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I. Introduction

1.1 History

Bacillus subtilis is a sporulating rod-shaped Gram-positive

Abstract

Background: The Gram-positive bacterium Bacillus subtilis is an important producer of high quality
industrial enzymes and a few eukaryotic proteins. Most of these proteins are secreted into the
growth medium, but successful examples of cytoplasmic protein production are also known.
Therefore, one may anticipate that the high protein production potential of B. subtilis can be
exploited for protein complexes and membrane proteins to facilitate their functional and structural
analysis. The high quality of proteins produced with B. subtilis results from the action of cellular
quality control systems that efficiently remove misfolded or incompletely synthesized proteins.
Paradoxically, cellular quality control systems also represent bottlenecks for the production of
various heterologous proteins at significant concentrations.

Conclusion: While inactivation of quality control systems has the potential to improve protein
production yields, this could be achieved at the expense of product quality. Mechanisms underlying
degradation of secretory proteins are nowadays well understood and often controllable. It will
therefore be a major challenge for future research to identify and modulate quality control systems
of B. subtilis that limit the production of high quality protein complexes and membrane proteins,
and to enhance those systems that facilitate assembly of these proteins.

its closest relatives B. subtilis is non-pathogenic, and B.

subtilis has even been awarded GRAS (Generally Recog-

bacterium (Fig. 1), which thrives in the soil. Like most of  tration. The first known application of B.

nized As Safe) status by the US Food and Drug Adminis-

subtilis dates
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Figure |
Scanning electron microscopic image of B. subtilis
168.

back more than a thousand years, when it was already
used to produce natto, a Japanese food product consisting
of fermented soybeans. Nowadays, B. subtilis is best
known as a source of useful enzymes and fine biochemi-
cals, and as an attractive host for the production of heter-
ologous proteins. Many different enzymes, like proteases
and amylases, originating from B. subtilis and related
Bacillus species are being used in industry for a wide range
of different applications [1-4,4-6]. Importantly, B. subtilis
is able to produce and secrete large quantities of proteins
into the culture medium. Therefore, this organism is
widely regarded as a prolific "cell factory" for industrial
enzymes and biopharmaceuticals [1,7].

B. subtilis is genetically highly amenable as it develops
genetic competence for DNA binding and uptake. This is
one of the prime reasons why bacilli have been extensively
used in both applied and fundamental scientific research
for more than 50 years. In 1990 a European-Japanese
research collaboration was started, with the aim to
sequence the entire genome of B. subtilis strain 168. This
has led to the publication of the entire annotated genome
sequence in 1997 [8]. A subsequent international project
has led to the identification of all essential genes in B. sub-
tilis [9]. Today, B. subtilis is one of the best understood of
all living organisms, and it has become the paradigm for
research on Gram-positive bacteria. Detailed data sets on
the transcriptome [10,11], proteome [12], secretome [13]
and metabolome [14] of B. subtilis are available, repre-
senting a rich source of information for research on Bacil-
lus species. Importantly, the relatively close relationships
between B. subtilis and clinically relevant Gram-positive
pathogens also make this organism highly relevant for
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research on potential targets for novel antimicrobials and
anti-infectives.

1.2 Bacillus subtilis as a host for protein production
Currently the most commonly used bacterial host for
industrial production of heterologous proteins is
Escherichia coli. Advantages of its use as a production host
for proteins are that it can be grown easily in large fermen-
tations, and that it is genetically amenable and able to
produce large quantities of proteins. However, in E. coli
the produced proteins usually accumulate within the cells
where they have a high potential to aggregate, resulting in
the formation of inclusion bodies. To acquire the protein,
the inclusion bodies need to be separated from the cell
and the proteins subsequently need to be recovered from
the inclusion bodies. Moreover, the outer membrane of E.
coli, and of Gram-negative bacteria in general, contains
lipopolysaccharide (LPS or endotoxin), which is highly
pyrogenic and needs to be totally removed before the pro-
duced proteins can be used for clinical purposes.

B. subtilis has excellent fermentation capacities that are
equal to, if not better, than those of E. coli. In addition, B.
subtilis is also capable of producing large quantities of pro-
teins. However, in contrast to E. coli, B. subtilis lacks an
outer membrane and is able to secrete proteins directly
into the medium. Therefore, the secreted proteins can be
purified easily from the medium in their active form,
which simplifies the downstream processing considera-
bly. Although most of the proteins that are commercially
produced by B. subtilis are secreted into the medium, there
are also successful examples of cytoplasmic protein pro-
duction in B. subtilis [15].

Like all living organisms, B. subtilis has cellular quality
control systems. These facilitate the production of high
quality proteins, and remove misfolded and incompletely
synthesized proteins [16,17]. Unfortunately, cellular
quality control systems also represent significant bottle-
necks in heterologous protein production [18,19]. This
poses a fascinating challenge for cell factory engineering
since inactivation of quality control systems can improve
protein production yields, but these improved yields
might be at the expense of product quality. Clearly, a
reduced product quality would be an unwanted effect,
especially if the product is a biopharmaceutical. Notably,
the mechanisms underlying the degradation of secretory
proteins in B. subtilis are nowadays fairly well-understood
and, in many cases, the yields of "fragile" secretory pro-
teins could be improved significantly by engineering of
the cellular machinery for protein quality control [20].

Successful strategies for engineering of B. subtilis to
improve protein production include the knockout of
extracellular and/or intracellular proteases [21-23], over-
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expression of chaperones and folding catalysts [24-27],
overexpression of components of the secretion machin-
ery, and/or modification of the cell wall microenviron-
ment [28,29]. Besides engineering the host, also the
expression system used to produce the protein can be
modified in order to improve production and/or secre-
tion, for example by the use of strong or inducible pro-
moters [30-32]. Another strategy is to modify the protein
that is being produced itself, for example by selecting an
optimal signal peptide [33,34], or by rendering the pro-
tein less sensitive for degradation through site-specific
mutagenesis [35]. The latter protein modification
approach has the disadvantage that it can affect the func-
tionality and folding of the protein.

Over all, it has become clear that a wide range of
approaches for modification of B. subtilis can be applied
to further improve this important cell factory for produc-
tion of cytoplasmic and secretory proteins. Nevertheless,
there are still many proteins that remain recalcitrant to
such approaches. These include membrane proteins and
proteins that are part of cytoplasmic or membrane-associ-
ated protein complexes.

1.3 The membrane proteome as a resource for biomedical
and biotechnologicaly relevant proteins

To maintain the cellular homeostasis, the cytoplasmic
membranes of bacteria are largely impermeable to ions,
the majority of nutrients and signaling molecules. The
vital communication between the cytoplasm, transmem-
brane compartments and the extracellular milieu is facili-
tated through membrane-embedded proteins. They
typically account for about 30% of open reading frames in
prokaryotic and eukaryotic genomes [36], and they carry
out a diverse range of functions in vital processes such as
cellular growth and division, maintaining cell integrity,
energy transduction, signal sensing and transduction, cell-
cell interactions, and transmembrane transport processes
(Table 1). Membrane proteins are without any doubt the
most important group of proteins in terms of current drug
targets. Despite their functional and biotechnological
importance, the study of membrane proteins has
remained difficult due to their hydrophobicity. Accord-
ingly, they generally require detergents to remain soluble
upon extraction from the membrane. The presence of
detergents, however, complicates the biochemical and
structural analysis of membrane proteins. Consequently,
high-resolution structural data is available for only very
few membrane proteins, while X-ray crystal structures are
available for daily increasing numbers of soluble proteins.
To date, only the most abundant membrane proteins have
been characterized in some detail.

Not only the analysis of the properties of individual mem-
brane proteins is difficult, but the same applies even more
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Table I: Overview of determined and predicted functions of
membrane proteins in B. subtilis. The numbers of membrane
proteins belonging to each functional category are shown.

Cell envelope and cellular processes 522
cell wall 40
transport/binding proteins and lipoproteins 305
signal transduction (sensors) 30
membrane bioenergetics 35
motility and chemotaxis 20
protein secretion 15
cell division 8
sporulation 47
germination 13
transformation/competence 9

Intermediary metabolism 62
Metabolism of carbohydrates 17
Metabolism of amino acids 12
Metabolism of nucleotides and nucleic acids 7
metabolism of lipids 12
metabolism of coenzymes and prosthetic groups 9
metabolism of phosphate 4
metabolism of sulfur |

Information pathways 21
DNA restriction/modification and repair 2
Transcription regulation 6
ribosomal proteins |
protein modification 4
Protein folding 8

Other functions 60

Unknown 490

so to complexes of membrane proteins as well as the
entire membrane proteome. Thus, the analysis of mem-
brane proteomes, in general, has so far been relatively
unproductive compared to analyses of cytosolic pro-
teomes, cell wall proteomes and exoproteomes. This also
applies to the B. subtilis membrane proteome [13,37,38].
First studies to investigate the B. subtilis membrane pro-
teome were undertaken by Bunai et al. [39] and by
Dreisbach et al. [37]. To this end, different methods for
membrane protein solubilization were combined with
gel-based, semi-gel-based and gel-free proteomics tech-
niques (Fig. 2). More than 700 proteins were identified in
the B. subtilis membrane; 122 of these proteins contain
predicted N-terminal signal peptide-like sequences that
may serve in membrane targeting. From the membrane
proteins that were identified by Eymann et al., 268 pro-
teins contain at least one potential membrane spanning
domain [37], and 134 contained four or more potential
transmembrane domains. Notably, most detected mem-
brane proteins of B. subtilis are still of unknown function
and this is in fact also true for a multitude of membrane
proteins in other species. The functionally defined pro-
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Figure 2

Workflow for the analysis of membrane proteins via D gel LC-MS/MS. The current workflow for analysis of the B.
subtilis membrane proteome involves several steps. First bacteria are cultivated under appropriate conditions and samples are
withdrawn. Next, the harvested cells are disrupted, and the membrane fraction is enriched in successive centrifugation steps.
Membrane proteins are separated by one-dimensional SDS PAGE, excised from the gel, and digested with an appropriate pro-
tease. The peptides thus obtained are analyzed by liquid chromatography and mass spectrometry for protein identification. Dif-
ferent approaches can be employed for quantitative membrane proteomics. For B. subtilis, these have so far involved stable
istotope labeling with amino acids (SILAC) such as 3C6-!5N2 lysine, and '“N/'3N metabolic labeling.

teins are permeases and transporters, dehydrogenases,
subunits of respiratory complexes, oxidoreductases, ATP-
synthase components, two-component signal transduc-
tion proteins, penicillin-binding proteins, signal pepti-
dases and proteins involved in cell motility, cell division,
autolysis, chemotaxis, and osmoregulation.

Several of the identified B. subtilis membrane proteins
have potential biotechnological applications. For exam-
ple, cytochrome P450-like proteins can be exploited for
the bioconversion of a wide range of substrates [40].
Other identified B. subtilis membrane proteins, especially
the essential ones, may represent potential new targets for
the development of novel antimicrobial or anti-infective
drugs.

1.4 Production of membrane proteins

Due to their roles in key cellular processes, membrane
proteins represent interesting subjects for fundamental
scientific research on their structure-function relation-
ships. In addition, these proteins are crucially important
from a pharmaceutical perspective, because they are drug
targets that are relatively easy to address being exposed on
the extracytoplasmic side of the membrane. Thus, phar-

maceuticals acting on these proteins do not always need
to enter the cell. Unfortunately, most membrane proteins
are naturally present in relatively low amounts in the cells.
This makes it difficult to obtain such proteins in sufficient
amounts for functional and structural analyses. Moreover,
achieving high-level expression of membrane proteins has
turned out to be very difficult. Several high-throughput
screens for membrane protein overproduction have been
performed, most of them using E. coli as the expression
host [41-43]. In some of these studies a clear correlation
was found between the success of expression and the
number of predicted transmembrane helices [44,45].
However, in contradiction with these results, a screen on
overexpression of E. coli inner membrane proteins in E.
coli indicated that there is no clear correlation between the
ability to overproduce a membrane protein and protein
size, the number of transmembrane helices or specific
sequence characteristics [46]. Remarkably, in yet another
screen for expression of 49 E. coli membrane proteins it
was even found that the majority of successfully expressed
proteins had a high number of transmembrane helices
[47]. Furthermore, it was proposed that not only proper-
ties of the protein itself would determine whether a partic-
ular membrane protein could be overproduced
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successfully. Other important parameters were the E. coli
strain used for overproduction, the type of detection/puri-
fication tag fused to the overproduced protein, and N-ter-
minal or C-terminal fusion of such a tag to the
overproduced protein [47]. Another problem is that in
most cases the produced proteins mainly accumulate in
the cytoplasm and aggregate. In fact, there are only very
few examples where it was shown that a large amount of
the protein was inserted correctly in the membrane
[41,45,48]. Tt is thought that the presence of high
amounts of proteins in the membrane can affect the integ-
rity of the membrane and thereby have a toxic effect on
the cells. However, although cytoplasmic accumulation
can prevent this toxicity, the purification of overproduced
membrane proteins from the cytoplasm is not preferred
for most applications, since the protein may either be
folded incorrectly, inactive, or both. Notably, the overpro-
duced membrane proteins can be hard to purify and the
proteins can be readily lost during purification or subse-
quent crystallization for structural analyses. Therefore,
there is a clear and generally recognized need for systems
to overproduce correctly membrane-inserted membrane
proteins in large amounts.

To date, it is unknown to what extent B. subtilis is exploit-
able for high-level membrane protein production. How-
ever, membrane protein biogenesis usually requires the
same general secretion (Sec) pathway that is used by bac-
teria to direct the vast majority of exported proteins to
extracytoplasmic cellular locations or the growth medium
(reviews: [49,50]). This seems also to be true for B. subtilis
[13,38]. Since the Sec pathway of B. subtilis has a huge
capacity for protein secretion, often to commercially sig-
nificant gram per liter levels, there is presently no reason
to assume that the B. subtilis Sec pathway will be less effec-
tive in inserting proteins into the cytoplasmic membrane.
Thus, it can be anticipated that B. subtilis will turn out a
highly suitable host for membrane protein production at
high levels.

1.5 Protein complexes and the interactome

For many years, B. subtilis has been a widely appreciated
model organism in studies on basic cellular processes,
such as cell division, DNA replication, and cell differenti-
ation. Thus, this organism was a logical choice for subse-
quent functional genomics, transcriptomic and
proteomics research on these cellular processes. As the
next step in reaching a more global molecular understand-
ing of cellular processes, new proteomics and systems bio-
logical methodologies are currently being explored for
analyzing post-translational modifications, protein stabil-
ity/degradation and protein interaction networks [51].

The proteome of any living organism is divided into struc-
tured protein interaction networks, all together known as
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the interactome. Such networks represent functional pro-
tein complexes (e.g. chaperones), molecular machines
(e.g. the Sec translocase for protein translocation across
the membrane), or highly dynamic cellular pathways (e.g.
energy  transducing  systems). High-throughput
approaches in yeast and other organisms have revealed
that most proteins interact with only few other proteins.
In contrast, relatively small numbers of proteins, the so-
called "interaction hubs", have multiple interacting part-
ners and thus seem to participate in multiple protein com-
plexes or protein superstructures [52-54]. Furthermore,
the available data indicates that flexible protein networks
exist in which protein complexes are composed of core
proteins and peripheral proteins that readily assemble
and disassemble. Thus, the interaction hubs in protein
networks can be divided into "date hubs" that are mainly
involved in dynamic interactions, and "party hubs" that
are involved in permanent interactions. Interestingly, the
party hubs often seem to be connected, which suggests
that they represent the cores of highly clustered functional
modules [52]. It should be noted that interactome studies
have so far been predominantly focused on soluble pro-
teins, and only little, if any, data is available for protein
networks in membranes.

Interactome studies in B. subtilis have mainly involved
small-scale protein networks that are related to DNA rep-
lication and chromosome dynamics [55,56], cell division
[56] and cell morphogenesis [57]. These networks were
defined by iterative cycles involving yeast two-hybrid
screening ("interactome walking") [55,58]. The data has
been deposited in the B. subtilis protein interaction data-
base "SPiD" [59,60].

1.6 Production of protein complexes

One major challenge for postgenomic research is to pro-
duce protein complexes in sufficient amounts for bio-
chemical and structural studies. Several studies have
shown the feasibility of purifying endogenous complexes
for structure determination, including RNA polymerase 11
[61] and the ribosome [61,62]. In addition, technical
advances such as Tap-tagging have allowed easier purifica-
tion of large multiprotein complexes [61,63]. This latter
approach is currently restricted by the low abundance of
many complexes within the cell. However, large scale
functional characterization and structure determination
of macromolecular complexes requires the purification of
the different subunits in large quantities and their assem-
bly into a functional entity. One way to obtain protein
complexes from individual proteins in vitro involves pro-
ducing highly purified and soluble proteins at high-con-
centrations and subsequent formation of protein
complexes, which are suitable for further biochemical and
crystallographic studies. This technique of in vitro recon-
stitution from separately purified components can be
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used to study small or mid-size assemblies. The major
drawback of this technique is that it is relatively slow and
often requires refolding steps. In many cases, proteins that
form complexes in cells remain at least partially unfolded
in the absence of their normal cellular partners in a heter-
ologous expression system. Frequently, creation of a pro-
tein complex from individual proteins is not a simple task
and carries along many technical problems. Firstly, over-
expression of only one protein from a complex may be the
cause for its insolubility [64]. Secondly, posttranslational
modifications can not be reproduced during such in vitro
experiments and further studies may not be successful
[65]. In addition, it is often necessary to produce two or
more proteins at the same time to obtain proper folding
and/or interaction [66]. To overcome some of these diffi-
culties new methods for over-expression of two or more
proteins in different hosts have been developed. Co-
expression can be achieved by using two or more plasmids
each of which bears a gene coding a subunit of a protein
complex and a different selection marker. Another way is
the introduction of several genes into one expression vec-
tor [64]. In bicistronic vectors, despite the presence of
ribosome binding sites for each gene, the expression of
the second gene is usually much lower. Insertion of a pro-
moter in front of the second gene may improve the yields
of the second product [67]. Additionally, construction of
a plasmid bearing four genes coding for protein subunits
was reported. This method uses LINK sequences and liga-
tion-independent cloning (LIC), which avoids PCR. Thus,
the generation of unwanted mutations can be avoided
[64].

Efficient production of protein complexes requires suita-
ble purification steps. In comparison with conventional
methods like ion-exchange chromatography, size exclu-
sion chromatography or hydrophobic interaction chro-
matography, affinity tags represent highly efficient tools
for complex purification under mild elution condition
[68]. The use of different fusion tags can help to identify
protein complexes. A clear disadvantage of this method is
that the presence of a fusion tag may prevent the interac-
tion with another protein of the complex. Furthermore,
mass spectrometry is usually used for identification of
proteins in the complex [69].

The new expression systems, from the common binary
expression to the more complicated multi-expression sys-
tems for production of protein complexes, are well suited
for structural proteomics high-throughput strategies as
used for the SPINE (Structural Proteomics In Europe) and
E-meP (European Membrane Protein consortium)
projects. Structural proteomics projects are creating large
amounts of data that has to be organized and archived.
Recently, the Laboratory Information Management Sys-
tem (LIMS) for structural biology and genomics was
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developed [70]. In addition, an integrated LIMS system,
such as the Protein Information Management System
(PIMS) is currently being developed in Europe [71,72].
This system can also handle complicated data, such as
information on expression of protein complexes.

Most of the methods and techniques for production of
protein complexes that have been mentioned above use as
the host E. coli,Saccharomyces cerevisiae, baculovirus-
infected insect cells or mammalian cells. Further develop-
ment of efficient production systems for protein com-
plexes seems to require the identification of new
expression hosts with better characteristics. Clearly, B. sub-
tilis is one of such candidate hosts with ample possibilities
for improving the level and quality of protein complex
production.

2. Mechanisms and bottlenecks for membrane
protein and protein complex biogenesis

2.1 Membrane protein biogenesis

Membrane protein biogenesis in Gram-positive bacteria
like B. subtilis is a largely unstudied field of research. The
large majority of our knowledge on this process in Gram-
positive bacteria is based on bioinformatic studies and
comparisons with other organisms, while only a limited
number of experimental studies exist. In general, it is
believed that membrane protein insertion in Gram-posi-
tive organisms follows similar principles as resolved for
the Gram-negative E. coli (Fig. 3).

Targeting to the membrane

In all prokaryotic cells, the biogenesis of proteins starts
with translation of the mRNA at the ribosome in the cyto-
plasm. While cytoplasmic and most secreted proteins are
completely translated in the cytoplasm, complete transla-
tion of integral membrane proteins poses problems to
cells, as these hydrophobic proteins are prone to aggrega-
tion and misfolding. Therefore, at an early state once the
first transmembrane segment (TMS) or signal peptide
emerges from the ribosome, it is bound by a ribozyme,
denoted as SRP ("signal recognition particle") [73] in
eukaryotes or Fth ("fifty four homolog") in bacteria. In
eukaryotes, this results in a translational arrest, whereas in
prokaryotes this phenomenon has not been observed.
Subsequently, the SRP (Ffh) - ribosome - nascent chain
complex is co-translationally targeted to the membrane,
where it binds to the SRP (FtsY) receptor (in B. subtilis also
denoted as Srb [74]). In E. coli, FtsY is bound to the heter-
otrimeric SecYEG complex, and it has been suggested that
a cascade of GTP-binding and hydrolysis events by the
heterodimeric Ffh-FtsY complex effect the release of the
nascent chain from SRP and the subsequent transfer to the
SecYEG translocation channel.
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Figure 3

Scheme of membrane protein targeting and inser-
tion by the Sec translocase and YidC. The bacterial Sec
translocase is a protein complex in the cytoplasmic mem-
brane, which comprises a peripheral motor domain SecA, the
protein-conducting channel SecYEG, and the accessory pro-
teins SecDF(yajC) and YidC. Membrane proteins are cotrans-
lationally targeted to the Sec translocase as ribosome-bound
nascent chains by the SRP and the SRP-receptor FtsY. FtsY
associates with the SecY subunit of the Sec translocase, and
associates with SRP in a GTP-dependent fashion. GTP
hydrolysis at FtsY and SRP effects the release of the ribos-
ome-nascent chain complex from SRP to the SecY subunit of
the Sec translocase. Next, chain elongation at the ribosome
is directly coupled to the SecY-mediated insertion of the nas-
cent membrane protein into the cytoplasmic membrane.
During membrane insertion, newly synthesized transmem-
brane segments of nascent membrane proteins contact YidC,
which may facilitate the lateral release of these hydrophobic
segments into the lipid bilayer and/or assist in their folding
and assembly. Translocation of large polar extracellular
regions through the SecYEG translocation pore is effected by
SecA at the expense of ATP. YidC also acts as a Sec-inde-
pendent membrane protein insertase for a number of small
membrane proteins. These proteins are either targeted
directly to YidC, or possibly utilize SRP and FtsY for target-
ing. How SRP discriminates between SecYEG- and YidC-
dependent targeting of nascent membrane proteins is
unknown. Abbreviation: PMF, proton motive force.

Insertion of membrane proteins

Initially two models for membrane protein insertion were
postulated: auto-insertion and protein-mediated inser-
tion. The first mechanism proposes the spontaneous
insertion of TMS into the lipid bilayer driven by hydro-
phobic interactions and in some cases directed by the pro-
ton motive force (PMF). Evidence for such a mechanism
was based mostly on in vitro experiments with small mem-
brane proteins such as Pf3 [75] and M13 [76], both coat

http://www.microbialcellfactories.com/content/7/1/10

proteins of bacteriophages, that seemed to insert sponta-
neously in protein-free liposomes. However, in recent
years, it has become clear that these proteins do not insert
spontaneously in vivo but rather use a pathway that
depends on a membrane protein termed YidC. Complex
multispanning membrane proteins, however, depend on
the general protein translocation pore SecYEG for inser-
tion. Membrane proteins show enormous structural vari-
ations in number of TMSs, hydrophobicity of the TMSs,
the membrane topology of the TMSs, the length and
polarity of the translocated domains and loops, and the
oligomeric state of membrane proteins in their functional
state.

Co-translational membrane insertion via the SecYEG complex

The SecYEG complex consists of three conserved integral
membrane proteins SecY, SecE and SecG. The structure of
a monomeric SecYEG complex from Methanococcus jan-
naschii has been solved by X-ray crystallography [77],
while a low resolution cryo-electronmicroscopy structure
of a ribosome-bound dimeric SecYEG complex has been
solved from E. coli [78]. Currently, there is a controversy
about the functional oligomeric state of the SecYEG com-
plex, but experimental evidence demonstrates that in
cells, SecYEG complexes assemble as oligomeric, mostly
dimeric, entities. The SecYEG complex fulfills a dual func-
tion, i.e., it both catalyzes the translocation of secretory
proteins across the membrane and the membrane inser-
tion of membrane proteins into the lipid bilayer. Secre-
tory proteins are translocated as unfolded polypeptides
through an aqueous channel in the SecYEG complex, and
this process is driven by ATP binding and hydrolysis by
the molecular motor protein SecA that associates with the
SecYEG complex (See also below). On the other hand,
most membrane proteins insert into the membrane in a
co-translocational fashion, which means that while the
protein is synthesized at the ribosome, it is concomitantly
inserted into the lipid bilayer via the SecYEG complex.
Large extracellular loops of membrane proteins, however,
need to be translocated completely across the membrane
and, depending on their length and polarity, this translo-
cation event requires the activity of SecA. Newly synthe-
sized TMSs are thought to first enter the central pore in the
SecYEG complex whereupon they are released into the
lipid bilayer via a lateral opening (gate) in the SecYEG
complex. Although the subunits of the B. subtilis and E.
coli SecYEG complex exhibit a high sequence similarity
[79-81], these proteins do not seem to be functionally
exchangeable [82].

A very important subunit of the Sec translocase involved
in both protein translocation and membrane insertion is
SecA, a cytosolic homodimeric ATPase, which binds to the
cytosolic loops of the SecYEG complex. Protein transloca-
tion is strictly dependent on SecA, whereas membrane
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proteins without large extracellular domains insert in a
SecA-independent manner. SecA is however needed to
drive the translocation of extracellular polar domains of
membrane proteins. The ATPase activity of SecA is highly
stimulated by the presence of membranes, SecYEG and a
translocation-competent precursor protein [83]. B. subtilis
and E. coli SecA are only partially exchangable in func-
tional terms, suggesting some degree of species specificity.
In general, the degree of functional exchangeability within
the Gram-positives is higher than between Gram-positive
and -negative bacteria [84,85]. Interestingly, some Gram-
positive bacteria such as Bacillus anthracis, Corynebacterium
diphtheriae, Listeria monocytogenes, Staphylococcus aureus,
Staphylococcus epidermidis, Streptococcus gordonii, Streptococ-
cus parasanguis, and mycobacteria, contain two paralogous
SecA proteins. One of these paralogues (SecAl) is
involved in the general housekeeping functions of protein
translocation, whereas the other paralogue (SecA2) is
required for the secretion of a subset of secretory proteins
only. SecA2 proteins have sofar not been implicated in
membrane protein insertion [86].

SecDFYajC is another heterodimeric membrane protein
complex that was found to associate with the SecYEG
channel in E. coli and that is needed for efficient protein
translocation in vivo. Homologues of all three proteins
were identified in B. subtilis, but these differ in two aspects
from the equivalent E. coli proteins. Firstly, SecDF of B.
subtilis is a single polypeptide and secondly, the yrbF gene,
which encodes for the YajC homologue of B. subtilis, is
located in a locus separate from secDF [87].

YidC mediated membrane protein insertion

Proteins homologous to the Alb3/Oxa1/YidC superfamily
are found in all domains of life and were shown to facili-
tate the insertion of some membrane proteins independ-
ently of the SecYEG complex. Oxal and Alb3 are proteins
of the inner membrane of mitochondria and the thylakoi-
dal membrane of chloroplasts, respectively. The E. coli
YidC is the best described member of this protein family
and functions as a membrane protein insertase for a spe-
cific subset of proteins. YidC is involved in the membrane
insertion of some of the subunits of the major energy
transducing complexes in the cytoplasmic membrane,
and it catalyzes the membrane insertion of the small bac-
teriophage coat proteins that were previously thought to
insert spontaneously. YidC can either function on its own,
or co-operate with the SecYEG complex to facilitate mem-
brane protein insertion. The membrane insertion of sub-
unit ¢ of the E. coli ATP synthase solely requires YidC [88],
whereas CyoA, a subunit of the cytochrome o oxidase,
requires both YidC and SecYEG [89]. Some Gram-positive
bacteria, such as B. subtilis, contain two paralogues of the
YidC protein. In B. subtilis, these YidC paralogues are
known as SpolllJ and YqjG [90]. The exact role of these
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two proteins in membrane protein insertion is unknown
although Spolll] seems to fulfill a specific function in
sporulation. However, gene inactivation studies have
shown that the presence of only one of the two proteins
(SpolllJ or YqjG) is essential for viability. Previous studies
suggest that these proteins impact on post-translocational
stages in protein secretion rather than membrane protein
insertion, although from the conserved function of Oxal/
Alb3/YidC family a function in membrane protein inser-
tion is expected [90]. Importantly, these membrane pro-
tein insertases may also function at the post-insertional
stage. YidC may facilitate the proper folding of the newly
inserted membrane protein and stabilize these proteins
prior to their assembly into oligomeric membrane protein
complexes as suggested for the formation of the ring-like
Fy-sector of the F,F,-ATPase[88].

2.2 Protein complex biogenesis — the bacterial divisome
In B. subtilis, as well as in all living cells, genes involved in
a given cell function are activated at the time of execution
of that function. Also, the genes encoding proteins that
function in complexes are co-expressed, and temporal cas-
cades of gene expression control multiprotein structure
biogenesis. These multiprotein structures have a crucial
role to direct complex processes during the cell life cycle.
Studies on the formation of these protein superstructures
require the most advanced technologies of molecular
biology. In general, these multiprotein structures are built
from more or less stable proteins and sub-complexes and
some of them are amenable to purification, typically by
affinity methods, and to subunit identification by mass
spectrometry. One of the most extensively studied protein
structures in B. subtilis is the divisome, a structure that is
composed of division proteins and proteins involved in
their biogenesis. Therefore, the divisome serves an impor-
tant model function for studies on B. subtilis as a producer
of protein complexes.

Cell division in bacteria is a complex process involving the
coordinated participation of a group of proteins which
assemble at the division site into a multiprotein complex
called the divisome (for reviews see [91-94]). This process
has been best studied in two bacterial model systems: E.
coli and B. subtilis. The earliest apparent event in cell divi-
sion is the formation of an FtsZ ring (Z-ring) at the future
septum site. In B. subtilis, the MinC and MinD proteins
form a complex which blocks the formation of the Z-ring
at the cell poles, whereas the nucleoid blocks the septation
at mid-cell. The topological control of MinCD activity is
provided by DivIVA in B. subtilis [95,96] and by oscillating
MinE in E. coli [97-99]. DivIVA can form oligomers which
serve as building blocks in the formation of higher order
assemblies giving rise to two-dimensional lattices in a
time-dependent manner (see Fig. 4) [100]. DivIVA is sta-
bly associated with the cell poles, to which it recruits
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MinCD, probably by direct interaction with MinD
[101,102]. The initiation of septation is a complex process
involving many proteins and their complexes as well as
specific cell cycle conditions, such as DNA replication and
segregation. The protein complexes respectively involved
in these processes are known as the replisome and segre-
some. The FtsZ protein assembles into a cytokinetic ring
on the inner surface of the cytoplasmic membrane at the
place where division will occur [103,104]. The Z-ring
structure provides the framework for the recruitment or
assembly of about ten membrane and cytoplasmic pro-
teins, uniquely required for cell division. Some of these
are required for biogenesis of the new hemispherical poles
of the two daughter cells. In E. coli, during cell division the
proteins assemble in a defined order as follows: FtsZ,
FtsA/ZipA, (FtsE, FtsX), FtsK, FtsQ, (FtsB, FtsL), FtsW, Ftsl,
FtsN, AmiC and EnvC, where the proteins in parentheses
assemble simultaneously (Fig. 5A) [105]. The assembly of
the Z-ring depends on FtsA and/or ZipA, while the locali-
zation of the latter pair of proteins depends on FtsZ
[106,107]. FtsK does not require any downstream pro-
teins to assemble at the Z-ring. FtsL and FtsB localize in a
co-dependent fashion [108]. The localization of the last
protein from this set, EnvC, depends on all of the other
proteins. This hierarchical localization of division pro-

Figure 4
DivIVA oligomers form a two-dimensional network as judged from cryonegative stain transmission electron
microscopy images. A) Freshly purified DivIVA appears as a "doggy-bone" shaped particle. B) A tentative model for the
hexameric DivIVA oligomer. C) Further oligomerization of DivIVA "doggy-bones" leads to two-dimensional network forma-
tion. D) A tentative model for the two-dimensional DivIVA network [100].
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teins in E. coli is likely to reflect a sequence of protein-pro-
tein interactions that lead to the assembly of the protein
complexes of the divisome. B. subtilis has homologues of
most of the E. coli division proteins, including FtsZ, FtsA,
ZipA (possible functional homologue of B. subtilis EzrA),
FtsL, YgbQ (DivIC in B.subtilis), FtsQ (DivIB in B. subtilis),
FtsW (YlaO in B. subtilis), and Pbp3 (Pbp2B in B.subtilis)
(reviewed in [91]). However, SepF is only present in B.
subtilis [109]. In contrast to the hierarchical localization of
division proteins in E. coli, in B. subtilis the equivalent
division proteins are recruited in a more concerted man-
ner (Fig. 5B) (reviewed in [91]). DivIB, DivIC, FtsL, Pbp2B
and probably YlaO are all completely interdependent in
their assembly at the division site and depletion of FtsA,
DivIC, FtsL or Pbp2B, abolishes the positioning of the
other cell division proteins at mid-cell. The first three pro-
teins from this division protein set, DivIC, FtsL and DivIB,
seem to form one or more different oligomers [110]. The
possible role of FtsL is to stabilize DivIC through forma-
tion of a DivIC-FtsL complex [111] and DivIB has a role in
FtsL turnover [112]. The function of YlaO is closely con-
nected to FtsL and likely to include targeting of cognate
PBPs (penicillin binding proteins).

D
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Formation of the divisome protein complex in E. coli and in B. subtilis. A) Model for the assembly of proteins into the
septal ring of E. coli. First, FtsZ forms a Z-ring. FtsA and ZipA are recruited next, independently from one another. Once both
FtsA and ZipA have localized, the remaining proteins join the ring in the order indicated. B) Model for assembly of proteins
into the septal ring during vegetative growth of B. subtilis. The assembly of late vegetative division proteins (FtsL, DivIB, DivIC
and Pbp2B) is not linear and these components appear to assemble in a completely interdependent manner.

The dynamics of division protein complexes have been
interrogated by mapping and mutation analysis. Many of
these physical interaction studies have been comple-
mented by genetic and phenotypic screens [91]. Microtu-
bule and cytoskeletal superstructures have also been
subject to proteomic analyses. Genome-wide datasets and
ever-more-complex networks built from such data seem
to quickly overload human intuitive capacity. Inevitably,
these vast amounts of information must be captured and
processed in mathematical models, as has been done in
the physical sciences for many years. User-friendly inter-
faces for simulation of biological systems have been cre-
ated that will certainly be widely used to explore the
manifestations of biochemical and genetic networks. The
cell cycle has in fact long been subject to modelling
efforts, which have become increasingly sophisticated and
coupled to experimental tests of model predictions. A
good example of intensive modelling is the oscillation of
the MinCDE complex in E. coli which has been analysed
using simple reaction-diffusion mathematical models
[113-115] as well as more advanced mathematical models
[116,117].

The dynamics of division protein complexes have been
interrogated also by mapping and mutation analyses. It is
clear that a complete appreciation of the mechanism of
divisome assembly in B. subtilis will require a much
deeper understanding of the protein-protein interactions
that take place between divisome proteins both before
localization at the division site and during assembly of the
divisome. Many of these physical interaction studies have
been complemented by genetic and phenotypic screens
[91]. Some of the septasomal proteins were expressed,

purified and used for biochemical and crystallographic
studies (for reviews see [89,92]). Although a huge amount
of data about the divisome exists, development of an effi-
cient B. subtilis production system for protein complexes
will be required for the in vitro reconstitution of this and
other crucial cell cycle protein complexes. In turn, the
knowledge thus generated is likely to lead to important
insights and tools for removal of bottlenecks in the pro-
duction of protein complexes in B. subtilis.

2.3 Molecular chaperones

Molecular chaperones are cellular components, which
assist folding processes of proteins by interacting with
non-native polypeptide chains in a non-covalent manner.
This definition excludes classical enzymes involved in cat-
alyzing protein folding with covalent reactions, although
in some folding factors these both types of activities can
be distinguished; there may be an enzyme domain and a
chaperone domain in the same component. Chaperones
are typically cytosolic proteins or multiprotein complexes
involved in protein folding assistance in various cellular
processes. The roles of microbial molecular chaperones in
protein folding assistance, aggregation prevention, pro-
tein quality control, chaperone-assisted protein degrada-
tion and the heat shock response have been extensively
studied with cytosolic and secreted protein substrates and
proteomes [118], but in the context of membrane protein
folding and assembly, information on such functions of
chaperones is scarce. Although most of the mechanistic
studies of bacterial chaperones have been carried out with
E. coli, the available information can also be applied to
other bacterial systems including B. subtilis. When pro-
teins are overexpressed in bacteria regardless of whether
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they are cytosolic, secreted or membrane proteins, a gen-
eral problem is the formation of insoluble aggregates of
predominantly misfolded proteins, so called inclusion
bodies. Co-overexpression of chaperones may help in
controlling the folding process of overexpressed proteins
and thereby decrease aggregation.

General cytoplasmic chaperones

Two major cytosolic chaperones with a general role in
bacterial cytoplasmic protein folding are GroEL/GroES
and DnaK/DnaJ. The GroEL chaperonin and its co-factor
GroES form a ring-shaped ATP-dependent protein folding
machine and a "folding-friendly" environment in the
GroEL/GroES cavity for newly translated proteins. Pro-
teomic studies have identified in B. subtilis 28 potential
GroEL/GroES substrates, all cytosolic proteins [119], and
in E. coli the GroE-dependent proteins account for about
10% of all cytoplasmic proteins [120]. The bacterial signal
recognition-like particle (SRP) is a chaperone-like compo-
nent involved in co-translational targeting of extracyto-
plasmic proteins, including membrane proteins, to the
Sec translocase [121-124]. Since the co-translational tar-
geting process is strictly controlled by SRP and SRP-bound
nascent polypeptides can stay insertion competent for
long times, it may be that general intracellular molecular
chaperones are needed in limited extent for the folding
and aggregation prevention of extracytoplasmic proteins
in normal conditions. However, when misfolded and
aggregated secretory or membrane proteins are formed in
the cytosol under stress conditions, and when proteins are
overexpressed, chaperones are found associated with the
protein aggregates. This is consistent with the general
property of these folding factors to interact with non-
native polypeptide chains. Overexpression of membrane
proteins fused to green fluorescence protein in E. coli
resulted in accumulation of cytosolic multiprotein aggre-
gates consisting of the produced protein, GroEL/GroES
and DnaK/DnaJ chaperones, cytoplasmic proteases as
well as precursors of several periplasmic and outer mem-
brane proteins [125]. On the other hand, it has been
shown that GroEL forms in vitro a soluble complex with
bacteriorhodopsin (BR) and the complex-bound BR folds
in the presence of ATP to its functional native conforma-
tion. This folded BR can be transferred efficiently to lipo-
somes [126,127]. In a similar GroEL-dependent manner
the phage lambda holin is delivered to liposomes [128].
These results suggest that GroEL/GroES may affect mem-
brane protein assembly in bacterial cells. The DnaK chap-
erone, its co-chaperone DnaJ and the trigger factor, a
ribosome-bound protein with a dual chaperone and pep-
tidyl-prolyl cis-trans isomerase activity, have overlapping
functions in the folding of nascent polypeptides [129].
Effects of co-overexpression of these general chaperones
on inclusion body formation and membrane insertion of
the overexpressed CorA magnesium transporter in E. coli
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have been studied [130]. An interesting finding was that
CorA inclusion body formation was prevented by co-over-
expression of DnaK/DnaJ [130]. CorA was also inserted
into the cytoplasmic membrane more efficiently in DnaK/
DnaJ overexpressing cells. In contrast, co-expression of
GroEL/GroES, SRP or the translocation ATPase SecA had
little or no effect on CorA inclusion body formation. In B.
subtilis these chaperones are required for heat shock sur-
vival [131], but their significance for the folding of nas-
cent polypeptides and aggregation prevention is still
unclear. However, it has been demonstrated that overex-
pression of both GroEL/GroES and DnaK chaperone sys-
tems in the hrc repressor null mutant of B. subtilis
improves secretion of a single chain antibody fragment
and decreases inclusion body formation in the cytosol
[24]. This suggests that co-overexpression of molecular
chaperones decreases aggregation of heterologous pro-
teins and increases their yields also in B. subtilis expression
systems. Further studies are needed to find out whether
chaperone co-expression can enhance yields of mem-
brane proteins expressed in B. subtilis.

Dedicated chaperones

In addition to the general molecular chaperones, bacteria
contain many other chaperones with more dedicated roles
in protein folding. CsaA is a secretion-related chaperone-
like protein of B. subtilis, which suppresses the growth
defects of E. coli mutants of the major chaperones, inter-
acts with the SecA translocation ATPase and stimulates
translocation of prePhoA into E. coli membrane vesicles
bearing the B. subtilis translocase [132-134]. It is not
known whether CsaA has any role in the targeting and
chaperoning of membrane proteins. The B. subtilis ClpX, a
chaperone belonging to the AAA+ superfamily of ATPases,
modulates the assembly of the tubulin-like protein FtsZ
independently of its protease partner ClpP and ATP
hydrolysis and thereby regulates the formation of the Z-
ring and cell division [135]. ClpX inhibits FtsZ polymeri-
zation, increases the pool of soluble FtsZ in the cell and
affects the dynamics of the cell septum formation. There is
also evidence that some proteases involved in protein
quality control are chaperones. The membrane-bound
HtrA and FtsH are examples of proteases having chaper-
one-like properties [136-138]. The formation of correct
protein structures is often not only dependent on the
proper chaperones but additionally various foldase
enzymes assist folding processes both in the cytosol and
the periplasmic space. As an example, in B. subtilis, the
peptidyl-prolyl cis-trans isomerase PrsA affects the post-
translocational folding and stability of proteins at the
membrane-cell wall interface [25,139-143].

2.4 Protein quality control and protein turnover
B. subtilis has an extensive quality control system for pro-
tein production. This system can respond to the presence
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of misfolded or incompletely synthesized proteins by acti-
vating proteases that remove these proteins. The biotech-
nological advantage of the quality control system is that it
enables the production of high quality proteins with few
impurities of misfolded side-products. However, it can
also represent one of the major bottlenecks for the pro-
duction of especially heterologous proteins. Besides their
role in protein quality control, proteases are also involved
in the removal of cleaved signal peptides and in the
processing of precursor proteins in order to acquire the
active mature forms of these proteins. Furthermore, pro-
teases are highly important for many regulatory processes
within the cell.

Cytoplasmic protein quality control

Nascent proteins often expose strands of amino acids that
are susceptible for degradation or aggregation. Usually
cytoplasmic proteins fold rapidly, thereby hiding the sus-
ceptible parts of the protein from their surface and render-
ing the protein intrinsically stable and resistant against
degradation. Many proteins do not fold rapidly enough
by themselves, and their folding is catalyzed by chaper-
ones. Also, under conditions where the presence of mis-
folded or unfolded proteins is induced (for example by
heat-shock, overproduction of proteins, or production of
heterologous proteins) the chaperones can enhance the
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folding process and thereby prevent the accumulation of
these proteins in the cytoplasm.

The function of the cytoplasmic protein quality control
system is to remove the proteins from the cytoplasm that
are not folded correctly (Fig. 6A). In addition to mal-
folded proteins, this system eliminates "unemployed"
proteins, which are no longer integrated into functional
complexes and thereby are no longer protected against
proteolytic attack [144]. In both prokaryotic and eukaryo-
tic organisms the Clp proteases (caseinolytic proteases)
appear to play pivotal roles in cytoplasmic protein quality
control [145-147]. The Clp proteases generally function as
complex molecules. These consist of Clp ATPase subunits
forming hexameric rings that are attached to two central
heptameric rings of ClpP subunits. Thereby, the ClpP sub-
units form a central proteolytic chamber [148,149]. It
seems that the entrance to the proteolytic chamber is too
small for folded proteins to enter. Accordingly, it is gener-
ally believed that misfolded proteins are first unfolded by
the Clp ATPases and, subsequently, transferred to the cen-
tral proteolytic chamber. There, they are degraded by the
ClpP protease subunits. The exact mechanism of entry
and exit of proteins and peptides into and from the ClpP
chamber is a subject of ongoing study.
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Protein quality control and proteolysis. A) Model for cytoplasmic protein quality control in B. subtilis to which cytoplas-
mic proteins, membrane proteins and secretory proteins are subject. Depending on the presence or absence of targeting sig-
nals, newly synthesized proteins can be targeted for secretion or membrane insertion, or they can remain in the cytoplasm. If
control of their folding by chaperones is insufficient these proteins can misfold and/or aggregate. This can lead to degradation
by proteases such as ClpCP, CIpEP or ClpXP. Alternatively, misfolded proteins can be refolded with the help of chaperones.
B) Model for protein quality control and degradation of membrane proteins within the membrane of B. subtilis. Proteins tar-
geted to the membrane can be subject to processing by signal peptidases (e.g. SipS-W) or to degradation by membrane-associ-
ated proteases such as FtsH, PrsWV, RasP or SpolVFA. C) Model for extracytoplasmic protein quality control and degradation
in B. subtilis. Translocated secretory proteins can fold with the help of folding catalysts such as PrsA. Accumulation of misfolded
translocated proteins at the membrane-cell wall interface can trigger a secretion stress response, involving the CssRS two-
component regulatory system. If activated, CssRS causes the up regulation of membrane-associated proteases such as HtrA
and HtrB. These two proteins can probably catalyze both protein degradation and protein folding. Misfolded proteins are fur-
thermore subject to degradation by cell wall-associated and/or secreted proteases, such as AprE, Bpf, Epr, Mpr, NprB, NprE,

Vpr and/or WprA.
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In B. subtilis it appears that the ClpP peptidase indeed is a
key component in the protein quality control system, and
a knockout of clpP renders B. subtilis highly susceptible for
protein aggregation [150]. Accordingly, clpP mutants do
not grow at high temperatures [151]. Due to the degrada-
tion of several regulators of important cellular processes
by ClpP, mutations in clpP result in a pleiotropic pheno-
type, which includes loss of motility, competence devel-
opment and sporulation [151]. There are three distinct
Clp ATPases known in B. subtilis (ClpC, ClpX and CIpE),
which are all able to form functional complexes with ClpP
[152-154]. ClpCP, CIpEP and ClpXP each appear to have
different substrate specificities. Moreover, these substrate
specificities can additionally be modified by adaptor pro-
teins [155], which are used by the cell to target ClpP deg-
radative activity towards specific proteins. By this
mechanism, the action of CIpP in processes, like compe-
tence development and sporulation, is modulated.

The Clp proteases belong to the class III heat shock pro-
teins. All genes encoding for this class of proteins, except
clpX, are regulated by the repressor CtsR. CtsR is present at
a basal steady-state level in the cells, and several proteins
can influence its degradation (e.g. CIpCP, CIpEP) or mod-
ify its activity (e.g. McsA, McsB) [156]. Via these mecha-
nisms the activity of Clp proteases is up regulated when
misfolded proteins or protein aggregates start to accumu-
late.

In addition to the Clp proteases, also other proteases are
present in the cytoplasm, such as HIlsUV, Lon and the
membrane-associated FtsH protein. These proteases,
which also depend on ATPase activity, belong to the same
superfamily of proteins, the AAA+ superfamily. Many
more (putative) proteases and peptidases, not belonging
to the AAA+ superfamily, are present in the cytoplasm of
B. subtilis, including several metalloproteases. They how-
ever do not seem to be very important for general cyto-
plasmic protein quality control in B. subtilis.

Integral membrane protein turnover and quality control

The first evidence of membrane protein degradation in B.
subtilis has come from proteomic studies, which showed
the presence of predicted membrane proteins in the cul-
ture medium [157,158]. For some of these proteins it has
been shown that their release from the membrane proba-
bly depends on cleavage by type I signal peptidases
(SPases; Fig. 6B). For most of these proteins, however, it is
still unknown which proteases are responsible for their
release [157]. Type I SPases are proteases that remove the
signal peptides from secretory proteins after their translo-
cation from the cytoplasm to the extracellular environ-
ment. Five type 1 SPases are present in B. subtilis:
SipSTUVW, of which SipS and SipT are of major impor-
tance for protein secretion and SipU, SipV and SipW only
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seem to have minor roles [159,160]. The type I SPases are
membrane proteins with their active site located at the
extracytoplasmic side of the membrane. The consensus
sequences for type I cleavage in B. subtilis are well defined
[13]. However, in several of the proteins that were found
in the medium such a cleavage site was absent, and the
deletion of SPase-encoding genes did not affect the pres-
ence of most of these proteins in the medium [157].

Several examples are currently known of cleavage of mem-
brane proteins within the membrane itself. Most of these
concern Regulated Intramembrane Proteolysis (RIP; Fig.
6B). In this process, a membrane protein is cleaved in
order to release the cytoplasmic part as well as the pro-
teins interacting with this cytoplasmic part, which can
subsequently engage in processes, such as gene transcrip-
tion. An example of this process is the cleavage of RsiW,
an anti-sigma factor that modulates the activity of oW.
RsiW appears to be cleaved in two steps by PrsW (site-1-
proteolysis) and RasP (site-2-proteolysis) in order to
release W [161,162]. Another example of RIP in B. subtilis
concerns the maturation of the sigma factor oX: pro-cKis
activated through site-2-proteolysis by the membrane
protease SpolVFB. To start this process, the SpoIVFB itself
is activated by site-1 proteolysis of SpoIVFA, the repressor
of SpolVFB. Site-1 proteolysis of SpoIVFA can be catalyzed
either by SpolIVB or by the CtpB protease [163-165].

Protein quality control of membrane proteins involves
different stages. Mistargeted or misassembled integral
membrane proteins likely already aggregate in the cyto-
plasm due to their high hydrophobicity. Therefore, qual-
ity control of integral membrane protein insertion may at
least partially occur via cytoplasmic protein quality con-
trol mechanisms. Within the membrane at least one
mechanism of quality control for integral membrane pro-
teins is known to exist [166]. This involves the proteolytic
activity of FtsH, a membrane-anchored member of the
AAA+ superfamily. The proteolytic domain of FtsH is
exposed in the cytoplasm. The known substrates of FtsH
include both short-lived regulatory proteins in the cytosol
and unassembled subunits of membrane protein com-
plexes in the membrane [166]. FtsH has been shown to
degrade SecY when not assembled in a stable complex
with secE [167]. Also, the subunit a of the proton ATPase
F,sector [168,169] and the protein of unknown function
YccA [170] are membrane proteins that become degraded
by FtsH when not properly assembled. A remarkable
property of FtsH is its ability to dislocate substrate pro-
teins from the membrane to allow their degradation
[166].

FtsH, like other AAA+ family members, forms homohexa-
meric complexes [170,170,171,171,172]. 1t has been
shown that the FtsH homohexamer of E. coli forms a com-
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plex with membrane embedded HfIKC complexes. The
entire supercomplex of FtsH and HfIKC is also known as
the FtsH holoenzyme [171,173,174]. The function of
HfIKC is thought to be inhibition of FtsH-mediated prote-
olysis of membrane proteins, thereby increasing the
capacity to degrade soluble substrates. Interestingly, YccA,
a protein that itself is degraded by FtsH, is another modu-
lator of FtsH proteolytic activity towards integrated mem-
brane proteins [170]. Notably, HfIKC seem to be absent
from B. subtilis. In contrast, a protein with a low level of
sequence similarity to E. coli YccA is encoded by the B. sub-
tilis genome. In the absence of functional data, it is pres-
ently unclear how the activity of FtsH is modulated in this
organism.

In addition to FtsH, the membrane-bound metallo pro-
tease HtpX has been implicated in the quality control of E.
coli membrane proteins, like SecY [175]. Interestingly, a
homologue of HtpX, known as YkrL, is present in B. subti-
lis. The presumed role of YkrL in protein quality control
awaits detailed investigations.

Extracytoplasmic quality control and secretion stress

B. subtilis secretes high amounts of proteases into its
medium, which degrade proteins that do not fold prop-
erly or that fold slowly (Fig. 6C). The importance of the
presence of these extracellular proteases in relation to
(industrial) protein production is illustrated by the appli-
cation of the WB800 strain, which lacks 8 extracellular
proteases [21]. Practically all extracellular proteolytic
activity is abolished in this strain. The use of the WB800
strain has enabled the production of various heterologous
proteins, which normally are rapidly degraded after secre-
tion. Interestingly, even the production of homologous
proteins can be boosted by removal of these proteases.

Secretion stress occurs when misfolded and/or aggregated
proteins accumulate at the membrane-cell wall interface
(Fig. 6C). This can be caused for example by overproduc-
tion of secretory proteins, or by depletion or inactivation
of PrsA. The two-component system CssRS (Control of
secretion stress regulator and sensor) plays a pivotal role
in the response to secretion stress, as it responds to the
accumulation of misfolded proteins at the membrane-cell
wall interface [16,17,176]. Upon stimulation of CssRS
several proteins are up regulated, including the proteases
HtrA and HtrB [16]. HtrA and HtrB are negatively auto-
and cross regulated and can substitute at least partially for
each others activity [177]. HtrA and HtrB are both mem-
brane-bound serine proteases with their active site located
at the extracellular side of the membrane. Notably, HtrA
has also been detected in the medium of the cells due to
cleavage of the transmembrane segment, whereas HtrB is
not detected in the medium [136]. Whether there is a
functional role for HtrA in the medium remains to be
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determined. A double knockout of htrA and htrB causes
up regulation of transcription of ¢ssR and ¢ssS and results
in growth defects and temperature sensitivity [16,177],
indicating that both proteases have important roles in
combating the detrimental effects of heat. Because the
active sites of membrane-associated HtrA and HtrB are
located very close to the membrane, it is possible that
HtrA and HtrB can cleave the extracellular domains of
integral membrane proteins. However, until now there is
no documented evidence of such events. In addition to
the transcriptional up regulation of htrA and htrB also
other genes are up regulated in a response to secretion
stress. These include genes for a putative Mg2+-transporter
(ygxL), several cytoplasmic chaperones and the lialHGFSR
operon [178]. The latter operon also seems to be involved
in the response to cell envelope stress induced by several
antibiotics [179].

Finally, a protein that seems to be involved in extracyto-
plasmic protein quality control is WprA, a cell-wall bound
protease. Notably, WprA is processed into two cell wall
proteins: CWBP52, with a serine protease activity domain,
and CWBP23, which may have chaperone-like activity
[180,181]. Although the WprA processing products are
cell-wall bound, they are also found in the culture
medium [182]. Production of a-amylase from B. licheni-
formis by B. subtilis is enhanced in a knockout of wprA
[183]. Altogether, it is thought that the WprA CWBP52
product degrades various secretory proteins before they
are released into the medium. By contrast, the CWBP23
product may assist in folding of several cell wall-bound
proteins [183]. WprA has been shown to be responsible
for the degradation of at least one membrane protein: a
site-specific mutant of SipS (D146A) [184]. The impor-
tance of WprA for the stability of other membrane pro-
teins remains to be determined.

3. Conclusions - Perspectives for production of
membrane proteins and protein complexes in B.
subtilis

As outlined in this review, Bacillus subtilis is capable of
producing and secreting large amounts of high quality
proteins. Much is already known about the mechanisms
that affect the biogenesis, membrane translocation and
stability of these proteins. In contrast, our current under-
standing of the biogenesis of membrane proteins and pro-
tein complexes in B. subtilis is still relatively limited.
Nevertheless, the high potential of B. subtilis for protein
production gives confidence that this versatile host organ-
ism can also be exploited for producing protein com-
plexes and membrane proteins in order to facilitate their
functional and structural analysis. Future research towards
achieving these goals needs to focus on the identification
and modulation of those quality control systems that are
counter-productive with respect to the production of high
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quality protein complexes and membrane proteins, and
on enhancement of the activity of those systems that facil-
itate the assembly of these proteins. This will require the
characterization and engineering of (1) the cellular
machinery required for the assembly of cytoplasmic pro-
tein complexes and membrane proteins, and (2) the rele-
vant quality control mechanisms in the cytoplasm and
membrane that govern protein degradation. Such research
will most likely result in the development of entirely new
protein production strategies. We consider this feasible,
because previous research has successfully identified key
bottlenecks in the secretory pathway of Bacillus, and has
demonstrated that different proteins are affected by these
bottlenecks to very different extents. In many cases, this
concerned components of quality control systems [17-
20,185,186]. Major available resources to further enhance
the Bacillus cell factory include a detailed knowledge
about all essential genes of B. subtilis, as well as a collec-
tion of more than 3000 mutant B. subtilis strains [9]. These
mutants can be used to monitor the functionality of
expressed proteins from B. subtilis and other Gram-posi-
tive bacteria through complementation. Importantly, the
mutant collection includes strains that lack one or more
cytoplasmic, membrane-associated or secreted proteases.
The latter strains can be employed to prevent product deg-
radation. Other available resources include previously
developed strains, vectors, tools and techniques for a
rapid and accurate identification of the specific produc-
tion bottlenecks of cytoplasmic protein complexes and
membrane proteins that are currently either recovered in
low quality (e.g. mis-translated, aggregated, misfolded,
degraded) and/or at low concentrations. With the excep-
tion of E. coli, such combined resources are presently not
available for other bacterial expression systems, such as
Lactococcus lactis. In conclusion, B. subtilis seems perfectly
placed for future application as an expression system for
the production of protein complexes and membrane pro-
teins, especially those derived from Gram-positive bacte-
ria and pathogens. Research in this direction will certainly
result in technical strategies to overcome current bottle-
necks, and lead to the development of super-producing
strains.
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