrast to normal vasculature
which is characterized by dichotomous branching, tumor
vasculature is unorganized and has trifurcations and
branches with uneven diameters. Large inter-endothelial
junctions, increased numbers of fenestrations, vesicles
and vesico-vacuolar channels and a lack of normal base-
ment membrane are often found in tumor vessels [103].
Due to ultrastructural alterations in the tumor vessel
wall, vascular permeability in solid tumors is generally
higher than that in various normal tissues [100]. Tumors
also lack lymphatic vessels or the intratumoral vessels
are non-functional [104,105] and as a result, excess fluid
accumulates in the interstitium, extending the elastic
ECM and elevating IFP. Using the model of IFP regula-
tion Heldin et al. [106] showed that fibroblasts actively
regulate the tension applied to the ECM through integ-
rins which enable them to exert or modify tension on
the collagen fibre network, thereby modulating the elas-
ticity of the ECM in response to hyaluronan and proteo-
glycan expansion [106]. According to Oldberg et al.
[107], inflammatory processes in carcinomas promote
synthesis of collagen binding proteoglycan fibromodulin
by stroma cells, leading to the formation of a dense and
stiff collagen scaffold and a high IFP. Interstitial fluid
pressure may have important clinical implications with
regard to cancer therapy. Roh et al. [108] reported an in-
verse relationship between tumor IFP and tissue oxygen-
ation and hypothesized that IFP may aid in predicting
the efficacy of radiation therapy. Elevated tumor IFP can
also act as a barrier to delivery of therapeutic agents,
thereby reducing their efficacy. In this sense, multiple
studies have demonstrated improved uptake of chemo-
therapeutic drugs following a reduction in tumor IFP
[60,59,109,110].

Conclusion

Interactions during which the tumor creates a micro-
environment favourable for proliferation, for the recruit-
ment of new blood vessels, and for the stimulation of
the production of proteases that can degrade adjacent
tissues, increase the likelihood of tumor development
and invasion. Growing evidence points towards a key
role of the multiple cellular and noncellular components
of the tumor microenvironment such as cancer associ-
ated fibroblasts, immune and endothelial cells as well as
matrix topology and stiffness, interstitial fluid pressure,
growth induced solid stress, hypoxia and extracellular
pH. Full understanding of all the events driving the
interaction of tumor cells with their environment is of
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crucial importance in overcoming treatment resistance
and in better patient outcome.
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