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Abstract
Background: In silico genome-scale metabolic models enable the analysis of the characteristics of
metabolic systems of organisms. In this study, we reconstructed a genome-scale metabolic model
of Corynebacterium glutamicum on the basis of genome sequence annotation and physiological data.
The metabolic characteristics were analyzed using flux balance analysis (FBA), and the results of
FBA were validated using data from culture experiments performed at different oxygen uptake
rates.

Results: The reconstructed genome-scale metabolic model of C. glutamicum contains 502
reactions and 423 metabolites. We collected the reactions and biomass components from the
database and literatures, and made the model available for the flux balance analysis by filling gaps in
the reaction networks and removing inadequate loop reactions. Using the framework of FBA and
our genome-scale metabolic model, we first simulated the changes in the metabolic flux profiles
that occur on changing the oxygen uptake rate. The predicted production yields of carbon dioxide
and organic acids agreed well with the experimental data. The metabolic profiles of amino acid
production phases were also investigated. A comprehensive gene deletion study was performed in
which the effects of gene deletions on metabolic fluxes were simulated; this helped in the
identification of several genes whose deletion resulted in an improvement in organic acid
production.

Conclusion: The genome-scale metabolic model provides useful information for the evaluation of
the metabolic capabilities and prediction of the metabolic characteristics of C. glutamicum. This can
form a basis for the in silico design of C. glutamicum metabolic networks for improved bioproduction
of desirable metabolites.

Background
A coryneform bacterium, Corynebacterium glutamicum is a
facultatively aerobic, gram-positive bacterium that can

grow on various sugars or organic acids [1,2]. This organ-
ism can produce various amino acids such as glutamate
[1,2] and lysine [3] with high efficiency, and is thus widely

Published: 3 August 2009

Microbial Cell Factories 2009, 8:43 doi:10.1186/1475-2859-8-43

Received: 22 April 2009
Accepted: 3 August 2009

This article is available from: http://www.microbialcellfactories.com/content/8/1/43

© 2009 Shinfuku et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.microbialcellfactories.com/content/8/1/43
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19646286
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Microbial Cell Factories 2009, 8:43 http://www.microbialcellfactories.com/content/8/1/43
used for the large-scale production of amino acids [4,5].
Furthermore, the production of ethanol and organic acids
such as lactate and succinate by growing C. glutamicum
under oxygen deprivation conditions has recently been
proposed [6,7]. Owing to its importance for bioproduc-
tion, C. glutamicum has been chosen as one of the effective
hosts for metabolic engineering purposes [8-10]. Thus,
the construction and exploration of appropriate in silico
metabolic models, which help predict the cellular behav-
ior and production of useful chemicals, are highly desired.

Recently, on the basis of whole-genome information, the
genome-scale metabolic networks of cells have been
reconstructed and applied to metabolic flux balance anal-
ysis (FBA) [11,12] for many organisms, including repre-
sentatives of each of the 3 major domains of life, namely,
archaea [13], bacteria [14-17], and eukarya [18-20]. FBA is
an analysis of metabolic flux profiles, in which a steady
state of metabolic flux is assumed and the profile of met-
abolic fluxes is calculated by optimizing an objective func-
tion using linear programming. Although genome-scale
metabolic models cannot compute the detailed kinetic
dynamics of metabolic reactions in a cell, they enable the
description of the range of possible metabolic states on
the basis of the constraints defined by the stoichiometry
of metabolic reactions and transport steps at a steady
state. Furthermore, we can obtain a solution, i.e., a set of
all metabolic fluxes, which maximizes an objective func-
tion using linear programming. The biomass production
rate is generally adopted as the objective function. It has
been shown that the metabolic profiles calculated by the
maximization of biomass production can describe those
obtained experimentally in many organisms and environ-
mental conditions, suggesting that organisms can maxi-
mize their growth rate by adaptation and evolution
[21,22]. Using the appropriate genome-scale metabolic
network and an objective function to be maximized, FBA
can be used to predict the relationship among the geno-
type, environmental conditions, and product yields at the
steady state; this data can be utilized for the improvement
of the microbial production [23,24].

In this study, we present the reconstruction of a genome-
scale metabolic model of C. glutamicum. Metabolic reac-
tions and other parameters for biomass were collected
using databases and literatures. After reconstruction of the
genome-scale metabolic model, we performed FBA simu-
lations with the maximization of biomass production and
evaluated the results of the simulations by using experi-
mental data of C. glutamicum cultures grown at different
oxygen uptake rates (OURs). Our results revealed that the
production rates of biomass and organic acids predicted
using our model agreed well with the experimental rates;
this result suggests that this model well represents the
intracellular metabolic profiles of C. glutamicum. It should

be noted that the representation of such changes in the
metabolic profiles that occur on changing the oxygen
uptake is difficult for another genome-scale model of C.
glutamicum reported recently [25]. Furthermore, by using
the model proposed in this paper, we performed compre-
hensive simulations of gene deletions in order to identify
candidate genes for genetic modification(s) to improve
the productivity of organic acids by C. glutamicum.

Materials and methods
Modeling and Simulations
Network reconstruction
The known metabolic reactions in the C. glutamicum met-
abolic network were collected by a search of public data-
bases and scientific publications. The genome-scale
metabolic network was based on the pathways in the Bio-
Cyc database collection [26]http://www.biocyc.org for C.
glutamicum. We also referred to the information on C.
glutamicum in the Kyoto Encyclopedia of Genes and
Genomes database (KEGG; http://www.kegg.jp). In gen-
eral, the genome-scale model constructed using only pub-
lic databases contains incorrect and insufficient metabolic
pathways owing to the incompleteness of database infor-
mation. The most frequently observed incorrectness was
missing enzymes in metabolic pathways. Thus, the result-
ing network was then subjected to the gap-filling process
to allow biomass formation. For gap filling, we referred to
published cell-specific data available in the literatures,
such as Ref. [27,28] and references threin. For example,
the mycolic acid and arabinogalactan synthetic pathways
are constructed on the basis of Refs. [29,30].

Determination of biomass composition
The reaction "biomass synthesis" is a hypothetical metab-
olite in the metabolic network, which represents the
requirement of precursors and coenzymes for the biomass
formation. Biomass synthesis consists of a linear combi-
nation of 43 components, including amino acids, DNA,
RNA, lipids, and cell envelope components. In our model,
the biomass composition was determined from various
reported data. The demands of precursors such as pyru-
vate, acetyl-CoA, and oxaloacetate for biomass produc-
tion were based on the data in Ref. [27]. For the
macromolecular composition, we referred to the data in
Ref. [31]; the total biomass is composed of 52% protein,
5% RNA, 1% DNA, 13% lipid, 19% cell wall components,
and 10% other components. The C. glutamicum cells have
a characteristic cell membrane termed as MAPc [32],
which consists of the polysaccharides peptidoglycan and
arabinogalactan as well as mycolic acids. Since the MAPc
biosynthesis pathway is quite complex and some meta-
bolic reactions in MAPc synthesis have not been character-
ized in detail, we described this pathway by some lumped
reactions. The biomass composition of MAPc was deter-
mined to satisfy the macromolecular composition and the
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precursor demand described above. The biomass compo-
sitions of nucleic acids were calculated on the basis of the
genomic sequence [33]; the composition ratios of DNA
and RNA to the total biomass are 5% and 1%, respectively
[31]. The biomass synthesis reactions and its composition
are shown in additional file 1. For all simulations pre-
sented here, the composition of every component was
fixed independent of the environmental conditions. The
energy requirement for biomass production was set to
41.26 mmol of ATP per 1 g biomass on the basis of the
data in Ref.[34].

In silico computation: FBA
Metabolic fluxes of the C. glutamicum metabolic network
were calculated by using flux balance analysis (FBA), in
which constrains are imposed by the stoichiometry in a
metabolic network [11]. A pseudo-steady state is generally
assumed, i.e., the net sum of all production and consump-
tion fluxes for each internal metabolite is set to zero. This
assumption results in a feasible space that is a convex set
in the N-dimensional space of metabolic fluxes (where N
stands for the total number of fluxes). In FBA, a particular
objective function, written as a linear combination of
fluxes, can be used to calculate the optimal solution at 1
corner in the feasible flux space. Using the matrix nota-
tion, this problem can be stated as follows:

where S is the stoichiometric matrix representing the stoi-
chiometry of metabolic reactions in the network and v is
a vector of all metabolic fluxes. vmin and vmax indicate the
minimum and maximum constraints on the fluxes and
are used to define the constraints for maximal enzymatic
rate, irreversibility of reaction, or constant uptake from
the environment. cT is a vector representing the objective
function to be maximized, as a linear combination of met-
abolic fluxes. In general, the biomass production rate
mentioned above is used as the objective function to be
maximized. In this study, we followed this method to cal-
culate the metabolic flux profile under the assumption
that organisms have been evolved toward growth maximi-
zation. For all simulations in this paper, glucose was cho-
sen as the sole carbon source and the following external
metabolites were allowed to freely transport through the
cell membrane: CO2, H2O, SO3, NH3, and PO4. All calcu-
lations, including the linear programming problems, were
performed using the commercially available software
Lindo (Lindo Systems, Inc.) and Matlab (Mathworks,
Inc.).

Strain and medium
C. glutamicum strain ATCC 13032 was used in the culture
experiments. The composition of the synthetic medium
used for the preculture of the microorganism was the
same as that employed in our previous study [35] (per
liter of deionized water): 40 g of glucose, 30 g of
(NH4)2SO4, 3.0 g of Na2HPO4, 6.0 g of KH2PO4, 2.0 g of
NaCl, 84 mg of CaCl2, 3.9 mg of FeCl3, 0.9 mg of
ZnSO4.7H2O, 0.1 mg of (NH4)6Mo7O21.4H2O, 0.3 mg of
Na2B4O7.10H2O, 0.4 mg of MgSO4.7H2O, 40 mg of
FeSO4.7H2O, 500 μg of vitamin B1·HCl, 0.1 g of EDTA,
and 10 μg of biotin. The medium composition for the
main culture was the same as that for the preculture except
the initial glucose concentration was changed to 80 g/L for
batch cultivation and 20 g/L for continuous cultivation.

Culture conditions
For microaerobic culture conditions (experiments 1 and 2
shown in Fig. 1(a)), the batch cultivations of C. glutami-
cum were carried out using a 500-mL jar fermenter (model
BMJ-P, Able, Japan) with a liquid working volume of 200
mL. In the batch cultures, the cells were first allowed to
grow aerobically at a high aeration rate (1 vvm; volume of
air per volume of medium per min) and high agitation
speed (800 rpm) until the cell concentration, as measured
by the optical density at 660 nm (OD660), reached 5~15.
Then, for experiment 1, the culture conditions were
changed to no aeration and gentle agitation (100 rpm)
and for experiment 2, the aeration rate was altered to 0.5
vvm and the OUR was maintained at a constant value (0.5
mmol/gDW/h) by changing the agitation speed. For the
aerobic cultures (experiments 3, 4, and 5), chemostat cul-
tivations were carried out using a 500-mL jar fermenter
with a liquid working volume of 200 mL. The aeration
rate was fixed at 1 vvm and the dilution rate, at 0.2 h-1 for
all chemostat culture experiments. In order to change the
OUR in these chemostat cultures, the agitation speed was
set to 800, 1000, and 1100 rpm for experiments 3, 4, and
5, respectively.

All culture experiments were performed at 31.5°C, and
the pH was maintained at 7.2 by the automatic addition
of 25% ammonium solution using an autoclavable pH
probe (Fermprobe F-635; Broadley-James Corporation,
Irvine, CA) and a pH controller (DT-1023; Able Corpora-
tion, Japan).

Analytical Methods
Cell growth was monitored by measuring the OD660. The
dry cell weight (DCW) was calculated using the measured
OD660 according to the following formula:

maximize T: c v⋅

subject to : S v⋅ = 0

v v vmin max ,≤ ≤

DCW g L OD( / ) . .= ×0 30 660
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The culture supernatant was used for measuring the con-
centration of glucose and organic acids. Glucose was
measured using an enzymatic assay kit, the Glucose CII
test Wako (Wako Pure Chemicals, Inc., Japan) according
to the manufacturer's protocol. Organic acids were quan-
tified using a HPLC system, Hitachi L-6200 equipped with
a L-4000H UV detector (210 nm; HITACHI, Japan). Sam-
ples were eluted with 0.75 mM H2SO4 in an ion-exclusion
column TSKgel Oapak-P (Tosho, Japan) at 40°C. The flow
rate was set to 0.8 ml/min. The concentration of dissolved
oxygen (DO) in the culture was monitored by using an

oxygen electrode (DKK-Toa Corporation, Japan), and the
concentrations of exhaust oxygen and carbon dioxide
were monitored by using an exhaust gas analyzer (Model
DEX-1562-1; Able Corporation, Japan).

Results and discussions
Reconstruction of the metabolic network
We reconstructed a genome-scale metabolic network for
C. glutamicum ATCC 13032, whose genomic DNA
sequence was determined by 2 independent research
groups [33,36]; the metabolic network consists of 277

Changes in the yields of organic acids, biomass, and carbon dioxide on changing OUR/GUR ratioFigure 1
Changes in the yields of organic acids, biomass, and carbon dioxide on changing OUR/GUR ratio. (a) Summary of 
experimental results and predictions by FBA simulations. The unit of GUR, OUR, and production rates of CO2, lactate, ace-
tate, succinate, and biomass are mmol/gDW/h. The values in parentheses represent carbon yields. Simulation results which 
were obtained by using the same GUR and OUR are also presented. (b) A scatter plot of carbon yield. The x-axis corresponds 
to the result of FBA simulation, while the y-axis show the experimentally observed carbon yield. The carbon yields in the 5 sets 
of experimental and simulation results are presented. The line corresponding to y = x is also included.
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genes, 502 metabolic reactions, and 423 metabolites. The
entire reaction data set is provided in additional file 1. A
total of 428 reactions from the BioCyc and KEGG data-
base collections were included in the model, while the
remaining 74 reactions were added on the basis of previ-
ously published studies of each pathway [27,28]. The
basic characteristics of the reconstructed metabolic net-
work are presented in Table 1, in which the genomic fea-
tures of C. glutamicum were obtained from Ref.[33]. From
the entire set of reactions, 470 correspond to intracellular
reactions, while 32 are fluxes for transport through the
membrane. The model includes 391 intracellular metabo-
lites and 32 extracellular metabolites. The functional clas-
sification of the 502 metabolic reactions in the
reconstructed model is summarized in Table 2, in which
the reaction "Biomass synthesis" indicates the hypotheti-
cal reaction to synthesize biomass. Transport processes
were added to the model by reference to the BioCyc data-
base collection and transport classification database
(TCDB; http://www.tcdb.org) and by inference from
physiological considerations and genome annotations
[27].

The reconstructed metabolic network of C. glutamicum has
several characteristics that distinguish it from the net-
works of other microorganisms. The cell envelopes of
coryneform bacteria and mycobacteria have a unique
structure consisting of a covalently linked complex com-
prising mycolic acid, arabinogalactan, and peptidoglycan
(MAPc) [32]. In order to represent the characteristics of
cell envelope biosynthesis, we introduced metabolic reac-
tions for MAPc biosynthesis into the model. The synthetic
pathways and composition of MAPc were decided on the
basis of previous studies [29,30] and the demand of MAPc
for biomass production was considered to be consistent

with the cell wall composition of C. glutamicum. In the
central metabolic pathway, the reconstructed model of C.
glutamicum has pyruvate carboxylase in the anaplerotic
pathway and lacks pyruvate formate lyase. In addition, C.
glutamicum has 2 pathways for the biosynthesis of diami-
nopimelate, which is a precursor for lysine biosynthesis.
One pathway involves the direct conversion of Δ1-piperi-
deine-2,6-dicarboxylate to diaminopimelate, which is cat-
alyzed by diaminopimelate dehydrogenase; the other
pathway involves an indirect conversion, which is cata-
lyzed by 4 independent enzymes [37]. Additionally, C.
glutamicum does not have glycine C-acetyltransferase,
which is involved in the conversion of threonine to gly-
cine. These distinguishing characteristics of the metabolic
pathways are necessary to represent the flux profile of C.
glutamicum.

Verification of the C. glutamicum genome-scale model: 
Measuring metabolic profiles under various oxygen supply 
conditions
In order to verify the results of the FBA using our genome-
scale model of C. glutamicum, we compared the growth
and metabolic profiles obtained by FBA simulations with
those obtained by experiments performed at various oxy-
gen levels. Here, we focused on the OUR as a parameter to
change the metabolic profiles of C. glutamicum; this is
because OUR is known to alter the metabolic profile dras-
tically and is a key factor for controlling the productivity
of several materials by this microorganism, such as
organic acids. We performed a series of experiments
involving the culture of C. glutamicum ATCC 13032 at var-
ious oxygen levels. The results of these experiments are
summarized in Fig. 1(a). For aerobic conditions, i.e., con-
ditions with relatively high OURs, we used continuous
cultures with a dilution rate of 0.2 h-1; in these cultures,
the oxygen supply was changed by altering the agitation
speed to 800, 1000, and 1100 rpm (experiments 3, 4, and
5 in Fig. 1(a)). Here, the steady state was defined as that
CV of cell concentration measured by optical density
(OD660) is less than 10% over 10 hours. The production
rates of CO2 and organic acids were measured in the
steady states of the continuous cultures. We also con-
firmed that, for GUR, OUR, and production rates of
organic acids, the ranges of deviation from the means
were less than 5% during the steady state. In microaerobic
and oxygen anaerobic conditions, C. glutamicum exhibited
low specific growth rate (e.g., less than 0.05 h-1), and
maintaining a steady state in the continuous cultures was
difficult. Thus, we used batch cultures in this study and
altered the oxygen supply conditions during the culture.
In the batch cultures, cells were first grown under aerobic
conditions with aeration and a high agitation speed; dur-
ing the exponential growth phase, nitrogen gas started to
be supplied instead of air for maintaining the anaerobic
condition (experiment 1) and the agitation speed was

Table 1: Genomic features and characteristics of a reconstructed 
metabolic model of C. glutamicum ATCC 13032.

Feature Property

Genome characteristics
Genome length 3282708 bp
G+C content 53.80%
No. of open reading frames (ORFs) 3432
Total coding sequences (CDS) 3002
CDS encoding annotated proteins 2489

In silico metabolic networks
No. of genes included 277
No. of associated reactions 428
No. of other reactions 74
No. of metabolites 423
No. of internal fluxes 470
No. of exchange fluxes 32

The genomic features of C. glutamicum ATCC 13032 shown here 
were reported by Kalinowski et al. [33].
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controlled to maintain a constant OUR for the microaer-
obic condition (experiment 2). After changing the oxygen
supply conditions, the production rates of CO2 and
organic acids were measured (the time series of cell con-
centration and organic acid concentrations in experiments
1 and 2 are presented in additional files 2 and 3). Here, we
obtained GUR, OUR, and the production rate of organic
acids by linear regression of the time series. To check the
error of this regression, we also calculated the confidence
intervals of the regression and found that the 95% confi-
dence intervals are less than 10% from the mean. In exper-
iment 1, data of OUR was set to zero since nitrogen gas
was supplied to the fermentor instead of air. As shown in
Fig. 1(a), the production rates of biomass, CO2, and
organic acids depended on the oxygen supply conditions.

The experimental data presented in Fig. 1(a) indicated
that under the anaerobic and micro-aerobic conditions
(experiment 1 and 2), the cells converted most of the glu-
cose to organic acids as lactate and succinate. With an
increase in OUR/GUR ratio, cells changed their metabo-
lism to produce acetate (experiment 3), and a further
increase in OUR/GUR ratio resulted metabolic shift to
CO2 production phase in which the tricarboxylic acid
(TCA) cycle was activated (experiment 4 and 5).

Using the experimental data summarized in Fig. 1(a), we
evaluated the results of the FBA simulations of our
genome-scale model. In these simulations, we used bio-
mass maximization as the objective function of FBA. We
calculated the production yields of organic acids, CO2,

Table 2: Functional classification of metabolic reactions in a C. glutamicum genome-scale model.

Carbohydrate metabolism 45 Metabolism of complex carbohydrate 66
glycolysis/gluconeogenesis 18 arabinogalactan biosynthesis 2
TCA cycle 17 dTDP-rhamnose biosynthesis 5
pentose phosphate pathway 8 D-lactate metabolism 5
Entner-Doudoroff pathway 2 GDP-mannose metabolism 5
Energy metabolism 17 glycerol and glycerophosphodiester degradation 2
Lipid metabolism 32 mevalonate pathway 9
fatty acid biosynthesis 15 UDP-N-acetylgalactosamine biosynthesis 7
phospholipid biosynthesis 17 UDP-glucose conversion 3
Nucleotide metabolism 84 isopentenyl diphosphate biosynthesis 8
PRPP biosynthesis 1 glutathione redox reactions 4
purinebiosynthesis 29 myo-inositol biosynthesis 2
pyrimidine biosynthesis 23 Polysaccharide biosynthesis 1
nucleotide salvage pathway 31 peptidoglycan biosynthesis 13
Amino acid metabolism 103 Metabolism of complex lipid 13
glutamate biosynthesis 2 MAPc biosynthesis 1
glutamine biosynthesis 1 PIM2 biosynthesis 2
alanine biosynthesis 3 Mycolyl-ACP biosynthesis 1
valine biosynthesis 3 polyamine biosynthesis 7
aspartate biosynthesis 1 Corynomycolate biosynthesis 2
lysine biosynthesis 11 Metabolism of cofactors and vitamins 67
arginine biosynthesis 9 ATP maintenance 1
asparagine biosynthesis 2 coenzyme A biosynthesis 5
threonine biosynthesis 2 folate transformations 2
isoleucine biosynthesis 5 formylTHF biosynthesis 9
leucine biosynthesis 4 NAD biosynthesis 19
proline biosynthesis 5 O-antigen biosynthesis 1
serine biosynthesis 3 pantothenate biosynthesis 6
tyrosine biosynthesis 3 riboflavin and FMN and FAD biosynthesis 9
tryptophan biosynthesis 6 tetrahydrofolate biosynthesis 15
cysteine biosynthesis 2 Metabolism of other amino acids 9
phenylalanine biosynthesis 3 homoserine biosynthesis 1
glycine biosynthesis 1 chorismate biosynthesis 7
methionine biosynthesis 17 spermine biosynthesis 1
histidine biosynthesis 10 Metabolism of sugars 14
interconversion of arginine, ornithine and proline 10 trehalose biosynthesis 2

starch biosynthesis 12
Transport pathway 31
Biomass synthesis 1
Exchange pathway 34

The reaction "Biomass synthesis" indicates the hypothetical reaction to synthesize biomass, which represents the requirement of precursors and 
coenzymes for the biomass formation.
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and biomass using experimentally observed OUR and
GUR values. The predicted yields are presented in Fig.
1(a). Also, in Fig. 1(b), we show a scatter plot of carbon
yields, in which the carbon yields in the 5 sets of experi-
mental and simulation results are presented. In Fig. 1(b),
x-axis shows the predicted yield by FBA simulation and y-
axis represents experimentally observed ones. As shown in
the Fig. 1(a) and 1(b), the predictions of our genome-
scale model with maximization of the biomass yield
agreed well with the experimentally obtained yields. For
example, the FBA simulation predicted that 10% of car-
bon is secreted as acetate when OUR/GUR ~1.5, which is
consistent with the experimental result. The most signifi-
cant discrepancy between the experimental results and
FBA simulation was in the succinate production yield
under the micro-aerobic and anaerobic conditions. The
FBA simulation with biomass production maximization
predicted that 10~20% of carbon is secreted as succinate
in that condition, and the experimental results revealed
that around 5% of carbon was secreted as succinate. The
possible cause of this discrepancy will be discussed in the
next section.

In order to evaluate the accuracy of the predictions by the
FBA simulations in more details, we compared the results
of the FBA simulations with the intracellular metabolic
flux profile obtained by using a 13C-tracer experiment
[10]. Here, we referred to the metabolic profile of C.
glutamicum exponentially grown with glucose as the sole
carbon source under aerobic conditions. The GUR and
OUR were set to those measured experimentally. As pre-
sented in Fig. 2, the predicted flux for the pentose phos-
phate pathway (PPP) was quite similar to the
experimentally obtained flux. However, in the anaplerotic
and gluconeogenetic pathways, i.e., phosphoenolpyru-
vate to/from oxaloacetate, pyruvate to oxaloacetate, and
malate to pyruvate, there seemed to be a discrepancy
between the predicted and experimentally obtained
results. This was because a cycle of metabolic flux in the
anaplerotic and gluconeogenetic pathways does not affect
the biomass production in the FBA simulation. Therefore,
these fluxes were undetermined. However, when we com-
pared the net fluxes from phosphoenolpyruvate/pyruvate
to oxaloacetate/malate, which can be uniquely deter-
mined by biomass production maximization, the pre-
dicted and experimentally obtained fluxes were quite
similar (19.5 in the FBA simulation and 18 in the experi-
ment). Additionally, there was a discrepancy in the fluxes
of the TCA cycle. The reason for the differences was clear,
i.e., it was due to the differences in the precursor demands
for the biomass production used in the 13C-tracer experi-
ment and our simulation. For example, in our simulation
result of aerobic condition, 14.7% of total carbon flux was
consumed from acetyl-CoA to synthesis biomass compo-
nents, such as lipid. In contrast, to obtain fluxes in the

13C-tracer experiment shown in Fig. 2, it was assumed that
only 7.7% of total carbon flux was used for biomass syn-
thesis from acetyl-CoA. This difference in the precursor
demands resulted the discrepancy between simulation
and experimental results in the fluxes in TCA cycle. It
should be noted that after compensate the difference in
the precursor demand, the fluxes in TCA cycle became
more similar (data not shown).

FBA of the metabolic profiles under various oxygen supply 
conditions
Since the production yields of biomass, CO2, and organic
acids agreed well between experimental results and FBA
simulations, we further analyzed the changes in the intra-
cellular metabolic profiles on changing the oxygen supply
by using FBA simulations of our genome-scale model. In
Fig. 3, the changes in the production yields are plotted as
a function of OUR/GUR. As shown in the figure, the met-
abolic profiles can be classified into 5 phases. The sche-
matic representations of the metabolic flux profiles of
each phase are presented in additional file 4. Phase I cor-
responds to the aerobic condition with enough oxygen
supply; in this phase, the TCA cycle is activated. On
decreasing the oxygen supply, the cells start to produce
acetate (phase II). In this phase, the oxygen uptake is not
enough to oxidize all the NADH produced when most
glucose is converted to CO2 in the TCA cycle and the resid-
ual glucose is converted to acetate to produce ATP. Further
decrease in the oxygen supply results in the production of
lactate instead of acetate (phase III). In this phase, the car-
bon flux to the TCA cycle is almost stopped (except for
fluxes to supply metabolites required for the production
of biomass such as amino acids). The oxygen uptake is not
enough to oxidize all the NADH produced in glycolysis;
thus, lactate production is utilized as a mechanism to oxi-
dize NADH in order to maintain the intracellular redox
balance. In phase IV, succinate is produced instead of lac-
tate. This is because the capacity of NADH oxidation is
greater in the succinate production process than in the lac-
tate production process. Two moles of NADH can be oxi-
dized during the production of 1 mole of succinate from
1 mole of pyruvate, while only 1 mole of NADH can be
oxidized during the production of 1 mole of lactate from
1 mole of pyruvate (see the profile (c) and (d) in addi-
tional file 4 for details of the metabolic profiles). For this
reason, even though the ATP consumption is higher in the
anaplerotic pathway than in the lactate production path-
way, succinate production is preferred in order to main-
tain the intracellular redox balance under the micro-
aerobic condition in phase IV. Further decrease in the oxy-
gen supply results in an increase in the lactate production
again (phase V). In this phase, with an increase in the lac-
tate production, the metabolic flux from malate to pyru-
vate, which is catalyzed by malic enzyme (ME), is
activated and the flux from glycolysis to the PPP decreases
Page 7 of 15
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Metabolic flux profiles of C. glutamicum in the exponential growth phaseFigure 2
Metabolic flux profiles of C. glutamicum in the exponential growth phase. (a) The metabolic fluxes obtained by per-
forming 13C-tracer experiment [10] and (b) the simulated metabolic fluxes with the same GUR and OUR are presented. The 
black and gray arrows represent reactions with non-zero and zero fluxes, respectively. Abbreviations are as follows: E4P, 
erythrose-4-phosphate; 6PG, 6-phospho-d-gluconate; Xu5P, xylulose-5-phosphate; Pyr, pyruvate; F6P, fructose-6-phosphate; 
GAP, glyceraldehyde-3-phosphate; R5P, ribose-5-phosphate; Ru5P, ribulose-5-phosphate; S7P, sedoheptulose-7-phosphate; 
G6P, glucose-6-phosphate; LYS, lysine; Suc, succinate; Cit, citrate; IsoCit, Isocitrate; aKG, a-ketoglutarate; MAL, malate; FUM, 
fumarate; OAA, oxaloacetate.
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(see the profile (e) in additional file 4). Here, the flux for
ME is enhanced in order to provide NADPH; the produc-
tion of NADPH by ME allows a decrease in the flux to PPP,
which is major supply source of NADPH in aerobic and
microaerobic conditions. The decrease in the PPP flux
results in an increase in the carbon fluxes for glycolysis
and lactate production, which helps maintain the intrac-
ellular redox balance.

As shown in Fig. 1, the changes in the metabolic profiles
in the FBA simulations mentioned above agreed well with
the changes observed experimentally, except for the succi-
nate production yield in the micro-aerobic and anaerobic
conditions (phase IV and phase V). This discrepancy in
the succinate production might be due to the differences
between the simulation and experiment in the ATP
demand for biomass production or in the P/O ratio. As
mentioned above, succinate production from pyruvate
requires ATP consumption in the anaplerotic pathway;
thus, the oxidation of NADH by such succinate produc-
tion tends to be preferred when the ATP demand for bio-

mass production is small or the P/O ratio is large. In fact,
when we changed the ATP demand for biomass produc-
tion to 70.1 mmol per 1 g biomass, which was 1.7 fold
higher than the original coefficient based on the previous
report, the predicted production yield of succinate in the
micro-aerobic condition showed good agreement with
the experimental one. However, this change of coefficient
resulted in the decrease of the biomass yield, and a signif-
icant discrepancy in the biomass yield between simula-
tion and experimental results arose, for example, it was
more than 30% in aerobic condition (OUR/GUR > 2).
This result might suggest that the coefficient for ATP in the
genome-scale model should be changed depending on
OUR.

Comparison with previously proposed genome-scale 
model of C. glutamicum
The difference between the previously proposed genome-
scale model of C. glutamicum [25] and our model is sum-
marized in additional file 5. It should be noted that the
previous model could not represent the changes that

Result of FBA simulation: changes in the yields of organic acids, biomass, and carbon dioxide by changing the OUR/GUR ratioFigure 3
Result of FBA simulation: changes in the yields of organic acids, biomass, and carbon dioxide by changing the 
OUR/GUR ratio.

� �

�

� �

� �

� �
�
	
 �

�

� �
�

� � � � � � �
� � � � � � �

� � � � � � � � �

� �
� �

�� � � � � � � � � �
� �  
! � " # � $ $

�
� % � &

' ( ) * + ( )
Page 9 of 15
(page number not for citation purposes)



Microbial Cell Factories 2009, 8:43 http://www.microbialcellfactories.com/content/8/1/43
occur in the metabolic profile on altering the oxygen sup-
ply. In the FBA simulation using that model, the meta-
bolic profile was not altered by changing the oxygen
supply condition. One reason for this discrepancy was the
inclusion of inadequate reaction loops in the genome-
scale model. For example, that model consists of 2 trans-
port reactions for urea; 1 reaction involves diffusion
through the membrane without coupling to any other
molecule and the other reaction is the urea-proton sym-
port reaction. In FBA simulations, the combination of 2
such transport reactions results in an arbitrary proton flux
from/to inside the cell; for example, the efflux of urea into
the medium through the urea-proton symport and the
intake of the same amount of urea by diffusion result in
proton efflux without any changes in other metabolic bal-
ances except that of protons. Of course, the proton efflux
can be balanced by proton-ATPase in the cell membrane
with the generation of ATP. The genome-scale model
reported in Ref. [25] consists several such inadequate reac-
tion loops that allow the arbitrary generation of metabo-
lites such as ATP and NADH; thus, representing the
changes in the metabolic profiles by changing the oxygen
supply condition is difficult. Furthermore, the model in
Ref. [25] lacks the production pathways for lactate and
succinate, which also make the representation of the met-
abolic state in the micro-aerobic condition difficult.

Analysis of the metabolic profile in the amino acid 
production phase
Since C. glutamicum is widely used for the industrial pro-
duction of various amino acids such as lysine and gluta-
mate, the prediction of metabolic profiles in the
production phase of such amino acids is desirable for the
improvement of the productivity. Thus, we validated the
results of FBA simulation for lysine production by com-
paring the results with those of 13C-tracer experiment pre-
sented in Ref. [39]. In order to calculate the lysine
production phase, we used lysine production rate instead
of biomass production rate as the objective function of
FBA to be maximized. The glucose uptake and biomass
production rates were fixed at levels observed experimen-
tally. The results revealed that the flux profile predicted by
FBA agreed well with an experimentally obtained profile
in a previous study, i.e., early production phase with expo-
nential growth (Fig. five in Ref. [39]). These metabolic
profiles are presented in Fig. 4. As shown in the figure, the
maximal lysine production predicted by the FBA was sim-
ilar to that obtained in the experiment. Additionally, a
higher flux in the PPP in the experimental result (69%)
was consistent with that in the FBA simulation (69%),
and the net flux in the anaplerotic pathway also exhibited
similar values (41% in both the experiment and the sim-
ulation). This clear consistency between the simulation
and experimental results suggested that the experimen-
tally obtained flux profile corresponds to that with highest

lysine productivity under the condition of the observed
growth rate. The most significant discrepancy between
these 2 flux profiles was observed in the TCA cycle fluxes;
this discrepancy was probably due to differences in the
pyruvate and acetyl-CoA demands for the biomass pro-
duction fluxes. Additionally, a discrepancy existed
between the simulation result and the experimental result
with regard to the use of 2 biosynthesis pathways for
diaminopimelate, which is a precursor for lysine biosyn-
thesis [37]. In the model simulation with the maximiza-
tion of lysine production and fixed biomass production,
the diaminopimelate dehydrogenase reaction was pre-
ferred; however, the experimental results indicated that
both the pathways are active in the lysine production
phase [38]. It should also be noted that the flux profile at
the late exponential phase presented in Ref. [39] exhibited
a larger discrepancy with the predicted flux profile
obtained by our genome-scale model. This might be due
to the difficulty in predicting a metabolic state at a lower
growth rate by using FBA simulation, since there is a neg-
ative correlation between the growth rate and the volume
of subspace corresponding metabolic state at the growth
rate in the feasible flux space of FBA. That is, when the
growth rate decreases, the range of possible metabolic
states increases. Naturally, the difficulty in predicting the
metabolic profile increases with a decrease in the cellular
growth rate.

C. glutamicum is also widely used for glutamate produc-
tion. However, the flux profile of the glutamate produc-
tion phase cannot be represented by using the genome-
scale model so far. Glutamate production by C. glutami-
cum can be induced by several triggers such as biotin
depletion [40], Tween 40 addition [41], and penicillin
addition [42]. After receiving such a trigger, the cells cease
growing and then start producing glutamate. Flux analysis
using 13C-tracer experiments has revealed the changes in
the metabolic flux profiles, indicating that a large fraction
of carbon derived from glucose is converted to glutamate
with the activation of the phosphoenol-pyruvate carboxy-
lase pathway, which provides carbon flux to the TCA cycle
[10]. However, the identification of a metabolic state in
which glutamate is produced and cell growth is arrested is
difficult using analysis by a genome-scale model; this is
because the possible range of metabolic states is fairly
large and no appropriate objective function exists to pre-
dict such a metabolic state. In order to represent the met-
abolic profile with glutamate production by simulating
the genome-scale model, further improvements in the
simulation scheme are necessary. For example, it is well
known that a decrease in the 2-oxoglutarate dehydroge-
nase complex activity plays an essential role in the meta-
bolic change in the glutamate production phase [43,44].
Additionally, a recent study suggested the existence of a
membrane exporter of glutamate, whose conformation
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Metabolic flux profiles of C. glutamicum in the lysine production phaseFigure 4
Metabolic flux profiles of C. glutamicum in the lysine production phase. (a) The metabolic profile obtained by per-
forming the 3C-tracer experiment [38] and (b) the simulated metabolic profile obtained by using the same growth rate and by 
maximizing the lysine production rate are presented.
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change can be involved in the transition to the glutamate
production phase [45]. The inclusion of such regulations
of enzymatic activity might be important for the predic-
tion of flux profiles of the glutamate production phase,
and should be considered in future studies.

Analysis of gene deletion for improvement in the 
production of organic acids
Recently, the production of organic acids by C. glutamicum
under oxygen deprivation conditions was proposed for
increasing the productivity [6]. For the realization of this
process, genetic engineering of C. glutamicum to improve
organic acid productivity is desirable. Using FBA of our C.
glutamicum metabolic model, we determined candidate
genes for target deletion to improve the organic acid pro-
ductivity under oxygen deprivation conditions. Table 3
shows the candidate pathways whose disruption by gene
deletion resulted in an increased production of lactate or
succinate. The FBA simulations with biomass production
rate as the objective function were performed under the
condition of OUR/GUR = 0.1, in which the production
rates of lactate and succinate are relatively high (See Fig.
3). For lactate overproduction, disruption of the succinate
production pathway was important. Furthermore, the FBA
simulation suggested that the disruption of reactions con-
cerned with oxidative phosphorylation increased the lac-
tate production rate. This was because of an increase in the
demand of NADH oxidation caused by the disruption of
oxidative phosphorylation, which resulted in an increase
in the lactate production to oxidize NADH. Additionally,
disrupting some reactions in the PPP resulted in an
increase in the lactate production, which was due to
decrease of NADPH synthesis in the PPP. Then, in order
to compensate for NADPH production, which is required
for cell growth, the reaction from malate to pyruvate, cat-
alyzed by ME, was activated. The result of the FBA simula-

tion indicated that the increased pyruvate was in turn
converted to lactate. For succinate overproduction, dis-
rupting only the lactate production pathway was effective
in increasing the production rate of succinate. This result
was natural since a large portion of the carbon flux is con-
verted to lactate, as shown in the metabolic profile of the
wild type. We further performed multiple gene deletion
analysis to screen a set of genes to increase the lactate and
succinate production rates; however, no further signifi-
cant increase in the lactate and succinate production rates
was observed (data not shown).

Conclusion
In this study, we developed a genome-scale metabolic
model of C. glutamicum, which is commercially important
for the production of amino acids and useful chemicals.
This model includes hundreds of metabolites and reac-
tions among them, and also includes that the hypothetical
reaction representing synthesis of biomass to calculate the
requirement of metabolites for cell growth. It should be
stressed that, this model is not just a collection of all the
public available data about the metabolic reaction of C.
glutamicum. Instead, we constructed the model by adding
and deleting metabolic reactions to/from those on the
databases, to make this model available for the flux bal-
ance analysis. For example, based on some literatures, we
added some reactions to the metabolic model to fill gaps
in the network to allow biomass formation. Also, we
removed some reactions to avoid the formation of inade-
quate loop reactions, which makes impossible to calculate
balance of metabolic fluxes due to the arbitrary generation
of metabolites by this loop reaction as discussed above.
Only after fixing these problems, we could use the meta-
bolic model for FBA and predict the metabolic profiles.
Using the genome-scale model, we performed FBA to
understand the characteristics of the metabolic network

Table 3: Candidate reactions whose disruption increases the lactate or succinate production flux predicted by FBA simulations.

Reaction disabled by gene deletion Lactate production flux (mmol/gDW/h) Growth rate (1/h)

(Wild type) 3.33 (1.00) 9.54 × 10-2 (1.00)
ADP + Pi + 4H [e] → ATP + H2O + H 5.13 (1.54) 8.50 × 10-2 (0.89)

R5P + Xu5P ↔ S7P + GAP 5.02 (1.51) 9.06 × 10-2 (0.95)
MAL ↔ FUM + H2O 4.99 (1.50) 8.97 × 10-2 (0.94)
G6P + NADP → 6PGL + NADPH + H 4.99 (1.50) 9.06 × 10-2 (0.95)

Reaction disabled by gene deletion Succinate production flux (mmol/gDW/h) Growth rate (1/h)

(Wild type) 1.05 (1.00) 9.54 × 10-2 (1.00)
NADH + PYR + H ↔ LAC + NAD 2.24 (2.13) 8.11 × 10-2 (0.85)

Lactate and succinate production fluxes and growth rate of strains in which a reaction is disabled by gene deletion are presented. The production 
fluxes and growth rate were calculated with the parameters GUR = 0.3 mmol/gDW/h and OUR = 0.03 mmol/gDW/h. Values in parenthesis 
represent fold change compared with those of wild type. Abbreviations are as follows: H [e], extracellular proton; MAL, malate; FUM, fumarate; 
G6P, glucose-6-phosphate; 6-PGL, 6-phospho-D-glucono-1,5-lactone; R5P, ribose-5-phosphate; Xu5P, xylulose-5-phosphate; S7P, sedoheptulose-7-
phosphate; GAP, glyceraldehyde-3-phosphate; PYR, pyruvate; LAC, l-lactate.
Page 12 of 15
(page number not for citation purposes)



Microbial Cell Factories 2009, 8:43 http://www.microbialcellfactories.com/content/8/1/43
and to identify candidates of the target metabolic path-
ways that can be manipulated to improve organic acid
production by C. glutamicum. The results revealed that the
FBA agreed well with the experimental results; this sug-
gests that when the cells grow exponentially, the meta-
bolic profiles can be predicted by our genome-scale model
with maximization of the biomass production rate. We
also performed simulations to predict the metabolic pro-
files in amino acid production phases, and succeeded in
representing the metabolic profiles in the lysine produc-
tion phase. However, the glutamate production phase, in
which the cells stop growing, could not be represented by
the genome-scale model. Further improvements in the
model, such as inclusion of some gene regulatory machin-
ery, should be considered. Furthermore, we performed in
silico screening to identify candidates of the target meta-
bolic pathways that can be manipulated to improve
organic acid production by C. glutamicum. Our results
revealed that the disruption of H+-ATPase activity is the
most effective in improving lactate production under oxy-
gen deprivation conditions. In fact, recent studies showed
that the disruption of H+-ATPase results in significant
changes of metabolic flux profiles in C. glutamicum [46],
although the flux profiles under oxygen deprivation have
not yet been investigated. The experimental verification of
this in silico screening remains as future works. We expect
that further extensive studies using our genome-scale
model with experimental verifications will enable us to
understand in detail the characteristics of the metabolic
networks of C. glutamicum.
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