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Abstract

Background: The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular
enzymes and pathways, provides key information on biological systems in systems biology and
metabolic engineering. It is based on a comprehensive approach combining (i) tracer cultivation on
I3C substrates, (ii) 13C labelling analysis by mass spectrometry and (iii) mathematical modelling for
experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the
analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling
aspects in flux studies is limiting the application of metabolic flux analysis.

Results: We have developed OpenFLUX as a user friendly, yet flexible software application for
small and large scale '3C metabolic flux analysis. The application is based on the new Elementary
Metabolite Unit (EMU) framework, significantly enhancing computation speed for flux calculation.
From simple notation of metabolic reaction networks defined in a spreadsheet, the OpenFLUX
parser automatically generates MATLAB-readable metabolite and isotopomer balances, thus
strongly facilitating model creation. The model can be used to perform experimental design,
parameter estimation and sensitivity analysis either using the built-in gradient-based search or Monte
Carlo algorithms or in user-defined algorithms. Exemplified for a microbial flux study with 71
reactions, 8 free flux parameters and mass isotopomer distribution of 10 metabolites, OpenFLUX
allowed to automatically compile the EMU-based model from an Excel file containing metabolic
reactions and carbon transfer mechanisms, showing it's user-friendliness. It reliably reproduced the
published data and optimum flux distributions for the network under study were found quickly
(<20 sec).

Conclusion: We have developed a fast, accurate application to perform steady-state '3C
metabolic flux analysis. OpenFLUX will strongly facilitate and enhance the design, calculation and
interpretation of metabolic flux studies. By providing the software open source, we hope it will
evolve with the rapidly growing field of fluxomics.
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Background

Metabolic flux analysis (MFA) plays a central role in met-
abolic engineering and systems biology [1]. Metabolic
fluxes most closely reflect the underlying metabolic phe-
notype, whereas other 'omics approaches only yield a
sense of metabolic capacities (transcriptomics/proteom-
ics) or thermodynamic driving forces (metabolomics).
Metabolic flux analysis is particular important in rational
strain engineering, where we specifically seek to manipu-
late the metabolic phenotype.

Due to the high complexity of the examined metabolic
network, flux analysis typically involves the use of a stoi-
chiometric model, in which the metabolic reactions avail-
able to the cell are parameterized before the fluxes are
estimated from experimental data [2]. State-of-art flux
analysis today includes the use of stable isotopes to over-
come problems such as incomplete resolution of impor-
tant cellular pathways or the need to rely on
stoichiometric parameters with high uncertainty such as
ATP yield (Y arp) or P/O ratio which are inherently linked
to the purely stoichiometric approaches [3]. 13C-based
MFA therefore is a powerful extension of MFA [3]. In such
studies, after feeding 13C-labelled substrate(s), one meas-
ures the 13C tracer enrichment patterns of metabolites that
are rich in flux information, using instruments such as
nuclear magnetic resonance spectroscopy (NMR) [4,5] or
mass spectrometry (MS) [6]. There are mainly two differ-
ent approaches to extract flux information from the label-
ling patterns: by model-based flux fitting [3], and by
analytical interpretation of flux ratios [7] (both
approaches briefly reviewed in [8]). Redundant pathways
that contribute differently to tracer distribution can thus
be resolved. Flux analysis is carried out independently
from energy and redox balancing, because the balancing
equations only involve the carbon backbone. Conversely,
the flux results can be used to check the consistency of
energy and redox balances [9].

There has been significant development especially con-
cerning the experimental framework for 13C MFA [10]. 13C
MFA has been applied to various prokaryotic and eukary-
otic systems [11-13] involving miniaturized screening
studies in small scale [14,15]. There is an increasing trend
towards large-scale network-based stationary 3C MFA
[16,17], as well as non-stationary (i.e., dynamic) 13C MFA
[18-20]. Large-scale metabolic models are preferred in
order to capture, as many reactions as possible, bearing
effects on carbon labelling, and to maintain global con-
sistency of flux estimates. Considering metabolism in iso-
lated parts or using overly summarized metabolic models
can lead to biased results [17]. However, specifying large
sets of isotopomer balances and subsequently performing
parameter estimation can be very cumbersome.
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Several software packages have been developed to facili-
tate flux analysis, the most popular being FiatFlux [21]
and 13C-FLUX [22]. FiatFlux implements the flux ratio
approach to 13C MFA [7] and comes preconfigured to
derive flux ratios and net fluxes for [1-13C]- and [U-13C]-
glucose experiments and GC-MS analysis of proteinogenic
amino acids for several microorganisms. Recent develop-
ments allow to generate equation systems automatically
[23], which facilitates the extension of the flux ratio
approach to various metabolic models, input substrates
and labelling data.

In contrast, 13C-FLUX is a general purpose package for
modelling, simulation, design, evaluation, and statistical
analysis of 13C-labelling experiments [22]. Unfortunately,
13C-FLUX is relatively cumbersome to use in terms of
requiring the user to specify free fluxes, to set up the initial
solution, and to manually initialize and terminate each
optimization. It is not possible to perform multiple
rounds of optimization unsupervised, which is frequently
used to check convergence of the optimization results.
There is a general lack of support in aspects of experimen-
tal design, i.e., explore change in labelling patterns for a
different flux distribution and/or various combinations of
input substrates. For expert users, there is limited oppor-
tunity to modify source code for implementation of new
algorithms and workflows for different labelling prob-
lems.

There is a need for !13C MFA tool that is simple, flexible
and transparent. Fast computation is crucial. For a non-
expert user, the software must enable a smooth reproduc-
ible workflow covering the whole process from metabolic
model definition to flux estimation. A flexible approach
necessarily supports user-defined metabolic systems,
while a transparent computational model offers expert
users the opportunity to tailor make downstream algo-
rithms for parameter estimation and statistical analysis.

To meet this challenge, we have developed OpenFLUX, a
simple yet flexible application to perform steady-state 13C
MFA using mass isotopomer distribution data. Open-
FLUX provides the user a versatile and intuitive spread-
sheet-based interface to control the underlying metabolite
and isotopomer balance models used for flux analysis and
allowing for the implementation of large-scale metabolic
networks. The user then has the option of using the
accompanying algorithm package for flux estimation and
sensitivity analysis, or applying alternative numerical
approaches for flux analysis (e.g., [24]). OpenFLUX gener-
ates isotopomer balance model based on the EMU
decomposition algorithm [25]. Using EMU variables is
computationally more efficient because the number of
necessary isotopomer balances is significantly reduced
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[25] compared to alternative representations of labelling
distribution of metabolites, such as AAV (atom activity
vector) [26], IDV (isotopomer distribution vector) [27],
cumomer [28] and bondomer [29].

The present work describes the implementation and vali-
dation of OpenFLUX. Specifically, we explain the tasks
performed by OpenFLUX, provide an illustration of the
model definition setup of a hypothetical metabolic
model, and also describe the structure and contents of the
resulting metabolic models. The software is then validated
by reproducing published !3C MFA results.

Methods

Implementation of OpenFLUX

OpenFLUX consists of two parts for (i) automated model
set-up or modification from user entered reaction data
and (ii) the application to flux analysis by calculating
fluxes from experimental data as well as statistical evalua-
tion (Figure 1). The first part consists of a parser that auto-
matically generates the metabolite and isotopomer

-
NETWORK DEFINITION

» Metabolic reactions and atom transitions
» Input substrate(s)
» Measured metabolites

PARSER (JAVA)

EXPERIMENTAL DATA

» Mass isotopomer distribution
» Biomass composition and growth rates
» Exo-metabolite consumption/production rates

N

METABOLIC MODEL
¥ Stoichiometric matrix
» |sotopomer balance model

12

COMPUTATIONAL
ALGORITHM (MATLAB)

J

RESULTS OUTPUT
» Optimized flux distribution
» Flux parameter confidence interval

Figure |

Workflow of OpenFLUX. The software consists of 2
components (shaded box) — a JAVA-based metabolic model
parser and a set of MATLAB-based algorithms for parameter
estimation and sensitivity analysis. The user defines the reac-
tion network in the model definition file, which contains the
metabolic model and the experimental data input. The parser
reads the metabolic model, and subsequently generates a
metabolite balance model (stoichiometric matrix), and an
isotopomer balance model using the EMU framework. The
MATLAB-based computational algorithms use these models,
in conjunction with the experimental data, to perform least-
square parameter estimation and parameter sensitivity analy-
sis. The optimized flux distributions and confidence intervals
are obtained as results output.
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balance models from a text-based model definition. The
second part is a structured workflow that implements a
series of numerical optimization algorithms for flux
parameter estimation and sensitivity analysis.

Automated generation of metabolic models

OpenFLUX parses the metabolic model from a structured
tab-delimited text file, created using a spreadsheet pro-
gram, into MATLAB readable metabolite and isotopomer
balance models. The former is the stoichiometric matrix
(S) in the mass balance

S-v=0 (1)

while the latter is a non-linear function (F) that maps
input substrate(s) mass isotopomer distribution(s) (MID)

(™) to the simulated MIDs ( ) using the flux dis-
tribution (v ) as a parameter

D_CMIC =F()—Cinput;17) (2)

The generation of the isotopomer balance model closely
follows the recently developed EMU framework [25],
whereby the model generation algorithm progressively
constructs EMU balances by identifying all reactant EMUs
that contribute to a given product EMU. The algorithm
progresses until each of the simulated EMU products can
be traced to the input substrate EMUs via a series of bal-
ancing equations. These equations are subsequently
organized into matrix equations (see [25] for details).

Assignment of free fluxes
The solution to (1) can be expressed as a linear combina-

tion of free fluxes ( 7/ ) [28]

v =NS- v/ (3)
where N& is the null space of S and the dimension of v/
equals the nullity of S, i.e., degrees-of-freedom in the sys-
tem. It is these free fluxes that the optimization program
will manipulate in order to achieve the best fit to the
measured data.

The choice of free fluxes in (3) is not unique. In Open-
FLUX, the flux vector is first decomposed into four differ-
ent reaction types: bi-directional forward and reverse

reactions (v~ and v ), and irreversible reactions that
are either free fluxes ( E}Ze) or dependent fluxes (EQZ, ),

and rearranged to the form
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E(_
airr
free
—irr (4)
Udep
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I

Using this form, the reduced column echelon form of the
null-space matrix (NS)

I 0
0 I
NS = ( null( S ) )column reduced - 0 M:{erz (5)
I My
explicitly maps the free fluxes defined as
v
vl =] (6)
=1
Ufree

to the full flux vector, v .

This transformation confers two main advantages. Prima-
rily, the assignment of free fluxes is automated to include
all reverse fluxes and a subset of irreversible fluxes (6). The
reverse fluxes are determined from the spreadsheet, where
the user has identified the bi-directional reactions in the
network, and, for each bi-directional reaction pair, the for-
ward and reverse counterpart. Additional information
may be specified, such as known reaction rates derived
from experimental data (e.g., biomass precursor drain or
extracellular rates), or the user's preference for an irrevers-
ible free flux assignment. OpenFLUX will then prioritize
the assignment of free fluxes, but ultimately, the assign-
ment is determined by the stoichiometric matrix.

A secondary advantage is that v is calculated explicitly

from v/

in a single matrix operation (5). This circum-
vents the use of the stoichiometric matrix as an implicit
constraint during optimization [17]. The formulation of
the equation system used for calculation of absolute
fluxes is greatly simplified compared to the convention
proposed by Wiechert and de Graaf (1997) [28]. Further-

more, analytical derivation of the gradient matrix is
straightforward (i.e., % =NS).
v

free

We note that the flux coordinates for bi-directional fluxes,
v< and v, while representing a natural choice, differ from
the conventional flux coordinates, net flux (v"¢) and
exchange flux (1*h), used in flux analysis [28]. Both flux
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coordinates can be compactified to the same effect whose
main purpose is to improve the numerical performance.
The rationale for the change in coordinates is detailed in
the Appendix. It is straightforward to interchange between
the coordinates using:

et :‘UH—UH‘ (7)

v -

u_)—ve‘

(8)

chh —

2

Flux calculation via numerical optimization

OpenFLUX uses FMINCON, a gradient-based minimiza-
tion search function contained in MATLAB's Optimiza-
tion Toolbox, to perform both flux parameter estimation
and sensitivity analysis. FMINCON utilizes a quasi-New-
ton sequential quadratic programming (SQP) method for
constrained, non-linear optimization. The algorithm is
well-suited for metabolic flux analysis where physiologi-
cally meaningful boundaries exists for the free fluxes
[22,30].

For parameter estimation (Figure 2), the program searches
for values of the free fluxes within the domains of the flux
constraints in order to minimize the weighted sum of
squared residual errors (& ) between experimental data

—calc

(x™) and calculated values ( x“*“), where the weight is

the inverse of the variance-covariance matrix (D)

. — 1= — — —
min _g'D s,wheresz(xmlc—xme“)

Ve )

34—,[0,1]

The program assumes measurements to be uncorrelated,
i.e., D contains as a diagonal the individual measurement

variances (&2 ). The constraints applied to the optimiza-
tion are based on the definition that all fluxes must be
positive, since reversible reactions are separated into the
forward and reverse components

v=NS- v >0 (10)

The optimization is also bounded to improve numerical

stability. The irreversible fluxes E}Ze are non-negative and
upward bounded by the net flux in the system. The upper
bound (UB) is by-default set to 20 times the maximum
substrate uptake rate, but can be varied

0<vjy, <UB

(11)
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Simulated
MIDs
fvuh‘ — F(V, fmpm‘)

Experimental ‘ ‘

~

MIDs 2 ‘ I -
f’”"”’ D E — ()—rmic_gmm) 7= fVS' g
. , fiee <
min (E’l)“ g_)
[r‘ [ “} - pelo e
— p v
Vi = free
pree 1_1)17“],1'
Subjected to: inverse Flux
0=yl compaction solution
0<v!" <UB
v20
~ J

Figure 2

Algorithm for weighted least-square parameter esti-
mation. OpenFLUX uses MATLAB's FMINCON to mini-
mize the residual error (& ) between the experimental MIDs
(7%, v1%) and the simulated MIDs (X*“), by optimizing
the free fluxes (E}Zeﬁ(_’[o’l] ), which are subjected to lower
and upper boundary value constraints. £ is weighted by the
variance matrix (D). The inverse compactification function is
used to transform reverse flux from a numerical parameter
(v [0.1]) into a physical flux parameter (v¢<). The null-space
matrix (Ns) is then used to calculate the flux vector (v ) from
the free fluxes (F}Ze,iﬁlo’l] ). Finally, X“ is calculated
using ¥ and known MIDs of the input substrates (x").
FMINCON terminates when a local minimum is found,
revealing the optimum free fluxes.

The reverse free fluxes v~ are non-negative, but have no
natural upper limit. Hence, a compactification operation
is used to transform from a physical [0, infinity] scale to a
numerical [0, 1] scale [28].

T (1)
P+v <

A scaling factor (P) is used, whose value is typically of the
same order-of-magnitude as the largest input substrate
flux [31]. Alternatively, P can be adjusted during optimi-
zation to obtain a better conditioned Jacobian matrix
[24].

0 <o « T, where v 101 =

Statistical evaluation of flux data

Flux statistics, e.g. confidence intervals of single flux
parameters, are important to evaluate flux data and deter-
mine if observed differences between mutants or culture
conditions reflect physiological differences. Confidence
intervals for flux parameters (Para;) are determined using
the non-linear approach developed by Antoniewicz et al.

http://www.microbialcellfactories.com/content/8/1/25

(2006) [30]. This approach provides a more accurate esti-
mate of flux uncertainty than local estimates of the stand-
ard deviations. Briefly, the approach employs that the
minimized variance-weighted sum of squared residual is
approximately y2 distributed and therefore the difference
(Ag;) between the objective function evaluated at the opti-
mal solution and the objective function when one flux is
fixed follows a y2-distribution with one degree of free-
dom. Accordingly, an approximate (1-a) confidence
interval for Para; can be defined by the two solutions for
para;, to

Ag = i (1), where

Ae =& (Efrzerfmearg —e (Eﬁw,fmm,g

) Para;=Para;, ) Para;=Para

optimum
(13)

FMINCON is used to search for the solution pair, and
each search is initialized from the optimum solution
found during parameter estimation. The constraints
applied in parameter estimation, (10)-(12), are also
applied here ensuring that the boundaries to confidence
interval represent feasible solutions. Analysis can be per-
formed on different forms of Para;, such as free or depend-
ent flux, flux ratio, or reversibility ratio. Alternatively, flux
standard deviations can be estimated using the Monte
Carlo approach included in OpenFLUX [32].

Flexible use for different types of experimental labelling data
OpenFLUX automatically indicates to the user the input
substrate EMUs that must be specified prior to label sim-
ulation. Specifying these EMUs is done either by directly
defining the vector elements of the input substrate EMUs,
or indirectly using one of OpenFLUX's built-in functions.
These functions calculate the corresponding vector ele-
ments using either the atom activity vector (AAV) or the
isotopomer distribution vector (IDV) of the input sub-
strates, both of which are well known notations in flux
modelling [26,27].

The simulated output vector (X

) can be modified by
the user to suit the experimental data type. The mathemat-

ical manipulations that can be performed on X

include
(i) integrating mass interference from non-backbone sta-
ble isotopes using Cauchy-product [33], (ii) normalizing
and truncating EMU variables to match the length of a
shorter MID vector (typically 2 to 3 elements per metabo-
lite), (iii) converting EMU variables into summed frac-
tional labelling (SFL), and (iv) include or exclude specific
element in an EMU variable (e.g. to represent positional
enrichment data). These modifications are not automated
by the software because they can be very diverse.
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An EMU variable is essentially a MID vector. One can
immediately simulate mass spectroscopy data using EMU
variables. It is, however, possible to generate NMR fine
spectra from EMU variables (detailed in [25]). OpenFLUX
currently does not support automatic generation of NMR
fine spectra, thus the user needs to list all essential EMU
variables required for the transformation process during
model set up and enter the transformations manually.

Design of experiments

Not all intracellular fluxes can be resolved in a single
labelling experiment, but careful experimental planning
can ensure that key unknown fluxes are determinable
[34,35]. Determining the optimal labelled substrates to
use and optimal metabolites to measure is a non-trivial
task, often requiring sophisticated design strategies
[31,36-38]. A common theme emerging from these design
approaches is that one must be able to visualize the rela-
tionship between flux distribution, input substrates used
and labelling response measured. OpenFLUX partially
supports experimental design by allowing user to perform
forward label simulation, that is to predict the labelling
state of specified EMUs based on fluxes and input labels.
Using Monte-Carlo simulation to explore fluxes in the
expected range, it is possible to establish - for a given
input label - what EMUs are most responsive to changes
in flux, and hence what EMUs should preferably be meas-
ured.

Excluded metabolites and reactions

The spreadsheet based model specification allows the user
to specify input substrate(s), simulated EMU variables as
well as metabolites excluded from the stoichiometric
matrix.

Five reaction types are supported. In addition to irreversi-
ble ("F") and reversible forward ("FR") and reversible
reverse ("R") fluxes, it is possible to specify reactions used
only for metabolite balancing ("B") and reactions used
only for isotopomer balances ("S"). The atom transition
equation for "B" type reaction is not required so that only
relevant information has to be generated prior to the cal-
culation. Type "S" reaction is a convenient approach to
map a product's MID to their respective precursor(s) with-
out incurring additional degrees-of-freedom in the metab-
olite balance model. Metabolites unrelated to the
isotopomer balances, such as ATP and NADH, are marked
with "X" in the atom transition equation. This allows user
to set up a metabolic model that includes co-factor bal-
ances.

Test case flux analysis TCA cycle

OpenFLUX' semantics and algorithms were tested using a
small network. The metabolic network is a representation
of a condensed TCA cycle (Figure 3, 4), which also

http://www.microbialcellfactories.com/content/8/1/25
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Figure 3

Flux distributions for a simplified TCA cycle model as
described in the text and Appendix. Fluxes were calcu-
lated using OpenFLUX (top values) and the cumomer pack-
age 13C-FLUX [22] (bottom values). The absolute forward
fluxes are displayed in the circles. The free fluxes (R2, R8,
R9) and their 95% CI (generated by OpenFLUX) are dis-
played in the rectangular boxes. Full arrowhead: forward
flux. Line arrowhead: reverse flux. All reactions are unidirec-
tional except for the SUC<>OAA reaction. Suffix: _B, bio-
mass drain; _EX, exo-metabolites. Metabolites: PYR,
pyruvate; ACCOA, acetyl-CoA; CIT, citrate/isocitrate; AKG,
a-ketoglutarate; SUC, succinate; OAA, malate/oxaloacetate;
GLU, glutamate. Reactions: R1, pyruvate uptake; R2, gluta-
mate take; R3, pyruvate dehydrogenase; R4, citrate synthase;
RS, iso-citrate dehydrogase; R6, a-ketoglutarate dehydroge-
nase & succinyl-CoA hydrolase; R7/R8; fumarate hydratase &
malate dehydrogenase; R9, malic enzyme; R10, pyruvate car-
boxylase; RI I/R12, oxidative phosphorylation; R13, oxygen
uptake; R14, CO2 evolution; RI5, ATP maintenance; R16,
pyruvate biomass drain; R17, a-ketoglutarate biomass drain;
R 18, oxaloacetate biomass drain.

includes gluconeogenic (R9) and anaplerotic (R10)
fluxes. The network has 2 input substrates (pyruvate (R1),
glutamate (R2)), 3 biomass precursor drain fluxes
(oxaloacetate (R18), o-ketoglutarate (R17), pyruvate
(R16)), and 1 reversible reaction (R7 - forward, R8 -
reverse) between succinate and oxaloacetate. Oxidative
phosphorylation reactions are also included (R11, R12).
It is assumed that the CO, efflux (R14) is unidirectional
[see Additional file 1]. The synthetic experimental data
assumed available consists of the production rates of
valine and lysine (R19 and R20), the precursor with-
drawal rates from pyruvate, o-ketoglutarate and oxaloace-
tate towards biomass formation, and values on the
relative fraction of the three mass isotopomers M, M; and
M, for valine, lysine, aspartate and succinate. The label-
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RxnlD rxnEq rxnCTrans rates rxnType basis deviation
R1 PYR_EX=PYR abc = abc F 1
R2 GLU_EX = AKG abcde = abcde F X
R3 PYR = ACCOA + CO2 + NADH abc = bc + a + X F
R4 ACCOA + OAA = [CI ab + cdef = fedbac F
R5 ICl = AKG + CO2 + NADH abcdef = abcde + £ + X F
R6 AKG =0.5SUC +0.5SUC + CO2 + NADH + ATP abcde = 0.5 abed + 0.5 dcba + e + ¥ + X F
R7 SUC = OAA + FADH2 + NADH abcd = abed + X + X FR
R8 OAA + FADH2 + NADH = 0.5 SUC + 0.5 SUC abcd + X + X = 0.5 abcd + 0.5 dcba R X
R9 OAA = PYR + CO2 abcd = abc + d F X
R10 PYR + CO2 + ATP = OAA abc + d + X = abcd F
R11 2 NADH + O2 =4 ATP B
R12 2 FADH2 + 02=2ATP B
R13 0O2_EX=02 B
R14 CO2=CO2_EX a=a F
R15  ATP = ATPM B
R16 PYR = PYR_B B 0.07 0.007
R17 AKG = AKG_B B 0.23 0.023
R18 OAA = OAA_B B 0.12 0.012
R19 PYR + PYR = VALX + CO2 abc + def = abefc + d F 0.05 0.005
R20 OAA + PYR =LYSX+ CO2 abcd + efg = abcdgf + e F 0.03 0.003
R21 OAA = ASPX abcd = abed S
excludedMetabolites
measurements
PYR_EX 0.031  Valine m - .
GLU_EX 0.2468 e Reaction example: Pyruvate dehydrogenase
GOSIER 0.0472 m+2
02_EX 0.0365 Lysine m Pyruvate = AcetylCoA + CO2 + NADH
PYR_B 0.1862 m+1 abc = be + a o+ X
AKG_B 0.1689 m+2
OAA_B () ()
ATPM
VALX error o
LYSX 0.0003 Valine m +
Smulate dMDVs e m
VALX#1111 0.0004 Lysine m
LYSX#111111 0.0019 m+1
il 0.0017 m+2
SUCH#1111 o) 6 )
inputSubstrates
PYR_EX
GLU_EX
Figure 4

Overview of the network model definition text file. The model definition file consists of one table and five lists. The
metabolic reaction network is defined in the table, and is organized under the following headings: reaction ID (rxnID), reaction
equation (rxnEQ), reaction atom transition (rxnCTrans), reaction rate (rates), reaction type (rxnType), free flux allocation (basis)
and flux value standard error (deviation). If a given reaction rate is known (e.g., biomass drain rates), then the flux value and the
corresponding measurement error can be included in the basis and deviation columns respectively. The parser requires the user
to separately list down metabolites that are excluded from the stoichiometric model (excludedMetabolites), EMUs that are to be
calculated by the isotopomer model (simulatedMDVs), and input substrates that contribute to the isotopomer balance (input-
Substrates). The experimental MIDs (measurements) and the associated errors (error) are listed in the same order as the EMUs
in the simulatedMDV:s list. The figure insert (bottom right) is an example of how pyruvate dehyrogenase reaction is described in
the rxnEQ and rxnCTrans columns. CO, is produced by cleaving the carboxylic end (Cl) of pyruvate, leaving the acetyl moiety
(C2-C3). Alphabet letters in the atom transition equation is used to represent the transfer of first carbon atom of pyruvate to
CO,, and the second and third atoms of pyruvate to the first and second atoms of acetyl moiety. An exception is the letter "x"
or "X", which is used to exclude metabolite from the isotopomer balance, such as NADH.
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ling data were corrected for mass interference from non-
carbon backbone atoms. Fluxes were normalized to the
pyruvate input flux of 1 mmol g! h-1. A detailed instruc-
tion of how to formulate, set up and implement the
model using OpenFLUX is provided in the Appendix.

Metabolic model for lysine producing Corynebacterium
glutamicum

We reconstructed the metabolic network of lysine produc-
ing C. glutamicum based on published information [39]
and additional modelling details kindly provided by the
authors [see Additional file 2]. The input substrate used
was [1-13C]-glucose (with 99% enrichment purity), and
all fluxes were normalized with respect to the glucose
uptake rate (i.e., fluxes are expressed in percentage of glu-
cose uptake rate). As the published MIDs are uncorrected,
all the simulated EMU variables were modified for mass
interference from non-carbon backbone isotopes using
the molecular formula of the amino acids fragments (i.e.,
parent ion cluster). The first n+1 signal elements were nor-
malized (n indicates number of backbone carbon), and
then truncated to the correct vector length (equivalent to
the measured MIDs) before performing weighted least-
square analysis. The inferred metabolic model consisted
of a total of 71 reactions and 42 balanceable metabolites.
The metabolite model yielded a total of 26 degrees-of-
freedom and 18 fluxes were determined experimentally:
anabolic precursor yields (11), biomass yield (1), secreted
product yields (5), and glucose uptake rate (1). To reduce
the number of unknown parameters, these 18 fluxes were
chosen as free fluxes, and the associated flux values were
used deterministically as no redundant data exist in the
measurement set. Note that if one suspects gross measure-
ment errors in the flux measurement set, then these fluxes
should be set free and the flux values subjected to the
least-square analysis together with the MIDs. Five (5) of
the remaining 8 free fluxes are associated with the revers-
ibility of non-oxidative pentose-phosphate pathway
enzymes (3), glucose-6P isomerase (1) and intercellular
CO, exchange (1). The other 3 free fluxes were assigned
(by the software) to the irreversible fluxes of glucose-6P
dehydrogenase, pyruvate carboxylase, and glycine synthe-
sis via the serine route.

The MID of 9 amino acids and trehalose were reported.
Three "S" type reactions were included in the metabolite
network to directly map label distribution of alanine,
aspartate and glutamate to pyruvate, oxaloacetate and o.-
ketoglutarate, respectively. This was not necessary for all
other amino acids and trehalose because these metabo-
lites were already described in the isotopomer balances.

Computational requirements
All computational work was performed on a Pentium D
3.00 GHz computer. OpenFLUX was implemented in

http://www.microbialcellfactories.com/content/8/1/25

MATLAB 7.3.0.267 (R2006b) (The MathWorks, Natick,
MA, USA). Numerical optimization was carried out using
FMINCON function from MATLAB's Optimization Tool-
box. Since we used numerical gradient, FMINCON auto-
matically used the active-set algorithm (also known as
"medium scale"). Termination tolerance on the function
value was set to 1 x 104, and the optimizations were ter-
minated when the magnitude of directional derivative in
search direction is less than 2 x 104. 13C-FLUX was
implemented in Ubuntu Linux 7.1 operating system.

Results and discussion

Test case flux analysis TCA cycle

The specified network (Figure 3) has 9 degrees-of-free-
dom. Of the required 9 free fluxes, 7 were assigned by
default from the definition: R1 (specified input flux), R8
(reverse flux), R16, R17 and R18 (specified biomass pre-
cursor drain fluxes), and R19 and R20 (specified amino
acid production flux). R2 was specified as a preferred free
parameter in the model definition, and - since this was an
acceptable choice — was assigned by the parser. Open-
FLUX automatically assigned the remaining free parame-

Mo 0 0 0 0 0 0 0]
essbessssssssssssssnsssssssssssnsnsasssnssnnnns
N TV R | R VRV R
0:0 1 0 0 0 0 0 0
0ot0 0 L 0 0 0 0 0
010 0 0 1 0o 0 0 0
0t0 0 0 0 1 0 0 0| . -
00 0 0 0 0 1 0 0 |eid
1] 1/.
0+0 0 0 0 0 0 1 0 !
i Vig
0t0 0 0 0 0 0 0 1
remge=ssssssssssssssssssssssssssssssssssssssessy Voo
ot -2 -2 1 -1 -1 1 0
V= ' ®| Ve
0f1 -2 -2 -1 -1 -1 1 0
' vV,
0:1 -2 -2 -1 -1 -1 1 o0 .
01 -2 -2 -1 -2 -1 2 of|™
082 -4 -4 -2 -3 -2 3 of "
015 -1 -1 05 -1 -05 1 o "
0425 -5 -5 _25 _4 -25 4 0
.
013 -5 -6 -3 -5 -4 5 0
0410 -20 -21 —-10 —-17 —-11 17 -1
oto 0 1 0 1 1 -1 1
i1 -2 -2 -1 -2 -1 2 0]
Figure 5

The null-space matrix generated from the stoichio-
metric model. The structure of this NS reflects the generic
NS matrix form shown in Eq. 3. The Identity matrix indicate
the |-to-1 mapping of the 9 free flux parameters — vg, v,, vq
are the unknown parameters, while v|, v,q, V50, V|¢, V|72and
v gare the known parameters.
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ter to R9. Note that the correct NS structure (Eq. 3) is
automatically produced (Figure 5).

The parser-generated isotopomer balance model consists
of 50 EMU variables organized into 7 matrix equations, of
which 14 are known input substrate EMUs. With the EMU
approach, the total number of unknown scalar MID vari-
ables (116 variables) involved in the optimization is sig-
nificantly less than a complete isotopomer model (262
variables).

The model created by OpenFLUX was validated for the
TCA cycle test case by comparing the labelling data simu-
lated for a given set of fluxes with cumomer based simu-
lation (i.e., 13C-FLUX) [22]. Forward simulation based
on hypothetical fluxes yielded identical labelling data
results for all cases (data not shown). This means that the
semantics used to specify the reaction network and the
underlying isotopomer balance model constructed by
OpenFLUX via the EMU decomposition algorithm is con-
sistent.

The labelling patterns obtained for the test case were next
corrupted with 1% Gaussian noise, and subjected to least-
square analysis using 13C-FLUX [22] and OpenFLUX.
Randomized initial solutions were used to start each opti-
mization. All approaches yielded identical optimum solu-
tions, consistent with the hypothetical values (Figure 3).
This is an essential performance benchmark, since new
semantics were introduced to define reversible and scram-
bling reactions.

The introduction of "X" type metabolites and "S" type
reactions in OpenFLUX' flagging system for metabolites
and reactions has several advantages. In this example,
OpenFLUX automatically calculated the cofactor balances
and the required oxygen uptake rate based on a given P/O
ratio of 3 (Figure 5). OpenFLUX could also use the label-
ling input from aspartate, without introducing this amino
acid as a balanceable metabolite. With 13C-FLUX, we had
to artificially create a new reaction withdrawing a fraction
of oxaloacetate to constitute the flux of aspartate synthesis
and allow the consideration of its labelling pattern for flux
estimation.

Real case flux analysis — lysine producing C. glutamicum
The performance of OpenFLUX was tested for a real case
flux scenario, comparing a low and a high lysine produc-
ing mutant of the soil bacterium C. glutamicum [39]. For
these mutants, fluxes were previously quantified combin-
ing mass balancing with tracer experiments on [1-13C]-
glucose, GC-MS 13C enrichment analysis of proteinogenic
amino acids [10,40], and isotopomer mapping matrices
based simulation.

http://www.microbialcellfactories.com/content/8/1/25

The isotopomer model for C. glutamicum is comprised of
108 unknown EMU variables, with 15 additional known
[1-13C]-Glucose and CO, EMUs. A total of 20 balancing
matrix equation sets were used to calculate the unknown
EMUs, 9 of which are single equation balances that are
easily calculated. The 108 unknown EMU variables corre-
spond to 360 scalar MID variables, which is a substantial
reduction from the 8380 unknown scalar variables
expected in the full isotopomer model.

A total of 50 cycles of optimization were performed for
both wild type and engineered strain datasets. The total
computation time for each cycle was about 16 seconds.
The calculated MIDs shown in Table 1 were derived from
one of the optimization cycles that showed the smallest
weighted sum of square residuals. All of the MIDs calcu-
lated by OpenFLUX were consistent with the published
data (Table 1). The optimized free fluxes were also repro-
duced (Table 2). Comparing the 90% confidence intervals
reported by Becker et al. [39] with the gradient-based
search intervals generated by OpenFLUX, we could infer
that there is no significant difference between the esti-
mated free fluxes. In addition to the gradient-based
search, we used the Monte-Carlo approach to generate the
90% CI [32,41] (Table 2). Briefly, the analysis was carried
out by corrupting both the MIDs measurements with the
prescribed relative error and the reported experimental
yields for biomass and by-products with the correspond-
ing deviations. The new data set was then used for param-
eter estimation. Optimization was performed iteratively
until a sample size of 150 independent flux distributions
was obtained. The 90% CI for a single parameter was then
calculated using the free parameter's mean and variance
estimated from the samples [42]. The 90% CIs generated
through Monte-Carlo simulation were consistent with the
original work, as well as with the intervals generated by
gradient-based search. Notably, the confidence interval
generated by Monte Carlo approach is generally wider
than the gradient-based search because the variations in
the experimental yields were included in the analysis. The
wider 90% CI managed to capture all of the published
optimum free fluxes. Overall, this validates OpenFLUX's
accuracy with respect to the isotopomer balance model
and the numerical approach.

Conclusion

OpenFLUX is a generic and efficient novel software tool
for 13C MFA. We have shown that the front-end model
setup is relatively simple and intuitive, and the back-end
optimization is stream-lined and is significantly faster
than 13C-FLUX. Overall, this means that studying large-
scale metabolic models becomes more tractable, espe-
cially for problems that have large number of unknown
free fluxes and/or demand more stringent statistical eval-
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Table I: Experimental and calculated MIDs of the wild-type and engineered C. glutamicum.

Wild-type Mutant
Metabolite fragment Published data Present work Published data Present work
Exp Calc Calc Exp Calc Calc
ALA 260 M, 0.508 0.509 0.509 0.523 0.525 0.525
M, 0.353 0.354 0.354 0.341 0.342 0.342
M, 0.106 0.106 0.106 0.103 0.104 0.104
VAL 288 M, 0.345 0.348 0.348 0.364 0.366 0.366
M, 0.398 0.398 0.398 0.392 0.392 0.392
M, 0.184 0.184 0.184 0.175 0.175 0.175
THR 404 M, 0.333 0.334 0.334 0.344 0.344 0.344
M, 0.376 0.376 0.376 0.373 0.371 0.371
M, 0.196 0.196 0.196 0.191 0.192 0.192
ASP 418 M, 0.334 0.333 0.333 0.345 0.343 0.343
M, 0.373 0.375 0.375 0.370 0.370 0.371
M, 0.195 0.196 0.196 0.192 0.193 0.192
GLU 432 M, 0.247 0.25 0.249 0.257 0.264 0.264
M, 0.365 0.366 0.366 0.365 0.365 0.365
M, 0.241 0.239 0.240 0.236 0.232 0.232
SER 390 Mo 0.450 0.449 0.448 0.462 0.463 0.463
M, 0.358 0.358 0.358 0.349 0.349 0.349
M, 0.143 0.143 0.144 0.140 0.140 0.140
PHE 336 Mo 0.271 0.274 0.274 0.287 0.289 0.289
M, 0.382 0.381 0.381 0.380 0.381 0.381
M, 0.228 0.228 0.228 0.220 0.220 0.220
GLY 246 M, 0.741 0.742 0.742 0.741 0.743 0.743
M, 0.184 0.185 0.185 0.183 0.184 0.184
TYR 466 M, 0.234 0.236 0.236 0.246 0.249 0.249
M, 0.353 0.356 0.356 0.351 0.358 0.357
M, 0.242 0.245 0.245 0.234 0.238 0.238
TRE 361 M, 0.061 0.062 0.062 0.088 0.088 0.088
M, 0.604 0.607 0.606 0.573 0.577 0.574
M, 0.207 0.207 0.207 0.213 0.213 0.213
Sum weighted residues* 761 684 1735 1461

* For comparative reasons, residuals resulting from minuscule technical replication errors used in original work, were accepted here.
Table contains experimental and calculated MIDs published in Becker et al. [39]. The MIDs generated using OpenFLUX are consistent with the
original data. The MIDs are uncorrected and have been normalized to the sum of the first n+| peaks (n = number of backbone carbon).

uation. The underlying metabolic models are transparent
to the user, and could be adapted for other purposes. In
addition, the definition of the simulated output vector is
flexible, thus various experimental data types can be
applied. Finally, the inclusion of two different but com-
plementary confidence interval determination algorithms
(i-e., non-linear and Monte Carlo) enables a more robust
evaluation of flux solutions.

OpenFLUX performed well on real metabolic problems.
We have applied the C. glutamicum metabolic model as an
example problem, and were able to reproduce the calcu-
lated MIDs, the optimized flux parameters and the corre-
sponding confidence intervals. We also showed that
OpenFLUX is computationally fast.

OpenFLUX is useful for exploring different network topol-
ogy, flux distribution and modelling assumptions. The

application grants the user the ability to control the
underlying metabolic models and data inputs via a simple
textual interface. Experimental design is critical to justify
choice of substrates and analytical techniques. One can
troubleshoot potential observability and sensitivity issues
by simulating hypothetical MIDs data on a typical range
of flux distributions, and subsequently explore the resolu-
tion of different flux parameters. OpenFLUX supports
testing of various labelled substrates. For incomplete met-
abolic models, 13C MFA could be used to validate soft
assumptions regarding P/O ratio and cofactor balances
(ATP, NAD(P)H).

Overall, the purpose of OpenFLUX is to encourage the
adoption of 13C tracer studies for flux analysis in newly
arising systems approaches. Providing it open source aims
on further development of the software as a general plat-
form for 13C fluxomics. 13C MFA requires significant
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Table 2: Estimated optimum free fluxes (mmol/100 mmol Glucose) and the associated 90% confidence interval.

Wild-type Mutant

Flux parameter Optimum 90% ClI Optimum 90% CI
Glucose-6P dehydrogenase A 46.8 [46.3, 47.3] 56.2 [55.9, 56.5]

B 46.7 [46.3, 47.1] 56.3 [56.1, 56.5]

C [46.2, 47.3] [56.0, 56.6]
Pyruvate carboxylase A 71.5 [67.6, 75.7] 62.6 [60.0, 64.8]

B 749 [70.9, 79.3] 63.6 [61.8, 65.6]

C [70.4,79.5] [61.2, 65.7]
Glucose-6P isomerase (rev) A 1.3 [1.2,1.3] 2.4 [2.3,24]

B 1.27 [1.26, 1.30] 2.37 [2.33,2.39]

C [1.24, 1.31] [2.32,2.41]
Transketolase | (rev) A 0 [2.1,2.5] 0 [0, 0]

B 2.21 [2.03, 2.35] 0 [0, 0]

C [1.93,2.49] [0, 0]
Transaldolase (rev) A 22 [2,2.3] 4.5 [4.3, 4.6]

B 2.16 [2.06, 2.24] 4.50 [4.40, 4.62]

C [2.00, 2.33] [4.31, 4.69]
Transketolase 2 (rev) A | [0.7, 1.3] 1.6 [1.4,1.7]

B 1.02 [0.84, 1.21] 1.50 [1.44, 1.57]

C [0.73, 1.41] [1.41, 1.61]

A. Original work [39]; B. Gradient-based search; C. Monte Carlo. B's and C's optimum values are derived from the best optimum solution found by
OpenFLUX. The unit for fluxes and confidence intervals is mmol/100 mmol glucose.

upfront investment to construct the isotopomer balance
model and to establish the numerical optimization for
flux analysis. Users who are already familiar with MFA will
find that 13C MFA is readily implemented once the atom
transitions are included into the metabolic model. Lastly,
the text-based spreadsheet interface is an effective means
of disseminating the metabolic model because the net-
work topology and modelling assumptions are readily
found in a single model definition file.

Symbols and abbreviations

AAV: atom activity vector; EMU: elementary metabolite
unit; GC: gas chromatography; IDV: isotopomer distribu-
tion vector; MFA: metabolic flux analysis; MID: mass iso-
topomer distribution; MS: mass spectrometry; NMR:
nuclear magnetic resonance; TCA: tricarboxylic acid; ¢ :
weighted sum of squared residual errors; I: Identity
matrix; NS: null space matrix; P: compactification scaling
factor; S: stoichiometric matrix; WSSR: weighted sum of
squared residuals; &2: measurement variances; v : flux
vector; 7/ : free flux vector; vet: net flux; vech: exchange
flux; v, v : reverse flux (scalar, vector); v=, v~ : for-

ward flux (scalar, vector); v~ net forward flux; v,

irreversible free flux vector; v, : irreversible dependent

cale

flux vector; UB: flux upper boundary; x“*“: simulated

MID; X" input substrate MID; x™: measurement
MID.

Availability and requirements

OpenFLUX is optimized for MATLAB 7.3 (R2006b) (The
MathWorks, Natick, MA, USA) and Java 6 (Sun Microsys-
tems, Santa Clara, CA, USA) on a Microsoft Windows XP
platform. It requires the MATLAB Optimization Toolbox.
The software is also available for MacOS 10.4.11 (and
later) and Ubuntu linux 7.1 operating systems. Microsoft
Excel 2003 was used to generate the model input for the

Java parser, alternative spreadsheet programs are also use-
able.

OpenFLUX is released as open source and is available
upon request, both compiled and as source code. Supple-
mentary information is available online http://
web.aibn.uq.edu.au/cssb/Resources.html.
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Appendix

Handling bi-directional reaction using a new flux
coordinate

The conventional coordinate system used to describe bi-
directional reactions prevents the direct implementation
of the null-space matrix [28]. In this system the net flux
(vmet) and exchange flux (") are used as flux coordinates,
where 1*<" is mapped to reverse flux (v<) if v is positive,
otherwise 1*" is mapped to the forward flux (v—) (Figure
6).

The vt and 1*“" coordinate system was created for compac-
tification purposes. As v* can range from 0 to infinity,
which represents either irreversible or fully reversible reac-
tions, ¥ is compactified using (12). This has been shown
to reduce the response curvature of the 13C label with
respect to the reaction's reversibility and improve lineari-
zation of the model [31]. However, such coordinate sys-
tem invokes a complicated equation system to calculate v

from v/ [28].

—
532{’9':19 Conditional (13C-FLUX)  Linear (OpenFLUX)
> ek e net g 1 0 Pl
Equation | " [=|" j"1‘7( ' o o
) ) mm(\ ,0) ) I 1|
v’ v’

xch —
Vv \%
V—> Vnet< 0 V—> v—».nel <0
o R PN
—> —
xch v
L Vv v<_
V(
Figure 6

Coordinate systems used to describe bi-directional
reactions. The schematics under the matrix equations
shows how the two coordinate systems, [vh, vret] and [v<,
v net] are mapped to [v<, v ]. The former requires a con-
ditional operator, which cannot be implemented using the
null-space matrix. The prerequisite for the compactification
transformation is that the black and grey arrows are overlap-

ping.

http://www.microbialcellfactories.com/content/8/1/25

Here, we introduce a straightforward linear coordinate
system to describe bi-directional flux: v is expressed as v+
plus a net forward flux (v, "), which can be positive or
negative (Figure 6). This linear transformation is directly
implemented within NS with a specific structure (5),
which is readily created using Gauss-Jordan elimination.

—,het

According to (5), we find that v~ =7 +v and

——,net rev —irr
v =M

net " V free » 1-€., U7, "¢ of a given reversible reac-

tion is a linear combination of vy, . This saves us from

creating additional equation systems, as seen in the trans-
formation of v*" and v into v~ and v+. NS with the
required structure can be reproduced for all metabolic net-
work configurations.

The new v, "¢t and v¢ coordinate system still allows the
compactification of v to the same effect as compactifica-
tion of v*; since v+, like v*", is mapped equally to the for-
ward and reverse fluxes (Figure 6). However, there is one
caveat with the coordinate system adopted by OpenFLUX.
v is forced to be a free flux after Gauss-Jordan elimina-
tion if all reactions in a branching pathway are reversible.
To meet the conditions required for compactification, the
null-vector associated with v¢< is added to the null-vector
associated with v=. As a result, v=> becomes v, "¢, but v,
net's feasible range span both positive and negative
domains. OpenFLUX has an algorithm to detect such
occurrences and performs the appropriate modification to
the free flux boundary value (i.e., -UB < v, "t < UB).

How to set up a model in OpenFLUX - test case central
metabolism

Model setup in spread-sheet mode

In OpenFLUX, the metabolic model is organized into a
table consisting of seven columns, three metabolite lists
and two experimental data columns (Figure 4) [see Addi-
tional file 1]. The metabolic model configuration and
experimental data input are gathered within a single
spreadsheet interface, which contains all the information
required to perform flux analysis. The parser only reads
key active zones of the spreadsheet, thus other annotation
information and user comments can be included in the
spreadsheet. The first column contains the reaction ID.
Arbitrary values can be assigned. It is important to note
that the flux vector v in MATLAB is organized in the same
order as presented in the table (i.e., the v(1) variable rep-
resents first reaction flux in the table). The second and
third columns contain the reaction equations and corre-
sponding atom transitions. Beforehand, it is important to
distinguish reactions significant to the isotopomer bal-
ance from ones that are not. The definition of the latter
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reactions is flexible, and can accommodate floating-point
coefficients, alpha-numeric metabolite names and an
unlimited number of metabolite species.

Notation of metabolic reactions

The setup of the reactions relevant to isotopomer balance
must obey the following rules: (1) reactant stoichiometry
is always one; (2) same stoichiometric coefficients in both
the reaction and atom transition equation; (3) only uni-
or bi-molecular reactions. Within these rules, both nor-
mal and scrambling reactions can be adequately
described. These rules imply that scrambling occurs on the
product side of the reaction equation (i.e., R6 and R8).
The limitation of reaction order to bi-molecular reaction
is because the parser is not capable of generating a nested
Cauchy-product for higher order condensation reactions.
Nonetheless, higher order reactions can be decomposed
into bi-molecular reactions. The Cauchy-product is the
convolution of 2 sequences A and B, where the nth ele-
ment of the product is obtained from

n
(AOB)n = ZAk 'Bn—k
k=0

In the 13C tracer context, these sequences relate to the MID
of 2 EMUs involved in a condensation reaction (see [25]
for an example). A Cauchy-product function has been
built into OpenFLUX.

(A1)

The semantics for the atom transitions in the third col-
umn is based on a common convention [22,25], alpha-
betic notations are used to identify a series of carbon
atoms in a metabolite, and are used to describe the trans-
fer of the carbon atoms from the reactant to the product
[26]. As long as the convention is consistently applied,
different conventions could be used to describe the order
of carbon atoms, typically seen in different automated car-
bon fate mapping algorithms [17]. A table of atom transi-
tions in central carbon metabolism is provided [see
Additional file 3]. The fourth column is used to display
the flux distribution, and is only used for forward simula-
tion of MIDs from the flux distribution (hypothetical or
known).

Specification of reaction types of reaction reversibility

The fifth column contains the definition of each reaction
type. There are 5 reaction types, namely "F", "FR", "R", "B"
and "S". Reversible reactions are decoupled into the for-
ward ("FR") and reverse ("R") flux. This scheme ensures
that "R" type reactions (R8) are always assigned as free
fluxes. "B", "S" and "F" are used to identify the relevance
of a reaction to metabolite balance, isotopomer balance
or both respectively. For "F" type reactions, metabolites
that are to be excluded from the isotopomer balance are
marked with "X" (case insensitive) in the atom transition

http://www.microbialcellfactories.com/content/8/1/25

equation. This is typically used for cofactors, such as
NAD(P)H, FADH, and ATP. Biomass drain fluxes (R16,
R17, R18) and reactions that do not contribute to the
tracer distribution (R11, R12, R13, R15) are classified as
type "B" reactions. The atom transition equation for this
reaction type is not required. Type "S" reaction is a con-
venient approach to map a product's MID to their respec-
tive precursor(s) without incurring additional degrees-of-
freedom in the metabolite balance model, such as R21 for
production of aspartate from oxaloacetate. This is espe-
cially useful when the labelling for a metabolite can be
measured, but its production rate is unknown. Aspartate
production rate is typically incorporated into the oxaloac-
etate biomass drain flux (R18).

Allocation of free fluxes

The sixth column contains the allocation of free fluxes for
the metabolite balance model. It allows the user to specify
an invariant value for a known free flux, or to allocate the
preference for a reaction to be used as a free flux. For
example, the drains of pyruvate, o-ketoglutarate and
oxaloacetate to biomass were given the values of 0.07,
0.23 and 0.12 respectively. Additional drains for valine
and lysine were added to enable subsequent model vali-
dation in 13C-FLUX. Also, the activity of pyruvate uptake
flux is 1 because all fluxes are normalized to this reaction.
"X" is assigned to R2 as a preferred free parameter as the
reaction represents the glutamate uptake flux. By conven-
tion, "X" is assigned to any "R" type reaction.

Consideration of experimental noise for flux calculation

The seventh column carries the experimental standard
deviations associated with each of the known fluxes. This
allows a known flux value to be used either deterministi-
cally, where the flux value is fixed, or as an experimental
measurement, where the flux is set free and the flux value
is included in the least-square analysis. Using flux values
deterministically may lead to gross-measurement error,
but can reduce computation time.

Listing unbalanced metabolites, simulated EMU variables and input
substrates

Metabolites that are considered external to the system
must be identified in order to generate a balanceable sto-
ichiometric matrix. The list comprises the reactants of the
system inputs and products of the system outputs. The
EMU variables to be simulated were chosen to be the full
carbon backbone of valine, lysine, aspartate and succi-
nate. They are written in the form "metabolite
name#binary number". "1" and "0" are used to indicate
whether the carbon atom at a given position is to be
included or omitted respectively. For example, the simu-
lated valine EMU variable is written as "VALX#11111".
The experimental measurements and the associated errors
are listed in the same order used to list the simulated EMU
variables in the model definition file. The input substrates
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are pyruvate and glutamate, and are placed into another
list. Generically, an input substrate is any exo-metabolite
that enters the system boundary and can contribute to 13C
isotopomer distribution in metabolites. The 13C enrich-
ment of these metabolites must be known.

Error checking

Before the metabolite and isotopomer models are gener-
ated, OpenFLUX inspects the model definition file for
potential inconsistencies. Mainly, OpenFLUX checks for
consistency in metabolite naming, stoichiometry, carbon
atom length for a given metabolite, and for presence of
higher order reactions or unbalanced atom transition
equation. The inconsistencies are reported to the user, and
must be resolved before the metabolic models are success-
fully generated.

Parameter estimation and sensitivity analysis

Parameter estimation and sensitivity analysis is executed
from MATLAB's command line. OpenFLUX is initialized
by typing "start13OF". The user then chooses the various
optimization tasks to be performed. After choosing the
task, a series of command line prompts are given to the
user to specify the parameters required by the optimiza-
tion program. Once completed, the optimization begins.

Additional material

Additional file 1

TCA cycle metabolic model. Contains the hypothetical TCA cycle meta-
bolic network, produced in the format that is readable by OpenFLUX.
Information on how to set up the input substrates and the simulated out-
put EMU vector are included. The EMU balance model used for flux cal-
culation is also included.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2859-8-25-S1.xls]

Additional file 2

C. glutamicum metabolic model. Contains the C. glutamicum meta-
bolic network for both wild-type and mutant strains. Model and data are
reproduced from Becker et al. [39]. File includes brief instruction on how
to set up the simulated output EMU vector.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2859-8-25-52.xls]

Additional file 3

Atom transition equations. Contains typical reaction and atom transi-
tion equations encountered in the central metabolism. Pathways included
are glycolysis (Embden-Meyerhof and Entner-Doudoroff pathways), TCA
cycle (including glyoxylate shunt and anaplerotic reactions), pentose-
phosphate pathway and amino acid biosynthesis from central metabolite
precursors.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2859-8-25-S3 xls]
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