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Abstract

NF-kB, p-ERK1/2 and STAT1 were determined.

may cooperatively regulate T cell proliferation in T-ALL.
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Background: T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy. Immune
tolerance induced by CD47CD25" regulatory T cells (Tregs) with high expression of Foxp3 is an important
hypothesis for poor therapy response. Notch1 signaling is thought to be involved in the pathogenesis of this
disease. Crosstalk between Notch and Foxp3*Tregs induced immune tolerance is unknown in T-ALL. We studied
Foxp3 and Notch1 expression in vivo and in vitro, and analyzed the biological characteristics of T-ALL cell line
systematically after Notch inhibition and explored the crosstalk between Notch signaling and Foxp3 expression.

Methods: In vivo, we established T-ALL murine model by Jurkat cells transplantation to severe combined
immunodeficiency (SCID) mice. Notch1 and Foxp3 expression was detected. In vitro, we used y-secretase inhibitor
N-S-phenyl-glycine-t-butyl ester (DAPT) to block Notch1 signaling in Jurkat cells. Notch1, Hes-1 and Foxp3 genes
and protein expression were detected by PCR and western blotting, respectively. The proliferation pattern, cell cycle
and viability of Jurkat cells after DAPT treatment were studied. Protein expression of Notch1 target genes including

Results: We show that engraftment of Jurkat cells in SCID mice occurred in 8 of 10 samples (80%), producing
disseminated human neoplastic lymphocytes in PB, bone marrow or infiltrated organs. Notch1 and Foxp3
expression were higher in T-ALL mice than normal mice. In vitro, Jurkat cells expressed Notch1 and more Foxp3
than normal peripheral blood mononuclear cells (PBMCs) in both mRNA and protein levels. Blocking Notch1 signal
by DAPT inhibited the proliferation of Jurkat cells and induced GO/G1 phase cell cycle arrest and apoptosis. Foxp3
as well as p-ERK1/2, STAT1 and NF-kB expression was down regulated after DAPT treatment.

Conclusions: These findings indicate that regulation of Foxp3 expression does involve Notch signaling, and they

Background

T-cell acute lymphoblastic leukemia (T-ALL) is a highly
aggressive hematologic malignancy that represents 10%
to 15% of pediatric and 25% of adult acute lymphoblastic
leukemia cases [1-6]. Compared to B-cell acute lympho-
blastic leukemia (B-ALL), patients with T-ALL commonly
present large tumor burdens at diagnosis and invariably
poor outcomes even after intensified chemotherapy. The
specific biological and molecular mechanisms that ac-
count for the aggressiveness and poor therapy response in
T-ALL remain unclear and T-ALL cells induced immune
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tolerance is an important hypothesis [1-6]. Some reports
showed that T-ALL cells are derived from regulatory T
cells (Tregs), which suppress the reaction of lymphocytes
to tumor antigens and induce immune tolerance and
malignant neoplasm progression. Foxp3 is a specific and
important marker for Tregs. Recent reports showed that
the aggressiveness and poor outcome of T-ALL are
closely related to the large number of Tregs and high
expressions of Foxp3 in tumor microenvironment [4,7,8].
Notchl is more and more concerned in T-ALL and acti-
vating mutations in the Notchl gene are present in over
50% of human T-ALL cases making Notchl the most
prominent oncogene specifically involved in the pathogen-
esis of this disease [2,3,9-12]. The Notch pathway regulates
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T cell proliferation and development and therefore is
critical for ensuring the proper differentiation of T cell
[3,10,12-15]. “Gain of function” mutation within Notch1
was found in both T-ALL patient samples and murine
T-ALL models [3,10,12,16]. Activation of Notch receptors
is triggered by interaction with Notch ligands Jagged and
Delta-like on adjacent cells, which results in proteolytic
cleavage of Notch and subsequent release of the intracel-
lular domain (IC) [2,3,9-12]. Notch-IC is then transported
into the nucleus and associates with RBP-Jk/CBF-1, result-
ing in the activation of target genes including the Hes
family of proteins [17-19]. Inhibition of Notchl signal-
ing using y-secretase inhibitors (GSIs) induced rapid
clearance of Notch-IC and transcriptional down regula-
tion of Notchl target genes. The precise mechanism by
which Notch activation leads to T-ALL is still unclear.
Key pathways include the PI3-kinase/Akt, mTOR and
NF-kB. Zou ] et al. report that Notchl is required for
hypoxia-induced proliferation, invasion and chemoresis-
tance of T-cell acute lymphoblastic leukemia cells
[1,3,14,15,20-23]. Crosstalk between Notch and these
pathways is also incompletely understood and probably
occurs at several levels.

Several studies have implicated the participation of
Notch signaling in Treg differentiation and suppressor
function. Overexpression of Notch ligand can induce
Treg and Foxp3'Tregs express high levels of Notchl
[8,24-27]. Ou-yang showed that Notchl signaling can
activate the Foxp3 promoter and Hesl might be an im-
portant regulatory factor at the transcriptional level in
the lineage determination of Tregs development [8].
However, very few reports have shown the association
between Notchl and Foxp3 and the crosstalk between
them is unknown. In this study, we show not only
Notchl and Foxp3 expression in T-ALL group both
in vivo and in vitro, but also the biological characteristics
of T-ALL cell line as Notchl and Foxp3 expression was
inhibited. Blocking Notchl signaling by GSI N-S-phenyl-
glycine-t-butyl ester (DAPT) inhibited the expressions of
Notchl and Foxp3 in Jurkat cell line, inducing apoptosis
of Jurkat cells. Protein levels of NF-«kB, p-ERK1/2 and
STAT1 were also decreased in Notchl inhibited Jurkat
cells. These findings suggested that inhibition of Foxp3
expression does involve Notch signaling, and it may be
mediated by the regulation of NF-kB, p-ERK1/2 and
STAT1 pathways.

Results

Engraftment in Non-obese diabetic (NOD)/Severe
combined immunodeficiency (SCID) mice

Engraftment occurred in 8 of 10 samples (80%), producing
disseminated human neoplastic lymphocytes in peripheral
blood (PB), and bone marrow or infiltrated organs. The
median mouse survival duration was 57.3 days (range, 40
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to 60). In most cases, a gradual increase in circulating
neoplastic cells was seen; in some cases, no neoplastic
cells were detected in peripheral blood and evidence of
engraftment was obtained at necropsy. Jurkat cell like
neoplastic cells were found in PB, bone marrow smear
(Figure 1 top panel showed one representative bone mar-
row smear, the neoplastic cells in the T-ALL) and infil-
trated in other organs including liver, spleen, lung, kidney
and gastro intestine. These results were confirmed with
hematoxylin and eosin (H&E) staining of mouse liver (rep-
resentative data shown in Figure 1 low panel).

Notch1 and Foxp3 gene and protein expression were higher
in T-ALL mice than normal mice

We assessed Notchl and Foxp3 expression in PB in T-
ALL mice and the control by RT-PCR. Both Notchl and
Foxp3 were detected in T-ALL group, while in the control
group, Notchl was not detected and the expression of
Foxp3 was significantly lower than T-ALL group (P < 0.05)
(Figure 2). We next assessed Notchl and Foxp3 protein
expression in different organs. Both Notchl and Foxp3
protein were detected in organs in normal mice and T-
ALL mice. Foxp3 protein was detected mostly around
tumor tissues (Figure 3). Notchl and Foxp3 protein ex-
pression in T-ALL mice were significantly higher than the
control (P <0.05).

Jurkat cells express Notch1 and more Foxp3 than normal
PBMCs

We assessed the expression of Notchl in Jurkat cells and
PBMC:s from healthy donors by RT-PCR and western-blot.
Jurkat cells expressed Notchl. The expression of Notchl-
Cleaved protein was 48.03 + 1.57% by western-blot. We

s 3
Control Group T-ALL

Figure 1 Morphology of cells of bone marrow smear and liver.
Morphology of cells of bone marrow was studied under microscopy
(Wright-Giemsa, x1000) and liver was inspected for signs of
leukemic infiltration (HE, x400). Neoplastic cells were found in

T-ALL group.
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Figure 2 Foxp3 gene expression. We assessed Notch1 and Foxp3
expression in PB in T-ALL mice and the control by RT-PCR. Both Notch1
and Foxp3 were detected in T-ALL group, while in the control group,
Notch1 was not detected. The expression of Foxp3 in T-ALL group was
significantly higher than the control group (P < 0.05).

\

also assessed the expression of Foxp3 in Jurkat cells
and PBMCs by Real-time PCR and flow cytometry. As
shown in Figure 4, Foxp3-expressing jurkat cells were
88 +2.5%, which is much more than Foxp3-expressing
PBMCs (5 +3.5%) (P <0.05).

Blocking Notch1 signal by DAPT inhibits the proliferation of
Jurkat cells

To study the characteristics of Jurkat cells after DAPT
treatment for 48 hours, cells were viewed under micro-
scope. Jurkat cells without DAPT were usually round
with clear areas of cytoplasm and nuclear and prolifer-
ated into cell clusters. However, Jurkat cells with DAPT
were shown difficult to proliferate into cell clusters.

We next proved that DAPT could inhibit Jurkat cell
proliferation by CCK8 method. Jurkat cells were treated
with increasing concentrations of DAPT (1, 2.5, 5, 10,
20 pM) for 4, 8, 12, 24, 48 and 72 hours, respectively.
After stimulated for 4, 8 and 12 hours, Jurkat cells pro-
liferated as those treated with DMSO alone. Jurkat cell
proliferation was inhibited more and more remarkably
as the concentration of DAPT increased after they were
stimulated for 24 and 48 hours compared to DMSO
control. However, after 72 hours stimulation, the prolif-
eration of Jurkat cells was not inhibited by DAPT. These
results indicated that DAPT could inhibit Jurkat cell pro-
liferation only after 24 and 48 hours stimulation, espe-
cially the 48-hour time point and the inhibition was in a
concentration-dependent manner with the greatest effect
observed at a concentration of 20 uM, and the inhibition
rate was as high as 33 + 2.3% (Figure 5).

To study the effect of DAPT on cell cycle, we further
stimulated Jurkat cells with increasing concentrations
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of DAPT (1, 5, 10, 20 uM) for 48 hours. The results
showed that the percentage of Jurkat cells in the sub-
GO/G1 phase increased significantly while in S and G2/M
phase decreased (P<0.05). Increasing concentrations of
DAPT induced GO/G1 phase cell cycle arrest in more
Jurkat cells, indicative of apoptosis (Figure 6).

Blocking Notch1 signal by DAPT induces Jurkat cells
apoptosis

To further document the effects of DAPT on apoptosis,
analysis by annexin V/PI staining was performed after
treatment with increasing concentrations of DAPT (1, 5,
10, 20 uM). The results showed an increase in apoptotic
cells in Jurkat cells as the concentration of DAPT in-
creased. The apoptosis rate with DAPT (1, 5, 10, 20 pM)
was 21.7 £2.77%, 22.7 £ 2.71%, 37.3 £ 4.9% and 33.7 £ 4%,
respectively, compared with 0.84 +0.38% for control
(Figure 7) (P <0.05).

Notch1 and Hes-1 gene and protein expression is down
regulated

Jurkat cells were treated with increasing concentrations
of DAPT (1, 5, 10, 20 uM) for 48 hours and RT-PCR
was used to assess Notchl gene expression. Notchl was
down regulated in Jurkat cells with DAPT treatment
compared with cells with DMSO.

Hesl is one of the target genes of Notchl signal. Real-
Time PCR was used to assess Hes-1 expression. Hesl
was down regulated in Jurkat cells treated with 10 uM
DAPT for 24, 48 and 72 hours and gene expression was
53.59 £ 12.7%, 28.95+4.2% and 27.35+ 1.4%, respect-
ively, compared to the control (P<0.05). Hesl expres-
sion had a significant decrease after 48 hours treatment
with DAPT (Figure 8A). At this time point, Hesl expres-
sion was 90.12 + 1.4%, 57.3 + 2.2%, 42.1 + 3.3% and 41.8 +
6%, respectively, in Jurkat cells with different concentra-
tions of DAPT (1, 5, 10, 20 uM) compared to the con-
trol (P <0.05). DAPT had the greatest effect on Hesl
expression when its concentrations were 10 pM (Figure 8B).
We next sought to assess the Notchl-Cleaved and Hes-1
protein by western blot. At 48 hours treatment with 10 uM
DAPT, Notchl-Cleaved and Hes-1 protein expression
was 72.5+3.8% and 32.1+2.9% (P <0.05), respectively,
which was lower than the control group. Therefore, DAPT
can inhibit Notch1l-Cleaved and Hes-1 protein expression
(Figure 8C).

In vitro DAPT treatment block Foxp3 expression

As reported by Ouyang, Notchl signaling can activate
the Foxp3 promoter. We then assessed Foxp3 gene and
protein expression after Notchl inhibition. Foxp3 expres-
sion was 89 +2.1%, 67.3 £ 3%, 46.98 + 2.5% and 45 + 3.2%
when DAPT was at 1, 5, 10 and 20 pM, respectively. Foxp3
expression was down regulated as the concentrations of
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Figure 3 Notch1 and Foxp3 protein expression in tumor tissues. Tumor tissues in T-ALL mice were collected immunohistochemical assay.
Samples were treated with rabbit polyclonal anti-Notch1 and anti-Foxp3. Both Notch1 and Foxp3 protein were detected in T-ALL mice and
Foxp3 protein was detected mostly around tumor tissues. Image-pro plus was used to evaluate the expressions of Notch1 and Foxp3 through

immunohistochemical staining. Protein expression was measured in 10D. Notch1 and Foxp3 protein expression in T-ALL mice were significantly
higher than the control (P < 0.05).
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Figure 4 Foxp3 expression in Jurkat cells and PBMCs. The expression of Foxp3 in Jurkat cells and PBMCs was analyzed by flow cytometry.

Foxp3-expressing jurkat cells were much more than Foxp3-expressing PBMCs (P < 0.05).




Luo et al. Cancer Cell International 2013, 13:34
http://www.cancerci.com/content/13/1/34

Page 5 of 10

0.4+ E324h
E348h
0.3

0.2- o
0.1 o

Inhibition rate of Jurkat cells

it

S S

o
o
1

N

\Qf; N R ,\QQ ‘\’QQ \Q?;G_,Q%\Q’}x;@? ,\’Q@

Figure 5 Jurkat cell viability after DAPT treatment. Jurkat cell
viability assay was performed by CCK8 method and the inhibition
rate was analyzed. Jurkat cells were treated with increasing
concentrations of DAPT (1, 2.5, 5, 10, 20 uM). The proliferation rate of
Jurkat cell increased as the concentration of DAPT increased after 24
and 48 hours stimulation, especially the 48-hour time point. The
inhibition was in a concentration-dependent manner with the
greatest effect observed at 20 uM DAPT.

DAPT increased compared to the control (P <0.05)
(Figure 9A). Foxp3 expression was 90.5 £ 6.7%, 46.98 +
2.5% and 112 +14% (P <0.05) when Jurkat cells were
treated with DPAT at 10 uM for 24, 48 and 72 hours,
respectively. This showed that DAPT had the greatest
effect on Foxp3 expression when Jurkat cells were treated
with DAPT at 10 pM for 48 hours. In contrast, after
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Figure 6 Jurkat cells cycle after DAPT treatment. The effect of
DAPT on cell cycle was determined by flow cytometric analysis.
Jurkat cells were treated with increasing concentrations of DAPT
(1,5, 10, 20 uM) for 48 hours. The percentage of Jurkat cells in the
sub-GO/G1 phase increased significantly while in S and G2/M phase

decreased compared to the cells alone and DMSO control (P < 0.05).
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Figure 7 Apoptosis rate of Jurkat cells after DAPT treatment.
The effects of DAPT on apoptosis were analyzed by annexin V/PI
staining. Jurkat cells were treated with increasing concentrations of
DAPT (1, 5, 10, 20 uM) and the results showed that the early and
late apoptosis rate increased as DAPT concentrations increased
compared to the cells alone and DMSO control (P < 0.05).

J

72 hours, Foxp3 expression was up regulated (Figure 9B).
Flow cytometry was used to assess the Foxp3 protein
expression and the result showed that DAPT could also
inhibit Foxp3 protein expression. Foxp3 protein expres-
sion was 65.5 + 3.5%, 60.9 + 2.4%, 58.8 + 2.8% and 50.7 +
1.9% when Jurkat cells were treated with DAPT (1, 5,
10, 20 uM) for 48 hours. Similar to the gene expression,
Foxp3 protein expression began to increase at 72 hours
treatment with 10 pM and 20 puM DAPT. This inhib-
ition effect was similar to what was observed in Jurkat
cells, which began to proliferate after 72 hours treat-
ment with DAPT.

The expression of NF-kB, p-ERK1/2 and STAT1 are
deregulated in Jurkat cells after Notch1 signal inhibition
p-ERK1/2, STAT1 and NF-xB are Notchl target genes.
To determine whether Notchl inhibition was related to
the expression of p-ERK1/2, STAT1 and NF-«B, we
assessed the protein expression after Notchl inhibition
by DAPT. Similar to what was observed in Notchl, Hes-1
and Foxp3 expression, p-ERK1/2, STAT1 and NF-«B pro-
tein expression was down regulated when Jurkat cells were
treated with 10 uM DAPT for 48 hours. p-ERK1/2, STAT1
and NF-«B protein expression was 50.1 + 2.9%, 68.8 + 3.8%
and 48.7 + 1.4%, respectively (P < 0.05) (Figure 10).

Discussion

Foxp3*Tregs play an important role in regulating the
immune system by suppressing self-reactive T cells that
have escaped negative selection in the thymus as well as
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Figure 8 Expression of Hes1, Notch1-Cleaved and Hes-1 protein
after DAPT treatment. A: Real-Time PCR was used to assess Hes-1
gene expression. HesT was down regulated in Jurkat cells treated with
10 uM DAPT for 24, 48 and 72 hours, especially for 48 hours. B: At

48 hours time point, DAPT had the greatest effect on Hes] expression
when its concentrations were 10 uM. C: Notch1-Cleaved and Hes-1
protein expression was assessed by western blot. At 48-hours
treatment with 10 uM DAPT, Notch1-Cleaved and Hes-1 protein
expression was lower than the control group (P < 0.05).
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Figure 9 Foxp3 gene expression after DAPT treatment. A: Foxp3
gene expression was down regulated as the concentrations of DAPT
increased compared to the control. DAPT had the greatest effect on
Foxp3 expression when DAPT was 10 uM. B: Jurkat cells were treated
with DPAT at 10 puM for 24, 48 and 72 hours and DAPT had the
greatest effect at 48-hours time point. After 72 hours, Foxp3

expression was up regulated.

hyperactive T cells that are induced during excessive im-
mune responses in peripheral lymphoid tissues. On one
hand, mutation or deletion of the gene encoding Foxp3
causes severe autoimmune diseases in both human and
mice, due to a malfunction of Tregs. On the other hand,
ectopic expression of Foxp3 in conventional T-cells con-
fers immunosuppressive activities, suppressing normal T
cell immunity against tumor [7,8,14,28]. Foxp3 was also
expressed in some T-ALL cells and was a specific marker
of T-ALL. Bonzheim et al. [29] found that T cells within
the T-ALL cell infiltrate were mainly Foxp3 expressing
cells, and only a few tumor infiltrating reactive lympho-
cytes could be observed. In the study of Karube et al.
[7], Foxp3 expression was confirmed in T-ALL and Foxp3*
T-ALL cells might suppress tumor immunity and promote
tumor growth. Roncador et al. [30] also reported that
Foxp3" T-ALL showed a more aggressive clinical course
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Figure 10 p-ERK1/2, STAT1 and NF-kB protein expression.
p-ERK1/2, STAT1 and NF-kB protein expression assessed by western
blot. Similar to Foxp3 protein expression, p-ERK1/2, STAT1 and NF-kB
protein expression was down regulated when Jurkat cells were treated
with 10 uM DAPT for 48 hours.

than Foxp3™ T-ALL. In our study, we established T-ALL
murine model with SCID mice and found that Foxp3 ex-
pression increased in T-ALL mice compared to normal
mice. We then detected Foxp3 expression in both human
T cell leukemia cell line and PBMCs from healthy donors.
We found that Foxp3 expression was higher in Jurkat
cells than in PBMCs. The results from in vivo and
in vitro indicated that Foxp3 expression was associated
with T-ALL, which was compatible with what was found
in Karube’s study.

Recently, deregulation of Notch signaling has been linked
to the development of T-ALL. The recent identification of
activating mutations in Notchl in the majority of T-ALL
has brought major interest towards targeting the Notch sig-
naling pathway in this disease [3,12,15,16,22,31,32]. The
fundamental importance of Notchl mutations in T-ALL is
highlighted by the potential role of Notchl as a molecular
therapeutic target for the treatment of this disease. Pharma-
cologic inhibition effectively abrogates oncogenic Notchl
signaling in T-ALL cells. GSIs induced rapid clearance of
intracellular activated Notchl protein and transcriptional
downregulation of Notchl target genes [1,3,4,11]. In our
study, the biological characteristics of Jurkat cells as
well as Notchl target gene expression were studied after
pharmacologic inhibition of Notch signaling using GSI.
DAPT inhibited the proliferation of Jurkat cells. As
DAPT concentrations increased, the viability of Jurkat
cells decreased. DAPT induced GO0/G1 phase cell cycle
arrest in Jurkat cells, which resulted in apoptosis. We
further detected Notchl and Hes-1 gene and protein
expression after DAPT treatment. Notchl and Hes-1
were down regulated and Notchl-Cleaved and Hes-1
protein expression significantly decreased compared to
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the control group. These suggested that DAPT could
inhibit Notchl signaling by down regulating Notchl
target genes and induce Jurkat cell apoptosis.

Except for the aberrant Notch mutation that induces
T-ALL, immunosuppression in T-ALL has also been the
subject of many discussions. Karube et al. [7] indicated
that T-ALL cells might function as Treg-like cells and
induce the immunosuppressive state especially in Foxp3*
cases. However, the mechanisms leading to immune toler-
ance by Foxp3" Tregs in T-ALL remain largely unknown.
Recently, Notch and its ligands have been implicated in
the regulation and differentiation of various CD4"T-helper
cells [2,3,9-11,33]. Is Notchl also involved in regulating
Foxp3? Samon et al. [34] provided evidences that Foxp3
was a downstream target of Notch signaling. Pharmaco-
logic inhibition of Notch signaling using GSIs blocked
the up-regulation of Foxp3 target genes and induces
Foxp3 expression [34]. GSIs also inhibited the binding
of Notchl, CSL, and Smad to conserved binding sites in
the Foxp3 promoter. Moreover, in vivo GSIs treatment
down-regulated Foxp3 expression and resulted in a spon-
taneous lymphocyte infiltration of the liver in mice.
Ou-Yang et al. [8] showed that Notch signaling could
modulate the Foxp3 promoter through RBP-J- and HesI-
dependent mechanisms and Notch signaling might be
involved in the development and function of Tregs
through regulating Foxp3 expression. In order to study
the association between Notchl and Foxp3, we detected
Foxp3 gene and protein expression in Jurkat cells treated
with DAPT. Notchl and Hes-1 had a significant drop and
Foxp3 was down regulated at the same time point. This
suggested that Notchl signaling was involved in regulating
Foxp3 expression in Jurkat cell.

These previous findings led us to explore the crosstalk
between Notchl and Foxp3 in Jurkat cells. We hypothe-
sized that activated Notchl might increase Foxp3 expres-
sion by up regulating some target genes. Previous reports
[25-27,35,36] have suggested that Notch can display both
stimulatory and inhibitory control of NF-kB activity. It
has been hypothesized that activated Notch in T cells
may result in constitutive NF-«B activation, leading to
T-cell leukemia/lymphoma. NF-xB as well as p-ERK1/2
and STATI are Notchl target genes. We assessed the
protein expression of NF-kB, p-ERK1/2 and STATI.
The result showed that the protein expression was down
regulated after Notchl was inhibited by DAPT. These
suggested that inhibition of Foxp3 expression involved
Notch signaling, and it may be mediated by regulation
of NF-kB, p-ERK1/2 and STAT1 pathways.

Conclusions

In summary, this study systematically showed Notchl and
Foxp3 expression as well as its impact on T-ALL cell pro-
liferation and development. By studying the biological
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change of Jurkat cells after Notchl inhibition, we showed
that down regulation of Notchl and Foxp3 could induce
Jurkat cell apoptosis. The association between Notchl and
Foxp3 was another important subject of this study. Notch
signaling is involved in regulating Foxp3 expression in
Jurkat cells and it could be mediated by regulation of
NF-«B, p-ERK1/2 and STAT1 pathways. These results
together indicated that Notchl signaling that induces
Foxp3 expression might be associated with immunosup-
pression state in T-ALL.

Materials and methods

Ethics statement

Peripheral blood samples in this study were collected
from healthy donors in hospital. All participants are
residence in our country. Samples were collected for
diagnostic purposes. After the original purpose has been
achieved, the residual samples were used for research
only without additional charges. All participants were
informed of full information about the purposes of the
sampling, and/or the plan of the research proposal. All
participants have signed the informed consent before
enrolling in this study. The informed consent is not only
for this study, but also for other studies in which human
blood samples are needed. All signed consent is in
Chinese and documented. This ethics approval was
obtained from Committee on the Ethics of the First
Affiliated Hospital of Guangzhou Medical College (Permit
number: 2012-41).

This study (Establishment of T-cell acute lympho-
blastic leukemia murine model using NOD/SCID mice
and the assessment of Notchl and Foxp3 expression in
this model) was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of Guangzhou Medical College.
Animals were purchased from Animal experimental cen-
ter, Guangdong, China. The protocol was approved by the
Committee on the Ethics of the First Affiliated Hospital
of Guangzhou Medical College (Permit number: 2012—41).
Mice that developed T-ALL may have experienced dis-
comfort. Signs included increased abdominal girth from
tumor infiltration, dehydration, decreased activity and
cachexia. Mice with T-ALL were susceptible to infec-
tion. Mice were observed daily by laboratory staff and
animal technicians and weighed once a week to detect
weight loss. If the mice decompensated, they were
immediately euthanized by CO, to minimize suffering.

Cell line and samples

Jurkat cells are a human T cell leukemia cell line that
constitutively expresses IC [37] and, therefore, were used
in this study. Jurkat cells were purchased from American
Type Cell Culture (ATCC) and maintained according to
the ATCC protocol. As described elsewhere [38], peripheral
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blood mononuclear cells (PBMCs) were separated from
fresh blood samples by density gradient centrifugation. Red
blood cells were removed from splenocytes using ammo-
nium chloride lysis buffer.

Experimental animal and procedures

NOD/ SCID mice (Animal experimental center, Guangdong,
China) were used. Twenty female mice aged 5 weeks were
maintained in a specific pathogen-free environment. Twenty
mice weight 1045 g to 11.62 g (median weight 11.12 g)
were divided into T-ALL group and the control group ran-
domly with 10 mice in each group. Physical randomisation
procedure using random number tables was performed to
assign mice to each group. Mice were injected intraperito-
neally with cyclophosphamide (100 mg/kg/d) [39] for 2 days.
In T-ALL group, Jurkat cells in the logarithmic phase of
growth were then collected and transferred intravenously
(5% 10°/mouse/day) through tail vein for 2 days. Mice in
the control group were injected with physiological saline.
Engraftment of Jurkat cells in mice was monitored by
serial tail vein sampling every 7 days. This was done
without anesthesia. To warm the tail with the aid of a
heat lamp to increase obtainable blood volume before
tail nicking. Decompensated mice were euthanized by
CO,, when PB infiltration or clinical status like suggested
engraftment. Mice were exposed to a CO, concentration
of 70% and maintained for 2 minutes after apparent clin-
ical death. Other mice were evaluated for 60 days before
sacrifice and necropsy. PB was collected for Notchl and
Foxp3 gene expression. Internal organs were inspected
for signs of leukemic infiltration. Tissues from infiltrated
organs were collected for Notchl and Foxp3 protein ex-
pression. Single-cell suspensions from bone marrow were
also prepared for flow cytometric analysis.

Histopathology and immunochemistry

Samples of tissues were immersed in 10% neutral forma-
lin. Formalin-preserved specimens were then embedded
in paraffin, cut into 5 pm sections, and stained with
H&E for histopathology examination. For immunohisto-
chemical assay, paraffin-embedded sections were dewaxed,
rehydrated and incubated with 0.5% hydrogen peroxide in
methanol to quench endogenous tissue peroxidase. Sec-
tions were incubated with pepsin for 45 min for antigen
retrieval. After blocking nonspecific sites with 1% BSA
in PBS, sections were treated with rabbit polyclonal anti-
Notchl and anti-Foxp3 (Abcam) overnight and then with
appropriate biotin-conjugated secondary antibodies for
20 min. Image-pro plus was used to evaluate the expres-
sions of Notchl and Foxp3 using immunohistochemical
staining. Protein expression was measured in integrated
optical density (IOD).



Luo et al. Cancer Cell International 2013, 13:34
http://www.cancerci.com/content/13/1/34

Reverse-transcription PCR (RT-PCR) and real-time PCR
Total RNA was isolated from 1-5 x 10° Jurkat cells using
the RNeasy kit (Qiagen) and was resuspended in 40 pl
RNase free H,O. First-strand ¢cDNA synthesis was per-
formed with oligo (dT) as primer. Notchl-IC primers
were 5-TTCCCTGAGGGCTTCAAAGT-3' (forward) and
5'-CCCGCTACTCACGCTCTG-3' (reverse). The primers
of extracellular domain of Notch1 were 5-CCGGTGAGA
CCTGCCTGAAT-3' (forward) and 5-GCACTTGTACTC
CGTCAGCG-3' (reverse). RT-PCR for Notchl was per-
formed in duplicate (30 cycles of 98°C for 10 s, 55°C for
30 s, and 72°C for 45 s). PCR products were subjected to
2% agarose gel electrophoresis and relative gene expres-
sion was measured in grey value. Foxp3 primers were
5-ACTGACCAAGGCTTCATCTGTG-3' (forward) and
5-GGAACTCTGGGAATGTGCTGT-3' (reverse). RT-
PCR for Foxp3 mRNA expression (in vivo experiment) was
performed as before. Real-time PCR for Foxp3 mRNA
quantification was performed in duplicate with the Sofast
EvaGreen Supermix (Bio-Rad) (40 cycles of 95°C for 30 s,
95°C for 5 s, and 56°C for 10 s, 65-95°C for 10 s). Hes-1
primers were 5-GGCTAAGGTGTTTGGAGGCT-3' (for-
ward) and 5-GCTGTTGCTGGTGTAGACGG-3' (reverse).
Real-time PCR was performed as before.

Western blotting

Cells were lysed in RIPA buffer with a protease inhibitor
mixture and a phosphatase inhibitor mixture (Shanghai
Biocolors); and lysates were run on 10% SDS-polyacrylamide
gels. After transfer, the polyvinyl difluoride membranes
(Millipore) were blocked for 1 h with TBS/Tween 20
containing 5% powder skim milk and then probed over-
night at 4°C with primary Ab specific for cleaved Notch 1
(rabbit anti-human IgG, ABCAM). Blots were then
washed five times and probed for 1 h with secondary Ab
(goat anti-rabbit IgG, ABCAM). Membranes were devel-
oped with Immobilon Western Chemiluminescent HRP
substrate (Millipore).

Flow cytometry

Jurkat cells were co-cultured with DAPT for 48 hours
and stained with fluorochrome-labeled mAbs against Foxp3
(eBioscience). Intracellular Foxp3 staining was per-
formed using the Cytofix/Cytoperm intracellular stain-
ing kit, according to the manufacturer’s instructions.
Flow cytometry was performed with Epics XL system
(Beckman Courter) and analyzed using Expo 32 software.

Cell viability assay

The number of viable cells was determined using a Cell
Counting Kit-8 assay according to the manufacturer’s
instructions (Dojindo, Japan). Cells were plated at a
density of 3 x 10* cells per well in a 96-well plate. After
incubation for 6 hours, DAPT was added to each well at
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1, 2.5, 5, 10 and 20 pM. Cells treated with 0.1% DMSO
as control. After incubated for 4, 8, 12, 24, 48 and 72 hours,
cells were incubated with kit reagent WST-8 for a further
2 h. The absorbance of samples (450 nm) was determined
using a scanning multiwell spectrophotometer that serves
as an ELISA reader.

Cell cycle analysis

The cell cycle distribution was determined by flow
cytometric analysis. Cells were re-suspended into 5 x
10° cells/ml and incubated with DAPT (1, 5, 10 and
20 uM) for 48 hours. Then cells were collected and nu-
clear staining was performed according to the manufac-
turer’s instructions using Flow Cytometry Analysis of
Cell Cycle Kit (GENMED, Shanghai). Following stain-
ing, cells were immediately analyzed by flow cytometry.

Apoptosis analysis

Jurkat cells were stained with Wright-Giemsa and morph-
ology was studied under microscopy. Apoptosis induction
was confirmed using the Annexin V/PI Apoptosis Detection
Kit (Jingmei Biotech, Shanghai, China). After co-cultured
with DAPI, Jurkat cells were collected and washed twice
with cold PBS. Cells were labeled with 5 pl Annexin V-
FITC followed by10pl PI. Annexin V-PI were measured by
FACS Calibur and analyzed with the Modfit Software.

Statistical analysis

Data are expressed as mean + SD. Statistical significance
was valued by one-way ANOVA. Equal variances as-
sumed were LSD. A P value less than .05 was considered
statistically significant (SPSS 13.0 for windows, SPSS Inc,
Chicago, IL).
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