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Abstract

Background: Deletion of large blocks of nonessential genes that are not needed for metabolic
pathways of interest can reduce the production of unwanted by-products, increase genome
stability, and streamline metabolism without physiological compromise. Researchers have recently
constructed a reduced-genome Escherichia coli strain MDS42 that lacks 14.3% of its chromosome.

Results: Here we describe the reengineering of the MDS42 genome to increase the production of
the essential amino acid L-threonine. To this end, we over-expressed a feedback-resistant
threonine operon (thrA*BC), deleted the genes that encode threonine dehydrogenase (tdh) and
threonine transporters (tdcC and sstT), and introduced a mutant threonine exporter (rhtA23) in
MDS42. The resulting strain, MDS-205, shows an ~83% increase in L-threonine production when
cells are grown by flask fermentation, compared to a wild-type E. coli strain MG1655 engineered
with the same threonine-specific modifications described above. And transcriptional analysis
revealed the effect of the deletion of non-essential genes on the central metabolism and threonine
pathways in MDS-205.

Conclusion: This result demonstrates that the elimination of genes unnecessary for cell growth
can increase the productivity of an industrial strain, most likely by reducing the metabolic burden
and improving the metabolic efficiency of cells.

Background approaches for strain improvement [1-5]. Restructured

The vast increase in annotated genome information and
high-throughput technologies has enabled a systematic
improvement of industrial microbes through genome
engineering. Restructuring of microbial genomes has been
shown to have several advantages over conventional

genomes with the desired functionalities have served as
customized industrial strains that display (i) streamlined
metabolic pathways for the production of selected bioma-
terials, (ii) a reduced production of unwanted by-prod-
ucts, and (iii) increased genome stability [6-9].
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Escherichia coli is the most commonly used microbe for
both laboratory research and industrial-scale production
of metabolites, such as amino acids and proteins, for ther-
apeutic or commercial uses [10-14]. Because E. coli has
adapted to a lifestyle that includes residence in animal
intestines with frequent exposure to aqueous and soil
environments, many of the genes in its genome are unnec-
essary for growth in the relatively simple environment
within industrial fermentors. Further, the complete
genome sequence of E. coli has revealed numerous genes
whose products have no known functions and genetic
materials that may have been acquired from other organ-
isms in the recent past [15]. In an effort to improve E. coli
as an industrial host, many researchers have deleted or
added limited numbers of selected genes to the genome or
modified plasmids to complement the existing genome
[16-24]. These efforts have helped researchers make sig-
nificant progress in improving E. coli as a production host,
but have not addressed the productivity problems caused
by the numerous E. coli genes with potentially detrimental
functions.

Recently, an E. coli genome was reduced by the precise
deletion of nonessential genes and other DNA sequences-
including all known recombinogenic and mobile DNA
and cryptic virulence genes-to construct a genetically sta-
ble strain that displays robust metabolic performance [5].
The resulting strain, E. coli MDS42, has a chromosome
that is 14.3% smaller than that of its parental E. coli strain
MG1655. MDS42 shows robust growth under normal lab-
oratory conditions and even better growth in high-cell
density fermentations, as well as increased transformation
efficiency relative to MG1655 [5]. Therefore, the elimina-
tion of unnecessary genes and sequences from an E. coli
genome appears to have produced a stable reduced-
genome strain without physiological compromise. Fur-
thermore, the deletion of all insertion sequence (IS) ele-

Table I: E. coli strains used in this study
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ments from the genome means that the strain is free of IS-
mediated mutagenesis and genomic rearrangements.

In this study, we report the results of a reengineering of
MDS42 to increase production of the amino acid L-threo-
nine, which is essential for growth and maintenance of
commercial livestock [25]. This reengineering included
the overexpression of a feedback-resistant threonine
operon (thrA*BC) under the control of a recombinant Tac
promoter, deletion of the genes that encode threonine
dehydrogenase (tdh) and threonine uptake proteins (tdcC
and sstT), and introduction of a mutant threonine
exporter gene (rhtA23). The reengineered strain, called
MDS-205, shows an ~83% increase in threonine produc-
tion by flask fermentation relative to the wild-type E. coli
strain MG1655 that had been engineered to carry the
same threonine-specific modifications. Minimization of
an E. coli genome by the elimination of genes unnecessary
for growth increases the productivity of the strain by
reducing the metabolic burden caused by maintenance
and expression of unnecessary genes and improving the
metabolic efficiency of the cell.

Methods

Bacterial strains, plasmids, enzymes, and chemicals

The bacterial strains used in this work are listed in Table
1. Plasmid pKD46 was obtained from B. L. Wanner [26],
pST76-ASceP from G. Posfai [27], and pCSI from S. C.
Kim [28]. All enzymes were purchased from New England
Biolabs (Beverly, MA, USA) except Taq polymerase, which
was from Takara Bio Inc. (Shiga, Japan). All antibiotics
and chemicals were from Sigma-Aldrich (St. Louis, MO,
USA). Ampicillin, chloramphenicol, and kanamycin were
used at concentrations of 50, 17, and 25 pg/ml, respec-
tively. All the primers used in this work are listed in Addi-
tional file 1.

Strain name Description

Source or reference

MG1655 A -FilvG rfb-50 rph-1 Blattner et al. (1997)
MG-102 MG1655 Pr,~thrA*BC Alacl This study
MG-103 MG 655 P, ~thrA*BC Alacl Atdh This study
MG-104 MG1655 Pr,~thrA*BC Alacl Atdh AtdcC::rhtA23 This study
MG-105 MG1655 Pr,~thrA*BC Alacl Atdh AtdcC::rhtA23 AsstT:rhtA23 This study
MDS42 Reduced genome strain Posfai et al. (2006)
MDS-202 MDS42 Py, ~thrA*BC Alacl This study
MDS-203 MDS42 Py, -thrA*BC Alacl Atdh This study
MDS-204 MDS42 Pr, ~thrA*BC Alacl Atdh AtdcC::rhtA23 This study
MDsS-205 MDS42 Py, ~thrA*BC Alacl Atdh AtdcC::rhtA23 AsstT:rhtA23 This study
MG1655 thrB:Tn5 MG1655 thrB:Tn5 Yu et al. (2002)
N99 rhtA23 W3350 rpsL rhtA23 thr:Tnl0 Livshits et al. (2003)

E. coli ATCC 21277 K-12 SupE relA*KmR-Py, ~thrA*BC ilvA422

Shiio et al. (1971)
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Construction of threonine-producing E. coli strains

To study the effect of minimization of an E. coli genome
on the production of L-threonine, the reduced-genome
strain MDS42 [5] and wild-type strain MG1655 were engi-
neered to produce L-threonine. First, to release the feed-
back inhibition on aspartokinase I and homoserine
dehydrogenase I that are encoded by the thrA gene, and

(A) N,

P-f2
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the transcriptional attenuation of the thrABC operon by
intracellular threonine [29], a feedback-resistant thrA*BC
operon under the control of a Tac promoter [30] was
introduced to replace the wild-type thrABC operon in the
MG1655 and MDS42 genomes (Fig. 1). The feedback-
resistant thrA*BC operon (3.5 kb) was amplified by the
polymerase chain reaction (PCR) from E. coli ATCC

Pil le

catam
S NP2
Recombinant PCR
Replacement
>.2-m a thrA*BC | rhtA23 c Casvetie
. b 7~ == :
Target E. coli
genome
(B) Homologous recombination
s b cat a thrA*BC/rhiA23 C
Cleavage by I-Scel
2 1l catmm
4 4
et
Double-strand break repair
a thrA*BC/rhtA23 Cc

Figure |

Markerless replacement of a target. (A) A linear DNA cassette containing a positive selection marker (cat), an |-Scel rec-
ognition site (I), a gene to be replaced (thrA*BC or rhtA23), and three homology arms (represented as a, b, and c) were ampli-
fied by recombinant PCR (refer to Materials and Methods). PCR primers are labeled with lower case, italicized letters (P-f, P-
rl, P-f2, and P-r2) and arrows. (B) The target of the E. coli genome was replaced by the constructed DNA cassette, and recom-
binants were selected on LB plates containing chloramphenicol. (C) The cat gene introduced was excised from the selected
recombinants by double-strand break repair mediated by |-Scel cleavage.
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21277 genomic DNA with the following forward (P-f1)
and reverse (P-r1) primers (see Fig. 1). A 1.2-kb fragment
containing a chloramphenicol resistant gene (cat) and an
I-Scel recognition site was also amplified by PCR from
plasmid pCSI [28]. Finally, a 0.5-kb homology fragment
that sits to the left of the thrABC operon (Fig. 1a) was PCR-
amplified from the chromosomal DNA of MDS42 and
MG1655. This amplified 0.5-kb fragment contained a
short, 20-base pair (bp) flanking sequence on each side:
the 3' end of the 0.5-kb fragment overlapped with the 5'
end of the 3.5-kb fragment and the 5' end overlapped with
the 3' end of the 1.2-kb fragment described above. This
0.5-kb fragment and 2 PCR fragments above (that is, the
3.5-kb PCR fragment, which contained the feedback-
resistant thrA*BC operon under the control of a Tac pro-
moter, and the 1.2-kb fragment, which contained a cat
gene and an I-Scel recognition site) were combined by
recombinant PCR using the following forward (P-f2) and
reverse (P-r2) primers (see Fig. 1A). The constructed 5.3-
kb DNA cassette was electrotransformed into MG1655
and MDS42, both of which harbored pKD46 expressing A-
Red genes (7, S, and exo). The recombinants were selected
on chloramphenicol-containing LB plates, and then the
helper plasmid pKD46 was cured by growing the selected
recombinants at 42°C. The cat gene that was introduced
as described above was then excised from the constructed
recombinant strains by double-strand break (DSB) repair
mediated by the I-Scel endonuclease expressed from
pST76-ASceP, which generated strain MG-101 from
MG1655 and strain MDS-201 from MDS42. To constitu-
tively express the feedback-resistant thrA*BC operon
under the control of a Tac promoter, the lacl gene was
deleted from the MG-101 and MDS-201 genomes by the
markerless deletion method [28], producing MG-102 and
MDS-202, respectively. To prevent the degradation of L-
threonine produced inside the cells, the threonine dehy-
drogenase gene (tdh) was deleted from the MG-102 and
MDS-202 genomes by the markerless deletion method,
generating strains MG-103 and MDS-203, respectively. To
further increase threonine production, two threonine
uptake genes, tdcC and sstT, were sequentially replaced by
the mutant threonine exporter gene (rhtA23) (see Fig. 1),
whose expression level is 10-fold higher than that of the
wild-type rhtA gene [31]. These manipulations yielded
strains MG-104 and MG-105 from MG-103, and MDS-
204 and MDS-205 from MDS-203. At each step of the
strain constructions, the modification of each target
region was verified by PCR using pairs of primers that
flanked the endpoints of each target region.

Bioassay for L-threonine using an E. coli threonine
auxotroph

The threonine auxotroph MG1655 thrB::Tn5 [32] was
inoculated into 3 ml of LB medium supplemented with
kanamycin and grown at 37°C. When the OD, reached

http://www.microbialcellfactories.com/content/8/1/2

0.8, the threonine auxotrophic cells were harvested by
centrifugation at 6,000 g for 10 min, resuspended in 3 ml
of fresh M9 minimal medium, and cultivated for 5 h at
37°C to deplete any endogenous threonine available to
the cells [33]. The threonine auxotrophic culture was then
diluted 1:100 into 3 ml of fresh M9 minimal medium to
which 300 pl of the filterate of the culture broth of each
threonine producing strains was added. After 24 h of cul-
tivation at 37°C, growth of the threonine auxotroph was
measured at OD .

A standard growth curve was established in order to corre-
late the growth of the auxotroph to various concentrations
of threonine in M9 minimal media. Linear regression
analysis of the plotted data was considered a least-squares
fit (R2) of the relationship between threonine supplemen-
tation and growth of the auxotroph, and was used as a
standard curve when R2 was greater than 0.95. The R?
value was derived from the regression line of the resulting
plots (ODgqq vs. threonine concentration).

Threonine production by flask fermentation

The threonine-producing strains were grown on LB plates
overnight and then transferred to a 250 ml flask contain-
ing 50 ml of seed medium [32.5 g glucose, 24.35 g
K,HPO,, 9.5 g KH,PO,, 15 gyeast extract, 5 g (NH,),SO,,
1 g MgSO, - 7H, 0O per liter at pH 7.0]. After growing the
culture for 24 h at 37°C, an aliquot (1 ml) of the seed cul-
ture was transferred to 50 ml of fermentation medium-1
[2 g yeast extract, 2 g citric acid, 25 g (NH,),SO,, 7.46 g
KH,PO,, 40 g glucose, 2 g MgSO, -7 H,0O, 5 mg FeSO, - 7
H,0, 5 mgMnSO, -4 H,0, and 20 g CaCO; per liter at pH
7.2]. The fermentation was run for 24 h at 37°C, with vig-
orous agitation of the culture on a shaker (300 rpm). After
cultivation, the amount of threonine accumulated in the
broth was analyzed with the bioassay system using the
threonine auxotroph described above.

Threonine production by batch fermentation

MDS-205 was grown in a 2-liter jar fermentor containing
1.5 liters of fermentation medium-2 [100 g glucose, 10 g
(NH,),SO,, 2 g KH,PO,, 0.5 g MgSO,,-7 H,0, 5 mg
FeSO, -7 H,0, 5 mg MnSO, -4 H,0, and 3 g yeast extract
per liter at pH 7.5]. A seed culture was grown for 12 h at
37°Cin a 500 ml flask containing 75 ml of seed medium
and then inoculated into the 2-liter jar fermentor. During
batch phase fermentation, the pH was maintained at 7.5
with NH,OH, the temperature at 37°C, the aeration rate
at 1 vvm (air volume - working volume-! - min-!), and the
agitation speed at 800 rev/min. After 30 h of fermenta-
tion, the concentration of threonine was determined by
pre-column derivation with OPA (o-phthaldehyde-thiol)
using the method developed by Joseph and Marsden [34]
with the following modifications. Threonine was ana-
lysed on a Micra NPS ODS-1 (33 mm x 4.6 mm) 1.5-pm
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column (Eichrom Technologies, 1L, USA) in reversed
phase with a concentration gradient of sodium acetate
buffer. This gradient was formed from two buffers, 100
mM sodium acetate, pH 5.9 (adjusted with 1 M HCI;
buffer A) and pure methanol (buffer B), with a flow rate
of 0.5 ml/min. The time course of the gradient was as fol-
lows: the starting point, buffer A/buffer B (98:2, v/v); 1
min, A/B (85:15, v/v); 5 min, A/B (50:50, v/v); 10 min, A/
B (30:70, v/v); 18 min, A/B (2:98, v/v). The retention
times and response factors of the threonine were evalu-
ated by injecting known amounts of L-threonine.

Microarray analysis

Strains MG1655, MDS42, MG-105, and MDS-205 were
inoculated from single colonies into 5 ml of seed medium
and grown at 37°C overnight. From each overnight cul-
ture, 500 ul was used to inoculate 50 ml of fresh fermen-
tation medium-1. These cultures were grown at 37°C, and
the cells were harvested at an early log phase correspond-
ing to an OD, of 0.4. Total RNA was extracted using the
MasterPure™ RNA Purification Kit (Epicentre Technolo-
gies, Madison, WI, USA) from 1 ml of the early log phase
culture. cDNA synthesis and labeling were performed as
described in the Affymetrix GeneChip E. coli Antisense
Genome Array Technical Manual [35]. The resulting
labeled cDNAs were hybridized to an Affymetrix E. coli
antisense genome array. Patterns of hybridization were
detected with an Affymetrix Genearray scanner 2500
(Affymetrix, Inc., Santa Clara, CA, USA). The raw data
were analyzed using Microarray Analysis Suite version 5.0
(Affymetrix). Every E. coli open reading frame (ORF) was
assayed by a set of perfect match (PM) and mismatch
(MM) probe pairs. If the PM probe showed an intensity
that was at least 200 U higher than that of the MM probe,
the probe pair was considered to be present [35]. An ORF
was considered to be present with 95% confidence if
neighboring probe pairs within an ORF were present.

Results

Construction of L-threonine-overproducing E. coli strains
and L-threonine production

The wild-type E. coli MG1655 and reduced-genome E. coli
MDS42 were modified in a stepwise manner to overpro-
duce L-threonine. First, we isolated the threonine operon
of E. coli strain ATCC 21277, which contains a mutated
version of the thrA gene (thrA*) that encodes threonine
feedback-resistant aspartate kinase 1 and homoserine
dehydrogenase I; a homoserine kinase-encoding gene
(thrB); and a threonine synthase-encoding gene (thrC).
The isolated threonine operon, which was expressed
under the control of a Tac promoter, was then inserted
into the genomes of MG1655 and MDS42 to replace their
wild-type threonine operons. Second, the lacl gene, which
encodes the E. coli Lacl transcriptional repressor, was
deleted so that the mutant threonine operon would be

http://www.microbialcellfactories.com/content/8/1/2

expressed constitutively. The resulting strains, MG-102
and MDS-202, produced 34.06 and 36.61 mg/L of L-thre-
onine, respectively (Fig. 2).

Third, the tdh gene, which encodes threonine dehydroge-
nase, was deleted from MG-102 and MDS-202 to prevent
the degradation of L-threonine, generating strains MG-
103 and MDS-203, which produced 42.25 and 79.94 mg/
L of L-threonine, respectively (Fig. 2). Finally, to enhance
the export of L-threonine into the culture media and block
re-uptake, we sequentially replaced the tdcC gene, which
encodes the threonine STP importer [36], and the sstT
gene, which encodes the DctA dicarboxylate (DAACS)
importer [37], in MG-103 and MDS-203 with a mutant
threonine exporter gene (rhtA23). The resulting strains,
MG-105 and MDS-205, produced 165.54 and 303.23 mg/
L of L-threonine, respectively (Fig. 2). These final strains
showed an ~10- and ~15.5-fold increase in L-threonine
production, compared to their parental strains, MG1655
and MDS42, respectively (Fig. 2).

When a batch-fermentation was carried out, the final
strain MDS-205 produced 40.1 g/L of L-threonine (a yield
0f 0.401 g threonine/g glucose) after 30 h of fermentation.

Comparative transcriptome analysis of MG-105 and MDS-
205 using DNA microarrays

To understand the difference in global gene expression
levels in MG-105 and MDS-205, a transcriptional profil-
ing experiment was performed. One hundred genes (2.7%
of the total genes expressed) in MDS-205 cells were differ-
entially expressed by more than 2-fold compared to MG-
105 cells (63 up-regulated and 37 down-regulated) (Addi-
tional file 2). Genome-scale gene expression analysis of
MG-105 and MDS-205 revealed that the most of the genes
related to the central metabolism and L-threonine biosyn-
thesis were up-regulated in MDS-205. The expression
ratios of genes related to central metabolic pathways and
L-threonine biosynthesis are shown in Fig. 3. The expres-
sion levels of the ptsG gene involved in the glucose PTS-
system was down-regulated by 0.80-fold in MDS-205,
whereas genes involved in the non-PTS glucose uptake
system, mglABC and glk, were up-regulated by 1,61-, 1.38-
, 1.32- and 1.30-fold, respectively. In addition, the tktAB
genes involved in the pentose phosphate shunt were up-
regulated by 1.54-, and 1.63-fold in MDS-205, respec-
tively. And the pck gene involved in the carboxylation of
phosphoenolpyruvate was up-regulated by 1.22-fold in
MDS-205. Meanwhile genes involved in the mixed acid
fermentation (poxB, pta, and adhE) were down-regulated
in MDS-205. The aspC gene, which products directs
oxaloacetate toward L-threonine biosyntheis, the glcB
gene involved in the glyoxylate-shunt, and genes involved
in TCA cycle were also up-regulated in MDS-205. The
thrABC genes involved in L-threonine biosynthesis and
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Strain L-threonine (mg/L.) Strain L-threonine (mg/L.)
MG1655 16.55 MDS42 19.61
MG-102 34.06 MDS-202 36.61
MG-103 42.25 MDS-203 79.94
MG-104 138.01 MDS-204 228.43
MG-105 165.54 MDS-205 303.23
Figure 2

Production of L-threonine by constructed strains. The strains were cultivated in 50 ml of fermentation medium-1 at
37°C (refer to Materials and Methods). After 24 h of cultivation, the L-threonine concentration in the culture broth was meas-
ured by our bioassay system (refer to Materials and Methods). The data shown are the means and standard deviations for
three independent experiments.
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Figure 3 (see previous page)

Relative transcriptional levels of genes related to central metabolism for L-threonine producing strain MG-105
and MDS-205. Metabolic networks showing the relative transcriptional levels of genes related to the central metalbolism,
mixed acid fermentation and L-threonine biosysnthetic pathways. The numbers are the relative ratio of the expression level of
MDS-205 as compared to that of MG-105. Metabolite abbreviations: GLC,,,, glucose in medium; GLC,,, glucose in cytoplasm;
G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; DHAP, dihydroxyacetonephosphate;
GAP, glyceraldehyde-3-phosphate; GBP, |,3-bisphosphoglycerate; 3PGA, 3-phosphoglycerate; 2PGA, 2-phosphoglycerate; PEP,
phosphoenolpyruvate; PYR, pyruvate; AcCoA, acetyl-CoA; ACP, acetyl-phosphate; ACE, acetate; ETH, ethanol; OAA, oxaloa-
cetate; CIT, citrate; ICIT, isocitrate; AKG, a-ketoglutarate; SUCOA, succinyl-CoA; SUC, succinate; FUM, fumarate; MAL,
malate; ASP, aspartate; A4P, aspartyl-4-phosphate; ASA, aspartate semialdehyde; HS, homoserine; PHS, homoserine phosphate;
THR,,,, L-threonine in medium; THR_,,, L-threonine in cytoplasm; 6PGL, gluconolactone-6-phosphate; 6PGC, 6-phosphogluco-
nate; RU5SP, ribulose-5-phosphate; XSI?’, xylurose-5-phosphate; R5P, ribose-5-phosphate; S7P, sedoheptulose-7-phosphate; E4P,

erythrose-4-phosphate.

the rhtA gene responsible for the L-threonine export were
up-regulated by 1.45-, 1.32-, 1.19-, and 4.79-fold, respec-
tively, in MDS-205.

Discussion

The restructuring of microbial genomes by eliminating
genes that are unnecessary for a cellular metabolism has
received special attention as an important strategy for
industrial strain improvement [1-5]. Recently, scientists
reported on the advantages of the reduced-genome E. coli
strain MDS42 and its applications for bioindustry [5,38].
The MDS42 genome is 14.3% smaller than that of the
wild-type strain MG1655 and has ~700 fewer genes.

In this study, we compared the metabolic efficiency of L-
threonine production in the wild-type E. coli strain
MG1655 and reduced-genome E. coli strain MDS42 by
introducing into each of these strains a series of genetic
modifications that altered L-threonine production, degra-
dation, export into the media, and re-uptake from the
media. These modifications gave rise finally to MG-105
(from MG1655) and MDS-205 (from MDS42). Although
both MG1655 and MDS42 went through the same modi-
fications, the threonine production of MDS-205 strain
was an ~2-fold greater than that of the MG-105 strain.

Genome-scale gene expression analysis of MG-105 and
MDS-205 revealed that the most of the genes involved in
the central metabolism and L-threonine biosynthesis were
up-regulated in MDS-205. Among the up-regulated genes,
the expression level of the rhtA threonine exporter gene
was increased by 4.79-fold in MDS-205. This result indi-
cates that the maximization of L-threonine export com-
bined with deletion of the tdcC and sstT gene involved in
the re-uptake of L-threonine across the membrane is one
of the important steps for the mass production of L-thre-
onine from E. coli. An additional advantage of the overex-
pression of the rhtA gene is that it increases the tolerance
of E. coli to L-threonine by an ~3-fold [31], which helps
the E. coli to withstand high concentrations of L-threonine

in the media. This adaptation also might contribute to the
higher L-threonine production.

The up-regulation of the ATP-dependent glucose transport
and phosphorylation system (mglABC and glk genes) and
down-regulation of the PTS system (ptsG gene) in MDS-
205 may increase the availability of the phosphoe-
nolpyruvate (PEP) which is a precursor of oxaloacetate
(OAA) and aspartate. This result is consistent with the pre-
diction based on flux balance analyses of gene knock-outs
in an E. coli metabolic model that the replacement of PTS
activity by an ATP-dependent glucose transport system
should increase aspartate-family amino acids [39,40]. In
addition, down-regulation of poxB, pta, and adhE genes,
which are directing PEP to acetate and ethanol, may
reduce the PEP flux to acetate and ethanol and further
increase the PEP availability.

It is also reported that the up-regulation of pck gene
involved in the carboxylation of PEP to OAA leads to
increased cellular growth and biomolecular production,
since the ppc reaction releases an inorganic phosphate, in
contrast to the pck reaction, which produces a high-energy
ATP [41-44]. The effect of the pentose phosphate shunt
and glyoxylate bypass on the glycolytic flux to L-threonine
production also has been reported [45]. Therefore, the up-
regulation of the pck gene involved in the PEP carboxyla-
tion and tktAB genes involved in the pentose phosphate
shunt and the increased expression of the genes involved
in TCA cycle and the glyoxylate bypass (mdh, fumABC,
sdhABCD, and glcB genes) may increase the OAA synthesis
in MDS-205, resulted in higher production of L-threonine
in MDS-205 compared to MG-105. The increased PEP and
OAA level of MDS-205 by increasing the non-PTS glucose
uptake system, PEP carboxylation, the pentose phosphate
pathway, and the glyoxylate shunt, and reducing the
mixed acid fermentation may resulted in increased pro-
duction of L-threonine.

Page 8 of 12

(page number not for citation purposes)



Microbial Cell Factories 2009, 8:2

http://www.microbialcellfactories.com/content/8/1/2

moa T elo.z
mgiCv1.32 " ; J
g zwi gn
[CcLc )53 cer )55~ 6PGL |-ﬁ§?[ 6PGC 4=+ RU5SP ]
Pgil1-77 rpe‘/ﬂ rpi/-'l\l.ﬂ?
fbp 0.70 4 | pfkA 2.67 thtAB
glpx 1.05 | Y pfkB 0.80 ‘W‘
tktA|1.05
[ FBP | tktA |1.05 Cs7p ) GAP
fbal1.70 ‘ talAB
¥ | 0.71, 1.13
o
DHAP J—5=—[_GAP_]« E4P F6P
gapAl'l 42
pgklz 17
3PGA
gpmA] 0.86
gpmB¥ 0.59
2PGA ACE
enolz,os %ack.q]‘l.w
PYKAF
[ PEP )7z 79~ (YR ] Cace )
pia
aceEF| ;:g 1.19
pPPe\0.79 adhE
pck\1.21 AcCoA Tb
aspC | gltA
——
i o Wi
lysC] 0.93
metL| 0.81 '"“";_05 acesl 0.92 acn,Nn, 0.59
thrA} 0.86 glcB| 1.61
TV MAL Joe—— ICIT
wdfoss  masloss 17 anfr
atle
metlL] 0.81 AKG
thrAy 0.86 sdhAB\ 0.49, 0.40
sdhCD \0.40, 0.43 sucABJ0.59, 0.69
thrBlO.QQ sucChD
SUC 0.91.0.76 SUCOA
thrClO.QZ
rhtABC,
[ THR J=5=—
0.72
0.90

Figure 4 (see legend on next page)

Page 9 of 12

(page number not for citation purposes)



Microbial Cell Factories 2009, 8:2 http://www.microbialcellfactories.com/content/8/1/2

Figure 4 (see previous page)

Relative transcriptional levels of genes related to central metabolism for L-parental strain MG 1655 and
MDS42. Metabolic networks showing the relative transcriptional levels of genes related to the central metalbolism, mixed acid
fermentation and L-threonine biosysnthetic pathways. The numbers are the relative ratio of the expression level of MDS42 as
compared to that of MG1655. Metabolite abbreviations: GLC_,, glucose in medium; GLC_,,, glucose in cytoplasm; G6P, glu-
cose-6-phosphate; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; DHAP, dihydroxyacetonephosphate; GAP, glyc-
eraldehyde-3-phosphate; GBP, |,3-bisphosphoglycerate; 3PGA, 3-phosphoglycerate; 2PGA, 2-phosphoglycerate; PEP,
phosphoenolpyruvate; PYR, pyruvate; AcCoA, acetyl-CoA; ACP, acetyl-phosphate; ACE, acetate; ETH, ethanol; OAA, oxaloa-
cetate; CIT, citrate; ICIT, isocitrate; AKG, a-ketoglutarate; SUCOA, succinyl-CoA; SUC, succinate; FUM, fumarate; MAL,
malate; ASP, aspartate; A4P, aspartyl-4-phosphate; ASA, aspartate semialdehyde; HS, homoserine; PHS, homoserine phosphate;

THR_, ., L-threonine in medium; THR

out’

L-threonine in cytoplasm; 6PGL, gluconolactone-6-phosphate; 6PGC, 6-phosphogluco-

cyr
nate; RU5SP, ribulose-5-phosphate; XSI?’, xylurose-5-phosphate; R5P, ribose-5-phosphate; S7P, sedoheptulose-7-phosphate; E4P,

erythrose-4-phosphate.

The increased productivity of L-threonine in MDS42
might also result from a decrease in the metabolic burden
due to the genome reduction. It is well known that the
maintenance and expression of unnecessary genes, such as
plasmid DNA, impose an uncharacterized metabolic bur-
den on the bacterial host [46]. The metabolic burden
could arise due to the extra biosynthetic demands for syn-
thesis and expression of unnecessary genes [47,48], or the
perturbation of the E. coli host regulatory system affecting
central metabolic pathways [46,49]. The genome-scale
gene expression analysis of the wild-type MG1655 and the
MDS42 revealed that the genes involved in the non-PTS
glucose uptake system and glycolysis were up-regulated in
MDS42 compared to MG1655, whereas the genes
involved in the glucose PTS-system and TCA cycle were
down-regulated in MDS42 compared to MG1655 (Fig 4).
It seems that the elimination of unnecessary genes from
the E. coli genome might lead to more efficient cellular
metabolism and an improved substrate yield coefficient,
resulting in nutrient and energy saving of cells without
physiological compromise. Researchers reported that the
elimination of unnecessary genes actually improves E. coli
robustness and enhances carbon metabolism [5,38,50].
In fact, genes involved in mixed acid fermentation were
up-regulated in MDS42 compared to MG1655 (Fig 4),
leading to the acetate accumulation which indicates a car-
bon-overflow metabolism [13]. Therefore, the increased
production of L-threonine in MDS-205 might be resulted
from the redirection of the overflowed carbon metabo-
lism in MDS42 caused by elimination of unnecessary
genes from the E. coli genome into the production of L-
threonine.

Conclusion

In this study, we report the results of a reengineering of
MDS42 to increase production of the amino acid L-threo-
nine, which is essential for growth and maintenance of
commercial livestock [25]. Even though a series of system-
atic experiments is needed for better understanding of the
mechanism underlying the higher L-threonine produc-

tion in the reduced-genome E. coli MDS42, our results
described herein clearly indicate that MDS42 can serve as
an efficient host strain for the production of other useful
biomaterials.
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