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Downregulation of the H-2Kd gene by siRNA
affects the cytotoxicity of murine LAK cells
Xin Liu, Xin Cui, Ningning Shan, Ying Li, Xiaosheng Fang, Mei Ding and Xin Wang*
Abstract

To investigate the effect of the H-2Kd gene on the lymphocyte membrane, we constructed a small interfering RNA
(siRNA) that targets the H-2Kd gene and compared the cytotoxicity of mouse lymphokine-activated killer (LAK) cells
with different H-2Kd expression states. H-2Kd-targeting siRNA was transfected into spleen lymphocytes of BALB/C
mice. Flow cytometry (FCM) was then performed to examine the expression of the H-2Kd gene in the transfected and
control cells. Additionally, the cytotoxicity of the transfected cells toward the H22 and K562 cell lines was evaluated
in vitro using the LDH release assay. H-2Kd-targeting siRNA significantly reduced the expression levels of the target
protein, whereas pure transMessenger and non-silencing siRNA did not inhibit H-2Kd expression at the concentrations
tested. The cytotoxicity of siRNA-treated LAK cells toward H22 and K562 cells was reduced significantly. The knockdown
of H-2Kd gene expression by siRNA may be associated with LAK cell cytotoxicity toward neoplasm cell lines.
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Introduction
Classical MHC-I molecules function both as alloantigens to
trigger immune recognition and the rejection of allogeneic
grafts in unmatched transplant recipients and as a platform
to present self or foreign peptides that can be recognized
by CD8+ T cells bearing a clonotypic T cell receptor [1]. It
is well known that the MHC gene expression of tumor cells
is down-regulated during malignancy [2-4]. Our previous
investigations showed that the expression of host MHC
is also down-regulated in tumor patients [5-8]. To more
precisely investigate the functional relationship between
host MHC-I molecules and tumor immunity, small inter-
fering RNA (siRNA) duplexes were transfected into spleen
lymphocytes of BALB/C mice to demonstrate the effects
of MHC-I.
Posttranscriptional suppression of gene expression can

be achieved by the introduction of sequence-specific siRNA
[9,10]. Using this system, we achieved simultaneous down-
regulation of the expression of MHC-I (H-2Kd) genes in
cultured lymphokine-activated killer (LAK) cells of BALB/C
mice and the inhibition of the expression of endogenous
MHC-I, leading to a reduction in the cytotoxicity of murine
LAK cells. This reduction in cytotoxicity might be applied
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reproduction in any medium, provided the or
to determine the effect of H-2Kd on lymphocyte membranes
in BALB/C mice.

Materials and methods
Cell culture
BALB/C mice were purchased from the Animal Laboratory
Center of Shandong University, Jinan, China. LAK cells
were generated from spleen cells obtained from BALB/C
mice by culturing the spleen cells with IL-2 (1000 U/ml) for
36 h in 12-well culture plates until transfection using siRNA
or transMessenger. The RPMI-1640 culture medium for
the cell lines and lymphocytes contained 25 mM Hepes
buffered with 44 mM NaHCO3 and supplemented with
10% fetal bovine serum (FBS). Cells were cultured in a
humidified atmosphere containing 5% CO2 at 37°C. Add-
itionally, the medium was supplemented with penicillin
(100 U/ml) and streptomycin (100 μg/ml).

Preparation and transfection of siRNA targeting
the H-2Kd gene
In this study, we prepared siRNAs targeting the mouse
H-2Kd gene. siRNAs was designed according to the method
described by Elbashir [9,11]. Twenty-one-nucleotide RNAs
(siRNA-1) and eighteen-nucleotide RNAs (siRNA-2) were
chemically synthesized by QIAGEN (Germany). The
siRNAs used in this study contained 3-overhangs of
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Table 1 Analysis of the LAK activities of the different
groups (n = 5)

Experimental
group

siRNA/
TransMessenger (μg/μl)

A
(absorbance)

Compared
with controls

Control 0/0 1.46 ± 0.14

siRNA 1.6/8 1.46 ± 0.09 P > 0.05

Mock-transfected 0/8 1.50 ± 0.13 P > 0.05

Non-silencing 1.6(Non-si)/8 1.48 ± 0.20 P > 0.05

Figure 1 Expression of H-2Kd in spleen LAK cells from different
groups. Four days after cells were transfected with siRNAs, FCM was
used to examine the expression of the target protein. H-2Kd expression
in LAK cells were reduced by H-2Kd siRNA-1 and siRNA-2 compared
with the level in control cells (#P < 0.05). No difference in H-2Kd

expression in LAK cells was observed among the mock-transfected,
non-silencing siRNA-transfected and control groups.
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2-deoxythymidine. The sequences of siRNA-1 pairs corre-
sponded to nucleotides 264–282 and siRNA-2 corre-
sponded to 427–445 after the start codon and were as
follows:

Targeted sequence: AAGAGCGATGAGCAGTGGTTC
Sense strand: 5’-GAGCGAUGAGCAGUGGUUCdTdT-3’
Antisense strand 3’-dTdTCUCGCUACUCGUCACC
AAG-5’
Targeted sequence: GGTGATCTCTGGCTGTGAA
Sense strand 5’- dTdTGGUGAUCUCUGGCUGUG–3’
Antisense strand: 3’-CCACUAGAGACCGACACdTdT-5’

For the preparation of duplexes, 20 μM mixed siRNAs
were annealed in 1 ml of sterile buffer (100 mM potassium
acetate, 30 mM HEPES-KOH, 2 mM magnesium acetate,
pH 7.4) for 1 min at 90°C followed by a 1 h incubation
at 37°C. Transfection of duplex siRNAs was performed
according to the manufacturer’s instructions.
Annealed siRNA-1 and siRNA-2 were transfected into

spleen lymphocytes that were in good condition, and the
lymphocytes were seeded 36 h before transfection(siRNA/
TransMessenger 1.6 μg/8 μl). Eighty-four hours after trans-
fection, LAK cell proliferation was measured using the
MTT colorimetric assay, and the effectiveness of the
knockdown was assessed by flow cytometry. Cells in the
non-silencing group were transfected with a non-silencing
siRNA using transMessenger, and cells of the mock-
transfected group were transfected with transMessenger
only after culturing with IL-2 (1000 U/ml) for 36 h.

Proliferative assay
Measurements of LAK cell proliferation were performed
using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-di-phe-
nyltetrazolium bromide) colorimetric assay. Eighty-four
hours after transfection (siRNA/TransMessenger 1.6 μg/
8 μl, non-silencing siRNA or transMessenger only), LAK
cells at 1 × 106 cells/ml were plated in 96-well microtiter
plates (Corning Costar, Cambridge, MA, USA) and in-
cubated with 0.25 mg/ml MTT for 4 h at 37°C. Before
the end of the assay, 100 μl of DMSO was added to
each well. The amount of MTT formazan product was
determined by measuring the absorbance (A) using a
microplate reader at a test wavelength of 570 nm and a
reference wavelength of 655 nm.

Flow cytometry analysis of H-2Kd expression
The analysis of surface immunofluorescence was performed
using FACScan flow cytometry (Becton Dickinson, USA).
LAK cells (1 × 106 cells/ml) to be analyzed for immuno-
fluorescence were incubated with a saturating amount
(10 μl) of FITC-labeled monoclonal anti-H-2Kd (Becton
Dickinson, USA) for 30 minutes at 37°C, washed twice
in the diluent and resuspended in PBS containing 1%
formaldehyde and 0.5% sodium azide. Non-specific binding
was subtracted using appropriate controls.

Cytotoxicity assay
The target cells were placed in 96-well plates at 10,000
cells/well with the appropriate number of LAK cells as
indicated in 0.2 ml of complete medium. After 4 h of
incubation at 37°C in a humidified atmosphere containing
5% CO2, the LDH assay was applied according to the
manufacturer’s instructions for the CytoTox 96® Non-
Radioactive Cytotoxicity Assay. The percentage-specific
release was calculated as follows:

%Cytotoxicity ¼ Experimental− Effector Spontaneous−Target Spontaneous
Target Maximum−Target Spontaneous

� 100

Experimental counts were determined from triplicate
wells.

Statistical analysis
Data are presented as the means ± SEM. Statistical analysis
was performed by one-way analysis of variance (ANOVA).
All tests were performed using SPSS (version 16.0; SPSS,



Table 2 Analysis of LAK cytotoxic activity toward H22 cells (mean ± SEM, n = 8)

Experimental group
Effector/target cell ratio

10:1 20:1 30:1 40:1

Control 28.6 ± 4.1 45.2 ± 4.8 68.4 ± 5.0 81.6 ± 5.9

siRNA-1 27.6 ± 2.1 40.6 ± 5.1*#▲ 55.4 ± 4.1*#▲ 65.0 ± 2.1*#▲

Mock-transfected 26.9 ± 5.6 46.9 ± 5.7 70.3 ± 6.0 80.5 ± 4.6

Non-silencing 30.3 ± 3.9 44.3 ± 3.8 67.0 ± 4.9 82.0 ± 2.6
*P < 0.01, siRNA-transfected group compared with the control group;
#P < 0.01, siRNA-transfected group compared with the mock-transfected group;
▲P < 0.01, siRNA-transfected group compared with the non-silencing group.
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Inc., Chicago, IL, USA), and the level of significance was
set at a P value less than 0.01.

Results
siRNA has no toxic effect on spleen LAK cells
No cell morphology abnormalities or cell breakage was
observed in any group using an inverted microscope.
Table 1 shows that the siRNA and transMessenger had
no inhibitory effect on the proliferation of LAK cells.

H-2Kd Expression in spleen LAK cells
FCM was used to examine the targeted protein expression.
Eighty-four hours after transfection, H-2Kd expression in
LAK cells was reduced by H-2Kd siRNA-1 (47.8 ± 6.9%)
and (59.5 ± 7.9%) by H-2Kd siRNA-2 compared with the
levels in mock-transfected cells (87.7 ± 5.1%; P < 0.01), non-
silencing siRNA-transfected cells (88.2 ± 4.3%; P < 0.01)
and control cells (90.9 ± 2.4%; P < 0.01). No significant dif-
ference in H-2Kd expression in LAK cells was found among
the mock-transfected, non-silencing siRNA-transfected and
control groups (P > 0.05) (Figure 1).

Calculation of LAK cell cytotoxicities
After induction with IL-2 for 5 days, LAK cells from
BALB/C mice showed marked cytotoxicity toward H22 and
K562 cells. The addition of siRNA-1-treated LAK cells
resulted in a cytotoxicity decrease of 20.3% (P <0.05;
effector/target cell ratio: 40:1; Table 2) toward H22 cells.
Similar results were obtained in cultures of K562 cells,
in which siRNA-treated LAK cells (effector/target cell
Table 3 Analysis of LAK cytotoxic activity toward K562 cells (

Experimental group
10:1

Control 30.1 ± 9.8 50

siRNA-1 28.4 ± 36.9*#▲ 31.3

Mock-transfected 28.9 ± 6.7 49

Non-silencing 31.4 ± 8.7 51
*P < 0.01, siRNA-1-transfected group compared with the control group;
#P < 0.01, siRNA-1-transfected group compared with the mock-transfected group;
▲P < 0.01, siRNA-1-transfected group compared with the non-silencing group.
ratio: 40:1) exhibited a decreased in cytotoxicity from
(76.8 ± 5.8) to (49.6 ± 7.7) (P <0.05; Table 3). However, no
significant difference was found among the mock-trans-
fected, non-silencing siRNA-transfected and control groups
in the present study.

Discussion
The major histocompatibility complex (MHC) H-2Kd, as
the MHC-I molecule of BALB/c mice, is a cell surface
glycoprotein that plays critical roles in the regulation of
tumor immune responses. These molecules are expressed
on the surface of all nucleated cells and are necessary
for the presentation of peptide antigens to cytotoxic T-
lymphocytes (CTLs) [12,13] and for the immune regulatory
activity exerted by NK cells [14,15]. It is widely accepted
that the total or partial loss of MHC class I molecules
on tumor cells is one of the main mechanisms of tumor
escape. However, the effects of MHC on peripheral blood
mononuclear cells (PBMCs) remain unclear. In the present
study, we first evaluated the cytotoxicity of LAK cells
toward tumor cells with different expression states of
MHC-I. Down-regulated MHC-I expression in LAK cells
led to lower cytotoxicity toward H22 cells and K562 cells.
Studies have shown that the high-density expression of

MHC class I molecules can protect T cells from deletion
mediated by antibodies and macrophages [16]. When the
expression of these MHC class I molecules is masked, this
resistance collapses, indicating that highly expressed MHC
class I molecules can prolong the survival time of T cells.
Many experiments have also been designed to evaluate the
mean ± SEM, n = 8)

Effector/target cell ratio

20:1 30:1 40:1

.1 ± 6.4 63.4 ± 7.6 76.8 ± 5.8

± 6.5*#▲ 36.9 ± 5.9*#▲ 49.6 ± 7.7*#▲

.9 ± 5.8 66.3 ± 8.0 74.9 ± 8.1

.2 ± 9.1 64.9 ± 8.9 80.0 ± 9.7
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significance of host MHC antigens [17-19]. Lemorvan [20]
discovered that the expression of PBMCs HLA-B mRNA is
reduced as one advances into old age, when one’s immune
system is also weakened. Studies on varicella zoster virus
(VZV) pathogenesis have demonstrated that cell surface
MHC I expression is downregulated specifically in VZV-
infected human CD3+ T lymphocytes [21,22]. siRNA was
then applied to spleen LAK cells from BALB/C mice to
assess the effects of MHC-I.
LAK cells are lymphocytes exposed to interleukin-2 for

4 to 6 days. Several studies have shown that the cellular
population mediating LAK cell activity consists largely
of IL-2-stimulated CTLs and NK cells. Specific surface
markers have not been found on LAK cells [23,24]. The
molecular mechanisms involved in the recognition of
tumor cells by CTLs and NK cells have been partially
elucidated in recent years. MHC class I-bearing cells
interact with the T-cell receptor (TCR) on CD8+ CTL cells,
triggering a cascade of T-signal events that ultimately lead
to cell proliferation, cytokine production and target cell
lysis [25-27]. This positive effect is associated with the
expression of self-MHC-I-specific receptors on CTL and
NK cells that were originally identified as inhibitory recep-
tors in effector responses [28]. Several investigators have
invoked a role for abnormally low expression of MHC
class I molecules on tumors in the recognition process by
correlating MHC-I expression with NK insensitivity utiliz-
ing IFN treatment, which increases MHC-I expression, or
selection of cell clones with varying levels of MHC-I ex-
pression [29]. However, experiments utilizing transfection
of MHC class I genes into sensitive cell lines have yielded
conflicting results [30], indicating that MHC-I expression
is not the sole recognition mechanism. The down-regula-
tion of MHC-I antigens in NK and lymphocytes may
provide an important mechanism in the tumor immune
response. Large numbers of lymphocytes exist in the
spleen in vivo; however, their slow proliferation prevents
them from being cultured in vitro. Induced by IL-2, spleen
lymphocytes signal to LAK cells, which can lyse not only
self tumor cells but also isotype entity tumor cells [31,32].
Our study demonstrated that the inhibition of H-2Kd

expression in mice reduced the cytotoxicity of LAK cells
toward H22 and K562 target cells, suggesting that there is
a direct correlation between H-2Kd expression and the
cytotoxicity of CTLs and NK cells.
Our study strongly suggests that the resistance to tumors

is influenced by MHC-I expression in the host as well as in
the target cells. The expression of MHC molecules on
the tumor cell surface is a feature of tumor cells, whereas
the change in host MHC expression reflects the state of
MHC in the whole body and represents the host’s immune
nature. The expression of MHC-I molecules on host
peripheral blood lymphocytes reflect their immune com-
petence as an anti-viral and anti-tumor molecules. A
decrease in host MHC-I expression, leading to the unre-
sponsiveness of CTLs and NK cells due to the default of
antigen presentation, may play an important role in tumor
development. Measuring MHC-I expression will contribute
to our understanding of host immune status and provide
new insights into tumor immunity.
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