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Abstract
Background: There is evidence from previous works that bacterial secondary metabolism may be
stimulated by genetic manipulation of RNA polymerase (RNAP). In this study we have used rifampicin
selection as a strategy to genetically improve the erythromycin producer Saccharopolyspora erythraea.

Results: Spontaneous rifampicin-resistant (rif) mutants were isolated from the parental strain NRRL2338
and two rif mutations mapping within rpoB, S444F and Q426R, were characterized. With respect to the
parental strain, S444F mutants exhibited higher respiratory performance and up to four-fold higher final
erythromycin yields; in contrast, Q426R mutants were slow-growing, developmental-defective and
severely impaired in erythromycin production. DNA microarray analysis demonstrated that these rif
mutations deeply changed the transcriptional profile of S. erythraea. The expression of genes coding for
key enzymes of carbon (and energy) and nitrogen central metabolism was dramatically altered in turn
affecting the flux of metabolites through erythromycin feeder pathways. In particular, the valine catabolic
pathway that supplies propionyl-CoA for biosynthesis of the erythromycin precursor 6-
deoxyerythronolide B was strongly up-regulated in the S444F mutants, while the expression of the
biosynthetic gene cluster of erythromycin (ery) was not significantly affected. In contrast, the ery cluster
was down-regulated (<2-fold) in the Q426R mutants. These strains also exhibited an impressive
stimulation of the nitrogen regulon, which may contribute to lower erythromycin yields as erythromycin
production was strongly inhibited by ammonium.

Conclusion: Rifampicin selection is a simple and reliable tool to investigate novel links between primary
and secondary metabolism and morphological differentiation in S. erythraea and to improve erythromycin
production. At the same time genome-wide analysis of expression profiles using DNA microarrays allowed
information to be gained about the mechanisms underlying the stimulatory/inhibitory effects of the rif
mutations on erythromycin production.
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Background
Actinomycetes are used for fermentative production of a
wide range of bioactive molecules including antibiotics,
anticancer agents and immune-suppressants. A crucial
point of this process is that these microorganisms must
often be genetically improved for higher production
before they can be used in the industry. Historically, strain
improvement has been carried out by multiple rounds of
random mutagenesis and selection in close association
with process improvements to optimize large-scale indus-
trial fermentations [1]. Since the late 1970s, the availabil-
ity of molecular genetics tools and useful information
about the biosynthetic pathways and genetic control for
most of secondary metabolites of commercial interest has
opened the way for improving strains by rational engi-
neering [2,3]. More recently, these rational strain
improvement strategies benefit of the support of genomic,
transcriptomic, proteomic, and metabolomic technolo-
gies [4-11].

The erythromycin fermentation is a classic antibiotic fer-
mentation that has been improved by the traditional
mutate-and-screen method over the past 50 years. Eryth-
romycin biosynthesis in the mycelial actinomycete, Sac-
charopolyspora erythraea, has been widely studied as a
model system for antibiotic production [12-15], and
erythromycin and its semi-synthetic derivatives are widely
used in the clinic; therefore, improved producers are still
highly sought after.

Erythromycin A is made by a three-stage pathway [16]:
assembly of the 14-membered macrolactone 6-deoxy-
erythronolide B (6DEB) from one propionyl-CoA and six
(2S)-methylmalonyl-CoA units followed by its hydroxyla-
tion to erythronolide B (EB), formation of the deoxysug-
ars mycarose and desosamine from glucose and their
addition to EB to make erythromycin D, and then C-12
hydroxylation and C-3" O-methylation of the latter com-
pound to produce erythromycin A. The synthesis of 6DEB
is catalyzed by multifunctional modular polyketide syn-
thase with at least 28 distinct active sites, in a process sim-
ilar to that of fatty-acid biosynthesis [17,18].

Extensive genetic studies have provided some insight into
the genes involved in erythromycin biosynthesis [19,20].
The erythromycin gene cluster contains 20 genes arranged
in four major polycistronic units [21]. Evidence for regu-
latory genes has been missing for a long time hampering
efforts to enhance erythromycin production other than by
medium manipulation, random mutagenesis and selec-
tion. In recent times, the availability of the entire genome
sequence of S. erythraea has opened the possibility of
defining the mechanisms by which erythromycin is con-
trolled by using global approaches [22,23]. Very recently,
these approaches have led to the discovery that BldD, a

key developmental regulator in actinomycetes [24,25],
regulates the synthesis of erythromycin [26]. Meanwhile,
there is evidence that increasing the flux through feeder
metabolic pathways strongly influences the erythromycin
yields. This has been recently obtained by engineering the
methylmalonyl-CoA metabolite node in S. erythraea and
in Aeromicrobium erythreum, a non-filamentous erythro-
mycin A producer [27-29].

The focus of this study was to explore the possibility to
increase the erythromycin production by genetic manipu-
lation of the RNA polymerase (RNAP) of S. erythraea. This
working hypothesis relies on well-documented evidence
that: i) ppGpp, the effector of the stringent response [30],
triggers antibiotic production in streptomycetes [31-35];
ii) several rifampicin-resistance mutations (rif) in the
RNAP beta chain confer ppGpp-independent biosynthesis
of the pigmented actinorhodin (Act) and undecylprodigi-
osin (Red), methylenomycin, and calcium-dependent
antibiotic (CDA) in the model actinomycete Streptomyces
coelicolor A3(2) [36]; rif mutations also activate cryptic
antibiotic biosynthesis in Streptomyces lividans, a fast-
growing close relative of S. coelicolor A3(2), which pro-
duces less or no Act, Red and CDA despite the existence of
all the required biosynthetic genes [37-41]. Mechanisti-
cally, it has been proposed that several rif mutations
mimic binding of ppGpp to RNAP [36,40].

These premises prompted us to investigate: i) the role of
the stringent response in the activation of erythromycin
biosynthesis; ii) the utility of the rif screening to search for
erythromycin over-producing mutants; iii) how transcrip-
tional changes, analyzed at a whole genome level, could
shed light on the molecular mechanisms underlying, on
one hand, erythromycin over-production by rif1 mutants,
and on the other the almost null antibiotic production by
rif6 mutants.

Results and Discussion
Isolation and phenotypes of S. erythraea rif mutants
Twenty spontaneous S. erythraea rif mutants were isolated
on YS agar containing 36 μg ml-1 of rifampicin. By rapid
screening on YS and R3/1 agar media, two of these
mutants exhibited a clear higher-producing phenotype
(rif1 and rif9), two mutants were severely impaired in the
ability to produce erythromycin (rif6 and rif12), while the
remaining others showed antibiotic yields slightly higher
or lower with respect to that of the wild type strain (data
not shown). Eight rif mutants, rif1, rif9, rif6, rif12, rif2,
rif3, rif4 and rif5 were further analyzed (Figure 1). After a
7-day (168 h) incubation at 30°C on complex R3/1 solid
medium, rif1 and rif9 produced an amount of antibiotic
more than 4-fold higher than that of the parental strain
(Figure 1A). In contrast, antibiotic production by rif6 and
rif12 was barely detectable by microbiological assay. Anti-
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biotic yields by rif2, rif3, rif4 and rif5 were almost identi-
cal and slightly lower than that of the wild type.

Rif6 and rif12 mutants were conditionally defective in
antibiotic production. Indeed, their defect was less appar-
ent when the strains were grown on complex YS solid
medium (Figure 1B and data not shown). It should be
noted, however, that the erythromycin production by the
wild type strain and by rif1 and rif9 mutants was signifi-
cantly lower on YS than on R3/1. Phenotypical analysis
demonstrated that rif6 and rif12 were severely defective in
aerial mycelium development and spore formation on
R3/1 (Figure 1C and data not shown). In contrast, on the
same medium rif1 and rif9 exhibited luxurious growth
and more abundant spores with respect to the wild type.

The different erythromycin production by the wild type,
the rif1 and the rif6 mutants was confirmed in bioreactor
experiments using R3/1 broth under standard batch-cul-
ture conditions (Figure 2). Consistently with previous
findings [23] four distinct phases of the growth curve
could be detected in both the wild type and the rif1
mutant: an initial period of rapid growth lasting until 36

h (Phase a), followed by a period of growth slowdown
until 72 h (Phase b), a second period of rapid growth
from 72 to 84 h (Phase c) before entering the stationary
phase (Phase d). Erythromycin production was detectable
after 12 h and then paralleled the biomass increase up to
96 h. In contrast, the rif6 mutant prematurely ceased
growth after 48 h (Phase a) with a marked acidification of
the medium and very low final antibiotic yields.

Genotypic characterization of the S. erythraea rif 
mutants
In prokaryotes more than 90% of rifampicin-resistant iso-
lates have missense mutations, deletions or insertions in
the 81-bp rifampicin resistance-determining region
(RRDR) of the rpoB gene [42-44]. To determine the loca-
tion and nature of the S. erythraea rif mutations, this
region was amplified by PCR from the wild type and
mutant strains and subjected to nucleotide sequencing.
The sequence analysis demonstrated: i) a C to T transition
at position 1333 of the nucleotide sequence of the coding
region of S. erythraea rpoB in the rif1 and rif9 mutants; ii)
a C to T transition at position 1326 in the rif2, rif3, rif4
and rif5 mutants; iii) an A to G transition at position 1279
in the rif6 and rif12 mutant strains.

These mutations resulted in the following missenses:
S444F (rif1 and rif9), R442W (rif2, rif3, rif4 and rif5),
Q426R (rif6 and rif12) affecting three conserved residues
in prokaryotes, which are frequently involved in
rifampicin resistance (Figure 3). R442W and S444F were
of particular interest because it has been demonstrated
that missense mutations R440H or R440C and N442Y
affecting corresponding residues in S. lividans rpoB activate
antibiotic biosynthesis in this microorganism (see Back-
ground).

Stimulation of erythromycin production in the rif1 and
rif9 mutants (harboring the S444F missense) was thus
consistent with the results obtained in S. lividans. Indeed,
phenylalanine and tyrosine (replacing, respectively, a ser-
ine residue in S. erythraea and an asparagine residue in S.
lividans) are structurally similar amino acids. In contrast,
the R442W missense was not functionally equivalent to
R440H or R440C in S. lividans and thus failed to stimulate
erythromycin production. Interestingly, the missense
Q426R in the slow-growing and developmental-defective
rif6 and rif12 mutants affected a glutamine residue that,
when mutated to proline, leucine or arginine (Figure 3)
was responsible for transcription termination defects and
slow growth in E. coli [42-46].

Microarray analysis of the transcriptome of the S. 
erythraea rif mutants
To gain information about the mechanisms underlying
the stimulatory/inhibitory effects of the rif mutations on

Erythromycin production by S. erythraea NRRL2338 and derivative rif mutants on R3/1 or YS agar mediaFigure 1
Erythromycin production by S. erythraea NRRL2338 
and derivative rif mutants on R3/1 or YS agar media. 
(A-B) Strains were grown for 7 days on R3/1 (A) or YS (B) 
agar media and antibiotic production was evaluated by micro-
biological assays. Data are shown as mean ± standard devia-
tion of triplicate samples in representative experiments. 
Similar results were obtained in three independent experi-
ments. (C) Pictures of S. erythraea NRRL2338 and rif deriva-
tives rif1 and rif6 after 7 days growth on R3/1 solid medium. 
Note in rif6 the severe defect in aerial mycelium and spore 
formation.
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erythromycin production, genome-wide analysis of
expression profiles using DNA microarrays was per-
formed. To this purpose, the wild type strain and the rif1
(S444F) and rif6 (Q426R) mutants were grown in shake-
flasks containing R3/1 medium to either phase a or phase
b of the growth curve (i.e. 24 h for wt and rif1 and 48 h

for rif6; Figure 2). RNA samples were extracted from two
independent cultures, processed and hybridized to cus-
tom made GeneChips containing DNA oligonucleotide
probes corresponding to all the predicted S. erythaea
ORFs.

Bioreactor cultures of S. erythraea NRRL2338 and derivative rif mutantsFigure 2
Bioreactor cultures of S. erythraea NRRL2338 and derivative rif mutants. Biomass, erythromycin production, glucose 
concentration, pO2 and pH were evaluated as described in the Materials and Methods section.
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Expression data of the wild type, rif1 and rif6 mutants
during growth phases a and b were compared using Sig-
nificance Analysis of Microarray (SAM) multiclass analy-
sis. Setting the q-value threshold at 1% allowed
identifying 198 and 270 differentially expressed genes
(DEG) among wild type, rif1 and rif6 strains in phases a
and b, respectively (see Additional file 1, Table S1 and
Additional file 2, Figure S1). Among the 198 DEG charac-
terizing the phase a [23], the five most represented gene-
functional classes showing a significant enrichment were:
II.6-Posttranslational modification, protein turnover,
chaperone; II.8-RNA processing and modification; II.12-
Translation, ribosomal structure and biogenesis; III.5-
Energy production and conversion; III.8-Nucleotide trans-
port and metabolism. The gene-functional classes show-
ing a significant depletion were: I.3-Cell wall/membrane/
envelope biogenesis, III.2-Carbohydrate transport and
metabolism.

Among the 270 DEG characterizing the phase b the only
functional category showing a significant enrichment was
II.12-Translation, ribosomal structure and biogenesis,
while a significant depletion was evidenced only for the
functional category III.10-Secondary metabolites biosyn-
thesis, transport catabolism.

For further analysis and discussion, we focused our atten-
tion on the 198 DEG of the growth phase a (see Addi-
tional file 1, Tables S2, S3, S4 and S5) when expression of
erythromycin biosynthetic genes was maximal in the wild
type strain (Figure 4A, right panel). Indeed, any compari-
son among the two mutant strains and the wild type dur-
ing the phase b (see Additional file 1, Tables S6, S7, S8, S9
and S10) was considered uninformative because of the
severe growth phenotype of rif6. The 198 DEG were
grouped into four clusters (Cluster 1 to 4).

Cluster 1
This cluster is the largest one and comprises 122 genes
that were up-regulated in rif6 and not affected in the rif1
compared to the wild type (Figure 5, left panel). This clus-
ter includes genes involved in amino acid biosynthesis
(metH, hisC2, lat corresponding to SACE 3898, SACE 0217
and SACE 0784, respectively) and uptake (SACE 2830)
and in fatty acid biosynthesis (SACE 1694 coding for
putative long-chain fatty acid ligase). Cluster 1 includes
also genes coding for putative stress proteins (smpB [SACE
1108], SACE 0034, uspA3 [SACE 2443], SACE 1331 and
SACE 1340), transcriptional factors (SACE 2101 coding
for the omega subunit of RNAP) and global transcrip-
tional regulators (SACE 3299, SACE 4349, SACE 6128),
and genes involved in amino acid (dapD [SACE 1013],
hisF [SACE 5756], SACE 5263), vitamin (pdx1 [SACE
2009], folK [SACE 0400]) and nucleotide metabolism
(purF [SACE 7125], pyrE [SACE 7189], adk [SACE 6812]).
Other very relevant genes belonging to this cluster are:
rpsA (SACE 5431) coding for S1, the largest ribosomal
protein, and genes encoding proteins involved in carbon
metabolism (eno [SACE 0838] coding for the phos-
phopyruvate hydratase, SACE 5675 coding for the pyru-
vate dehydrogenase complex, E1 component, beta
subunit, and SACE 7048 encoding the 2,5-diketo-D-glu-
conic acid reductase) and energy re-generation (ctaE
[SACE 1684] coding for the cytochrome C oxidase subunit
III, qcrC [SACE 1685] coding for the cytochrome C mono-
and di-heme variants, atpD [SACE 6280] and atpF [SACE
6284] coding for the ATP synthase beta and B chains,
respectively).

This cluster includes also many genes involved in nitrogen
metabolism: glnB (SACE 6061), encoding the nitrogen
regulatory protein PII, amt (SACE 6062), coding for an
ammonium transporter, glnA-1 (SACE 1623), coding for
the glutamine synthetase, gudB (SACE 4093), coding for
the NAD-specific glutamate dehydrogenase, ureA (SACE
0634) and ureC (SACE 0636), coding for alpha and
gamma subunits of the urease respectively, nirB (SACE
3801, SACE 3802) and nirD (SACE 3803), encoding the
assimilatory nitrite reductase large and small subunits
respectively, and narK coding for a nitrite extrusion pro-
tein.

Location and nature of the S. erythraea rif mutationsFigure 3
Location and nature of the S. erythraea rif mutations. 
Alignment of deduced amino acid sequence of rifampicin 
resistance-determining region (RRDR) of E. coli, Mycobacte-
rium tuberculosis, S. lividans and S. erythraea with location of: i) 
the rif (rpoB) mutations more frequently associated with 
rifampicin-resistance in E. coli and their relative phenotypes 
(upper part of the panel); ii) the amino acid residues (under-
lined in the middle part of the panel) that, when mutated, are 
responsible for activation of cryptic antibiotic biosynthesis in 
S. lividans; iii) the missenses of the S. erythraea rif1-rif6 
mutants.
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Up-regulation of the nitrogen regulon, which in actino-
mycetes includes genes involved in ammonium assimila-
tion and supply [47,48], is noteworthy because
demonstrates that the erythromycin production is
strongly inhibited by ammonium in the wild type strain
(see Additional file 2, Figure S2) and is supported by the

evidence that, in Amycolatopsis mediterranei, GlnR links
rifamycin biosynthesis to nitrogen metabolism [49].

Cluster 2
This cluster comprises 36 genes that were down-regulated
in the rif6 mutant and not affected in the rif1 compared to

Transcript analysis of the ery cluster and regulatory genesFigure 4
Transcript analysis of the ery cluster and regulatory genes. (A) Microarray analysis. Visualization by dChip of the 
expression of the ery cluster (upper panels) and regulatory genes (lower panels) during the time course of the wild type strain 
(right panels) and during phase a in the wild type and the rif1 and rif6 mutants (left panels). Red = up-regulation; Green = 
down-regulation. (B). Semi-quantitative analysis of eryCII- and bldD-specific transcripts by RT real-time PCR. The RNAs were 
extracted from S. erythraea NRRL2338 and rif derivatives rif1 and rif6 grown in R3/1 medium up to phase a. Results were nor-
malized to 16S rRNA levels. Transcript levels of S. erythraea NRRL2338 were arbitrarily given a value of 1. Data are shown as 
mean ± standard deviation from three independent experiments, each with triplicate samples, using distinct cDNA prepara-
tions for each RNA sample. The Student's t-test was used for statistical analysis. Statistically significant differences between val-
ues from S. erythraea NRRL2338 and rif mutants (asterisks) are declared at a p value < 0.05.
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the wild type (Figure 5, right up-panel). The most impor-
tant members of this cluster are genes encoding NADH
dehydrogenase I (nuoA [SACE 6902] and nioL [SACE
6891]), and two genes involved in nucleotide metabolism
(purE [SACE 6485] and pyrH [SACE 6036]). More interest-
ingly, all genes of the ery cluster except eryBI (SACE 0732)
showed a similar gene expression profile, being down-reg-
ulated in the rif6 mutant and not significantly affected in
the rif1 compared to the wild type (Figure 4A, left panel).
In contrast, eryBI, which is transcribed monocistronically
with the transcript start site facing toward that of eryE [21],
exhibited an opposite behavior, e.g. being up-regulated in
the rif6 mutant and not significantly affected in the rif1
compared to the wild type. It is worthwhile noting that,

although none of the genes of the ery cluster had a statis-
tically significant differential expression at the stringent q-
value threshold of 1%, half of them (i.e., eryCVI, eryCI,
eryBI, eryCV, eryBV, eryCII, eryBII, eryG, eryBVI, eryBVII)
were statistically significant at the still stringent q-value
threshold of 5%. Down-regulation of eryCII in the rif6
mutant was supported by reverse transcriptase real-time
PCR analysis (Figure 4B).

Unexpectedly, bldD, coding for a key developmental regu-
lator that seems to regulate the ery cluster positively,
exhibited an opposite gene expression pattern with
respect to most of ery genes. In particular, similarly to the
genes of cluster 1, bldD was up-regulated in the rif6 and

Microarray analysis of the most relevant DEGsFigure 5
Microarray analysis of the most relevant DEGs. Visualization by dChip of the most relevant genes belonging to each of 
the four clusters formed by phase a-DEGs. Red = up-regulation; Green = down-regulation.
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not significantly affected in the rif1 compared to the wild
type (Figure 4A, left panel and Figure 4B). It should be
noted, however, that bldD mRNA levels may not parallel
BldD protein levels because the regulation of bldD expres-
sion in actinomycetes is very complex and involves differ-
ent mechanisms including transcription repression by
BldD [26,50] and developmental stage-dependent prote-
olysis [51]. Thus, it is possible that the increased bldD
mRNA levels may reflect an enhanced BldD proteolysis in
the rif6 mutant. This hypothesis is supported by up-regu-
lation, in this strain, of many genes which are known to
be negatively regulated by BldD in streptomycetes [25]
including bldN (SACE 6952), coding for a developmental
regulator, cya (SACE 1989), coding for an adenylate
cyclase, a two-component system response regulator
(SACE 6712) and a HAD-superfamily subfamily IB,
PSPase-like protein (SACE 0365) (Figure 4A, left panel).
In addition to a possible effect on the expression of the ery
cluster, the altered BldD-dependent regulation may also
account for the "bald" phenotype of this mutant (Figure
1C). Future work will be aimed at verifying this hypothe-
sis.

Cluster 3
This cluster comprises 27 genes that were moderately
down-regulated in the rif1 and strongly down-regulated in
the rif6 compared to the expression levels into the wild
type (Figure 5, right central-panel). This cluster includes
genes coding for DNA gyrase subunits A and B (gyrA
[SACE 0009] and gyrB [SACE 0008], respectively), ATP-
dependent RNA helicases (SACE 5942 and deaD [SACE
6058]) and a large number of ribosomal proteins (rpsB,
rpsD, rplD, rplO, rplW, rpmC and rpmD corresponding to
SACE 6038, SACE 6804, SACE 6835, SACE 6817, SACE
6834, SACE 6828 and SACE 6818, respectively).

Apparently, down-regulation of genes encoding ribos-
omal proteins and up-regulation of genes involved in
amino acid biosynthesis (cluster 1, see above) was sugges-
tive for an ability of the rif6 mutations to induce a strin-
gent phenotype as well as other well-characterized rif
mutations (see Background). However, it should be
pointed out that in Corynebacterium glutamicum up-regula-
tion of ribosomal protein operons was also observed in
ppGpp-defective strains following treatment with serine
hydroxamate, a serine analogue that competitively binds
to the seryl-tRNA synthetase and prevents the seryl-tRNA
from being charged thus inducing the stringent response
[52].

Cluster 4
This cluster comprises 13 genes that were up-regulated in
rif1, and down-regulated in the rif6 (Figure 5, right down-
panel). The most important members of this cluster are
genes encoding NADH dehydrogenase I (nuoC [SACE

6900], nuoD [SACE 6899], nuoE [SACE 6898], nuoF [SACE
6897]), and genes coding for key enzymes of a major
feeder pathway of erythromycin biosynthesis (mmsA2
[SACE 1456] coding for methylmalonate semialdehyde
dehydrogenase, SACE 1457 coding for acyl-CoA dehydro-
genase-like activity). In particular SACE 1456 and SACE
1457 are the first two genes of a putative operon also
including SACE 1458 (echA9) encoding putative enoyl-
CoA hydratase/isomerase and SACE 1459 (mmsB) coding
for 3-hydroxyisobutyrate dehydrogenase (Figure 6A).

As the ery cluster was found to be only slightly down-reg-
ulated in the rif6 and not significantly affected in the rif1,
it is likely that the different yields of erythromycin in the
rif1 and the rif6 mutants may be due, at least in part, to a
differential activity of this major feeder pathway (Figure
6B). To validate the microarray analysis and obtain more
quantitative data, the amounts of mmsA2- and mmsB-spe-
cific transcripts were measured by RT real-time PCR. The
results confirmed the up-regulation of the cluster SACE
1456-SACE 1459 in the rif1 mutant (Figure 6C).

Moreover, the data analysis identified additional clusters
of contiguous genes sharing similar transcriptional mod-
ulation. These groups of physically proximal genes con-
tain, in most cases, members of known or putative
operons showing similar expression profile (Additional
file 2, Figure S3) including: i.) the str locus containing the
S10-spc-alpha ribosomal protein operons [53]; ii.) the
rpsB-tsf-pyrH operon coding for ribosomal protein S2,
elongation factor Ts and UMP-kinase [54,55]; iii.) the nuo
operon encoding the energy-generating NADH dehydro-
genase complex I [54]; iv.) the ctaE-qcrCA gene locus cod-
ing for cytochrome c oxidase subunit III and for subunits
of the ubiquinol c reductase including cytochrome cc and
a Rieske Fe-S protein, respectively [56]; v.) the F0 F1 ATP
synthase operon containing the eight genes atpBEF-
HAGDC [57]; vi.) the ure operon (ureABCFGD) coding for
all subunits of the urease and its accessory proteins [58];
vii.) a putative nar/nir gene cluster coding for a nitrite
extrusion protein (NarK), the catalytic subunit of the
assimilatory nitrate reductase (NasA/NarB), the large
(NirB) and small (NirD) subunits of NAD(P)H-nitrite
reductase and two enzymes involved in the biosynthesis
of siroheme (HemD and NirE/SirB), the prostetic group of
nitrite reductase [59]; viii.) the amt-glnB operon coding for
the ammonium transporter and the nitrogen regulon reg-
ulatory protein PII. Up-regulation of the amt-glnB operon
in the rif6 mutant may be due to increased glnR (SACE
7101) mRNA levels. Indeed, there is evidence for a central
role of GlnR in regulation of nitrogen metabolism in
actinomycetes [48]. The expression profiles of several
genes located in these operons were confirmed by RT real-
time PCR (Additional file 2, Figure S4).
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Conclusion
This study demonstrates the usefulness of the rif screening
as a tool to search for higher-producer strains and pro-
vides new information about the molecular mechanisms
underlying the stimulatory effect of several rif mutations
on bacterial secondary metabolism. The rif mutations
deeply changed the transcriptional profile of S. erythraea
suggesting that their effects on erythromycin biosynthesis
go beyond the stringent response, as previously reported
(see Introduction). In addition to specific effects on clus-
ters of genes coding for secondary metabolites, the expres-
sion of genes coding for key enzymes of the carbon and

nitrogen central metabolism was dramatically altered
affecting, in turn, energy supply, growth rates and fluxes of
metabolites through the erythromycin feeder pathways.

The ery cluster was found to be slightly down-regulated in
the hypo-producing rif6 mutant possibly as a conse-
quence of perturbed BldD-dependent regulation. In con-
trast, the expression of the ery cluster was slightly affected
in the rif1 mutant. In this strain, the enhanced activity of
an erythromycin feeder pathway may account for the
hyper-producing phenotype.

Semi-quantitative analysis of the SACE 1456-SACE 1459-specific transcripts by RT real time PCRFigure 6
Semi-quantitative analysis of the SACE 1456-SACE 1459-specific transcripts by RT real time PCR. (A) Genetic 
map of the SACE 1456-SACE 1459 genetic cluster coding for enzymes involved in the valine catabolic pathway (B). (B) Possible 
metabolic pathways leading to propionyl-CoA and 2-methylmalonil-CoA, the two building blocks for biosynthesis of the eryth-
romycin precursor 6-deoxyerythronolide B. (C) Semi-quantitative analysis of SACE 1456-SACE 1459-specific transcripts by RT 
real-time PCR. The RNAs were extracted from S. erythraea NRRL2338 and rif derivatives rif1 and rif6 grown in R3/1 medium 
up to phase a. Results were normalized to 16S rRNA levels. Transcript levels of S. erythraea NRRL2338 were arbitrarily given 
a value of 1. Data are shown as mean ± standard deviation from three independent experiments, each with triplicate samples, 
using distinct cDNA preparations for each RNA sample. The Student's t-test was used for statistical analysis. Statistically signif-
icant differences between values from S. erythraea NRRL2338 and rif mutants (asterisks) are declared at a p value < 0.05.
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The intimate connection between the erythromycin bio-
synthesis and the central metabolism is consistent with
both genomic and expression data. In general, secondary
metabolism is believed dispensable for survival, and most
of gene clusters coding for secondary metabolites occupy
non-core genomic regions and are maximally expressed
during late growth phases. In contrast, the ery cluster maps
in the core region of the S. erythraea chromosome, and is
transcribed during the middle pseudo-exponential growth
phase when the activities of the carbon and nitrogen cen-
tral metabolic pathways are maximal [22,23,60]. As
shown in figure 6B, these pathways are strictly connected
to erythromycin biosynthesis. Indeed, assembly of the 14-
membered macrolactone 6DEB requires one propionyl-
CoA and six (2S)-methylmalonyl-CoA units.

The analysis of the hyper-producing mutant rif1 suggests
that the valine catabolic pathway, which is strongly up-
regulated in this strain, may be a major feeder pathway
supplying propionyl-CoA. Propionyl-CoA is then trans-
formed into (2S)-methylmalonyl-CoA biotin-dependent
carboxylation that in S. erythraea may be accomplished by
at least five isoenzymes [22,23]. On the other hand, there
is experimental evidence that the erythromycin biosyn-
thetic pathway is connected to the Krebs cycle via the
methylmalonyl-CoA mutase, an adenosylcobalamin-
dependent enzyme that catalyzes the reversible isomeriza-
tion of (2R)-methylmalonyl-CoA and succinyl-CoA [27-
29]. This connection may underlie the negative regulation
of erythromycin production by ammonium in starch-
based fermentations accounting, at least in part, for the
phenotype of the hypo-producing mutant rif6 in which
the nitrogen regulon, including genes for ammonium
uptake and assimilation, was impressively up-regulated.

Methods
Bacterial strains and media
S. erythraea wild type strain NRRL2338 was a gift of S.
Donadio (KtedoGen, Milano). This strain has been depos-
ited at the American Type Culture Collection. The strain
was stored in 1-ml cryotubes at -80°C as frozen mycelium
in YS medium containing 15% glycerol at a biomass con-
centration of approximately 0.25 g dry cell weight (DCW)
ml-1, or at -20°C as spores in 20% glycerol (in distilled
water) at a title of approximately 5 × 108 ml-1.

The composition (per liter) of the complete media used in
this study is reported in Table 1. When requested all
media were agarized at a concentration of 1.8%.

Escherichia coli strain DH5α was used in cloning proce-
dures. This strain was grown in Luria Bertani (LB)
medium. To allow plasmid selection, LB medium was
supplemented with ampicillin (50 μg ml-1). The compo-
sition (per liter) of the nutrient broth agar in the micro-
biological assays with Micrococcus luteus tester strain was:
3 g beef extract, 5 g tryptone, 15 g NaCl, 15 g agar.

Preparation of spores
Concentrated spore suspensions (5 × 108 ml-1) are crucial
for purposes like starting reproducible cultures for physi-
ological or fermentation studies. To prepare spores
adapted to the conditions of liquid medium, spores were
spread on the same medium with agar. Mycelium with
spores was strongly attached to the surface agar, which
made impossible to collect spores without agar traces.
Therefore, the method of growing strains on cellophane
disc was used [61]. The cellophane discs were sterilized in
distilled water and then placed on agar, and the inoculum

Table 1: Composition of the media used in this study

Medium Composition (per liter) pH

Complex
Medium 707 5 g peptone, 3 g yeast extract, 1 g MgSO4·7 H2O pH 7.0
Seed medium (SM) 4 g peptone, 4 g yeast extract, 2 g KH2PO4, 4 g K2HPO4, 0.5 g MgSO47H20, 10 g glucose pH 7.2
R3/1 5 g yeast extract, 0.1 g casamino acids, 3 g L-proline, 10 g MgCl2·6H2O, 4 g CaCl2·2H2O, 0.2 g K2SO4, 0.05 g 

KH2PO4, 5.6 g TES, 10 g glucose
pH 7.2

Medium 266 (YS) 2 g yeast extract, 10 g soluble starch pH 7.3
OMY 40 g oatmeal, 1 g yeast extract pH 6.8–7.0
Nutrient broth 3 g beef extract, 5 g tryptone, 15 g NaCl pH 7.2

Chemically defined
MM-101 7 g NH4Cl, 3 g KH2PO4, 7 g K2HPO4, 0.25 g MgSO4·7 H2O, 0.0138 g CaCl2·2 H2O, 10 g glucose, 2 ml trace 

solution element (TSE)a
pH 6.9

MM-102 1 g NH4Cl, 1 g CaCO3, 0.5 g NaCl, 0.4 g MgSO4·7 H2O, 0.15 g KH2PO4, 0.35 g K2HPO4, 10 g glucose, 2 ml 
trace solution element (TSE)a

pH 6.9

aWhen indicated 1.0 g casamino acids (Difco, Detroit, Mich.) and/or 2 ml (per liter) trace solution element (TSE) were added. The TSE solution 
composition (per liter) was: 40 mg ZnCl2, 200 mg FeCl3·6 H2O, 10 mg CuCl2·2 H2O, 10 mg MnCl2·4 H2O, 10 mg Na2B4O7·10 H2O, 10 mg 
(NH4)6Mo7O24·4 H2O.
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was spread on cellophane by glass stick. After two weeks,
spores (control in microscope) were easily scraped from
cellophane, and stored in 20% glycerol at -20°C.

Growth conditions
For shake-flask experiments, spores in frozen aliquots
were collected by centrifugation, re-suspended in medium
707 (for rehydration), and readily separated by vortexing.
Individual aliquots (about 5 × 108 spores) were used to
inoculate each 500 ml buffled Erlenmeyer flask contain-
ing 50 ml of the liquid media described above. Cultures
were incubated at 30°C with shaking at 250 rpm. Bioreac-
tor cultures were carried out by using Minifors mini-fer-
menters (Infors AG, Bottmingen, CH) that operated with
a working volume of 1.5 l. Stirring was provided by Rush-
ton-type impellors rotating at 250 rpm. Sterile air was sup-
plied through a sparger. The bioreactors were equipped
with pH electrode, pO2 electrode (polarographic), anti-
foam probe and Pt-100. Glucose concentration was mon-
itored during fermentation by coupled glucose oxidase-
peroxidase reaction using a commercial kit (distributed by
Laboser srl).

Erythromycin assays
Erythromycin production in solid media was assayed by
bioassay. To this purpose, S. erythraea strains were grown
in solid media (30 ml) in Petri dishes (8.5 cm). After
desired time of cultivation, 1.6 cm (diameter) agar discs
(with mycelium on the surface) were removed and placed
into empty Petri dishes (diameter 8.5 cm) that were filled
with soft nutrient agar that was seeded with Micrococcus
luteus. Diameters of the zone of inhibition were measured
after 2 days incubation at 37°C. Agar discs containing
defined amounts of >95% pure erythromycin A (Sigma)
were used as a reference. In liquid media, erythromycin
was extracted and assayed by both microbiological assay
and thin layer chromatography (TLC). Extraction of eryth-
romycin from fermentation broths was performed as
described [62]. TLC identification was carried out on sil-
ica-gel GF254 plates as previously described [63].

DNA procedures
High molecular weight genomic DNA was extracted from
S. erythraea strains grown in 50 ml of SM medium with
shaking at 28°C for 5 days (120 h). After centrifugation,
the mycelium was re-suspended in 10 ml SET buffer (75
mM NaCl, 25 mM EDTA, 20 mM Tris-Cl pH 7.5) and
incubated in the presence of 5 mg ml-1 lysozyme for 30' at
37°C. Samples were sonicated (Sonifer sonicator Model
250/240, Brain Ultrasonic Corporation) 3 times 30 sec,
and incubated in the presence of 20 mg ml-1 Proteinase K
and 1.2% sodium dodecyl sulfate (SDS) for 2 h at 55°C.
Nucleic acids were extracted by fenol-chloroform:iso-

amylic alcohol (24:1) extraction according to standard
procedure [64], and 15 μg ml-1 ribonuclease A was used
to remove RNA. After fenol-chloroform:isoamylic alcohol
(24:1) extraction and ethanol-precipitation, high molecu-
lar-weight DNA was collected by spooling using Shep-
herd's crooks [64].

DNA fragments were isolated through acrylamide slab
gels and recovered by electro-elution as described [64].
Oligonucleotides used as primer in the PCR reactions are
listed in Table 2. The amplification reactions consisted of
30 cycles including 1 min of denaturation at 94°C, 1 min
of annealing at 55°C and 1–2 min of extension at 72°C.
They were carried out in a Perkin Elmer Cetus DNA Ther-
mal Cycler 480.

DNA sequencing was performed as a service by MWG Bio-
tech. DNA similarity searches were carried out using
BLAST at NCBI [65]http://www.ncbi.nlm.nih.gov/.
Sequence alignments were performed with Clustal W at
EBI [66]http://www.ebi.ac.uk/.

RNA extraction, microarray and reverse transcriptase real-
time PCR experiments
For each strain and time point, total RNA was extracted
from mycelium pellets deriving from 1-ml culture sam-
ples using the GeneElute™ total RNA Purification Kit
(SIGMA), recovering it in 50 μl of Elution Solution. After
extraction RNAs were quantified with a NanoDrop spec-
trophotometer (NanoDrop Technologies) and analyzed
by capillary electrophoresis on an Agilent Bioanalyzer
(Agilent).

The RNA samples showing an RNA Integrity Number (i.e.,
the quality parameter calculated by the Bioanalyzer soft-
ware) higher than 7 were processed for microarray hybrid-
ization, following the instructions of "Target Labeling for
Prokaryotic GeneChip® Antisense Arrays" (Affymetrix
Prokaryotic gene Expression Manual). The protocol con-
sists in cDNA synthesis by reverse transcription (starting
with 10 μg RNA), followed by cDNA fragmentation with
DNase I and labeling with Terminal Deoxynucleotidyl
Transferase. The labeled cDNAs were then hybridized for
16 h at 50°C on individual S. erythraea GeneChips. After
hybridization, GeneChips were washed and stained with
streptavidin-conjugated phycoerythrin by using the Flu-
idic Station FS450 (Affymetrix) according to the ProkGE-
WS2v3_450 Protocol. Fluorescent images of the microar-
rays were acquired using a GeneChip Scanner 3000
(Affymetrix). All Chip images and files have been depos-
ited in the GEO (Gene Expression Omnibus) [67]http://
www.ncbi.nlm.nih.gov/geo/ repository (accession
number: GSE12017).
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The S. erythraea GeneChip was previously described in
Peano et al. [23]. The microarray, targeting the whole set
of S. erythraea genes, is composed of 25-mer oligonucle-
otide probes organized in 7060 probe-sets. The vast
majority of probe-sets (i.e. 6494) are composed of at least
11 probes pairs (Perfect Match/MisMatch); among these,
29 probe-sets, targeting genes longer than 5000 bp,
include from 13 to 86 probe pairs; the remaining 566
probe-sets are instead composed of less than 11 probe
pairs.

Quantitative analysis of eryCII, bldD, SACE 0636, 1456–
1459, 1684, 3802, 6038, 6062, 6280, 6818, 6899, 6902
and 7101 specific transcripts, normalized to 16S rRNA,
was performed by reverse transcriptase (RT) real-time
PCR. Total RNAs (1 μg) from S. erythraea NRRL2338 and

several rif derivatives grown in R3/1 medium up to phase
a (Figure 2) were reverse-transcribed by using random
hexamer (2.5 μM) with Superscript RT (Invitrogen).
About 0.1–1% of each RT reaction was used to run real-
time PCR on a SmartCycler System (Cepheid) with SYBR®

Green JumpStart Taq ReadyMix (Sigma-Aldrich) and the
primer pairs indicated in Table 2. Real-time PCR samples
were run in triplicate. The real-time PCR conditions were:
10 min initial denaturation at 94°C, 30 sec at 94°C, 30
sec at 55°C, 30 sec at 72°C for 35 cycles; detection of PCR
products was performed at 83°C.

Data Analysis
The quality of the raw data obtained from microarray
hybridization was assessed by MAS5.0 (Microarray Suite/
Software, Affymetrix) control parameters after a global

Table 2: Oligonucleotides used in RT real-time PCR experiments

Name Sequence Target gene Amplicon length
(bp)

16Suniv-1 5'-CAGCAGCCGCGGTAATAC-3' 16S rRNA 409
16Suniv-2 5'-CCGTCAATTCCTTTGAGTTT-3'
SACE1456 for 5'-GCGGCTGGCCGAGCTGTTCATC-3' SACE1456 172
SACE1456 rev 5'-GTGGGCGGCGGCCGTCGAGTAG-3'
SACE1457 for 5'-GATGTCTACGTCGTGATGGCCAG-3' SACE1457 184
SACE1457 rev 5'-CGAGCCGGTGCGTGGCGGGCAC-3'
SACE1458 for 5'-GCTTTGCGCGGGCGGCGACATCC-3' SACE1458 186
SACE1458 rev 5'-CCGTGCGCGGTGACACCGACG-3'
SACE1459 for 5'-CGGCCAGGTCACCAAGATGTGC-3' SACE1459 167
SACE1459 rev 5'-CCGGGCAGTTGGTGGTCAGCG-3'
SACE0636 for 5'-CAACCCGACCCGCCCGCACAC-3' SACE0636 107
SACE0636 rev 5'-CGGCGAAGGCGAGGTCCAC-3'
SACE1684 for 5'-CCTCCCGTTCACGATCATCC-3' SACE1684 140
SACE1684 rev 5'-GCCCCAGCACGAAGACCGTTC-3'
SACE3802 for 5'-AGCCTCGGCCGCGGCCACGTCC-3' SACE3802 102
SACE3802 rev 5'-CACCGAGTACGTGCCGTTGCGC-3'
SACE6038 for 5'-GGCCTACGACTTCGTCAAG-3' SACE6038 125
SACE6038 rev 5'-GGTTGACGAAGGGCATGC-3'
SACE6062 for 5'-GTCGTGGGCGTGCTCTGG-3' SACE6062 109
SACE6062 rev 5'-CCTGTCCGAGCCCGAAGAAC-3'
SACE6280 for 5'-CAAGGCGCCGTCCTTCGACCAG-3' SACE6280 112
SACE6280 rev 5'-GAACAGACCGATCTTGCCGCC-3'
SACE6818 for 5'-GCACAAGGGTCTGGTCGG-3' SACE6818 116
SACE6818 rev 5'-CCAGGCCACGCACGTCAGG-3'
SACE6899 for 5'-GGGCGAGACGATCGTCAAGGCCC-3' SACE6899 133
SACE6899 rev 5'-GTGCAGCGGCGCGAGGTAGTCC-3'
SACE6902 for 5'-GTCCCGCTGGTGCTGATG-3' SACE6902 100
SACE6902 rev 5'-CGTTGGCGCGGTTGTACC-3'
SACE7101 for 5'-AGGAGGTCTGGGGCTACGACTTCTTCG-3' SACE7101 110
SACE7101 rev 5'-CACGGTGCCGATGGAGTCGTAC-3'
bldD for 5'-GGCCGAGAAGGTGGGCCCGCTG-3' bldD 136
bldD rev 5'-CCGGGCGTCATGTCGTAGATG-3'
eryCII for 5'-GACCCTTACCCGATGCTGCTG-3' eryCII 156
eryCII rev 5'-GGTGAACGCGGGGTCGTCGAG-3'
Page 12 of 15
(page number not for citation purposes)



Microbial Cell Factories 2009, 8:18 http://www.microbialcellfactories.com/content/8/1/18
scaling at a target intensity of 100. Control parameters, as
well as box plot of raw intensities, indicated the overall
high quality of the data set and the absence of any outly-
ing sample. Probe level data was converted to expression
values using the Robust Multi-array Average (RMA) proce-
dure [68]. Briefly, PM values (Perfect Match) were back-
ground-adjusted, normalized using quantile
normalization, and log transformed.

Significance Analysis of Microarray (SAM) has been
applied to detect differentially expressed genes.

SAM was introduced by Tusher [69] as a statistical tech-
nique for finding significant genes in microarrays while
controlling the False Discovery Rate (FDR). SAM com-
putes a statistic for each gene, measuring the strength of
the relationship between gene expression and the
response variable (e.g. the strain types, the growth phases,
etc.). It uses repeated permutations of the data to deter-
mine if the expression level of any genes is significantly
related to the response. The cutoff for significance is deter-
mined controlling the q-value, i.e. the lowest False Dis-
covery Rate at which a gene is called significant [70].
Similarly to the p-value, the q-value measures how signif-
icant a gene is differentially expressed in the context of a
large number of genes.

Hierarchical clustering and Eisen's maps were used to
group modulated genes and samples in the software pack-
age dChip [71]. Before clustering, the expression values
for a gene across all samples were standardized and these
standardized values were used to calculate correlations
between genes and samples and served as the basis for
merging nodes. In the hierarchical agglomerative cluster-
ing Pearson correlation coefficient and centroid were used
as distance metric and linkage method, respectively.
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