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Abstract

The methylotrophic yeast Pichia pastoris is a popular heterologous expression host for the
recombinant production of a variety of prokaryotic and eukaryotic proteins. The rapid emergence
of P. pastoris as a robust heterologous expression host was facilitated by the ease with which it can
be manipulated and propagated, which is comparable to that of Escherichia coli and Saccharomyces
cerevisiae. P. pastoris offers further advantages such as the tightly-regulated alcohol oxidase
promoter that is particularly suitable for heterologous expression of foreign genes. While
recombinant production of bacterial toxins and their derivatives is highly desirable, attempts at
their heterologous expression using the traditional E. coli expression system can be problematic
due to the formation of inclusion bodies that often severely limit the final yields of biologically active
products. However, recent literature now suggests that P. pastoris may be an attractive alternative
host for the heterologous production of bacterial toxins, such as those from the genera Bacillus,
Clostridium, and Corynebacterium, as well as their more complex derivatives. Here, we review the
recombinant production of bacterial toxins and their derivatives in P. pastoris with special emphasis
on their potential clinical applications. Considering that de novo design and construction of synthetic
toxin genes have often been necessary to achieve optimal heterologous expression in P. pastoris,
we also present general guidelines to this end based on our experience with the P. pastoris
expression of the Bacillus thuringiensis Cyt2Aal toxin.

Review

With the advent of modern molecular biology, recom-
binant expression is now routinely used for the produc-
tion of proteins of sufficient purity and quantity for their
functional characterization and/or use in downstream
applications. For example, heterologous expression sys-
tems have facilitated the development of recombinant
vaccines against the bacterial toxins that are the causative
agents of human diseases such as tetanus, botulism and
cholera [1-4]. Concurrently, biosynthesis of novel pro-
teins is feasible by engineering of recombinant DNA con-

structs that comprise of unrelated genes, which are also
often from very diverse organisms. For instance, immuno-
toxins are therapeutic agents that are typically composed
of DNA encoding a tumour-specific antibody fragment
fused to a gene coding for a highly potent bacterial toxin
or its subunits [5].

Despite their crucial roles in vaccine development, thera-
peutic applications, control of crop pests and disease vec-
tors, as well as in basic research and functional
characterization, heterologous expression of bacterial
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Table I: Bacterial toxins and their derivatives successfully expressed in P. pastoris. The bacterial toxin and the species it is originating
from are given, along with brief notes on the specifics of the reported recombinant expression strategies.

Bacterial toxin (species)

Remarks (expression culture type)
[reference]

Final Yield$

TeNT(H¢) (Clostridium tetani)

BoNTA(H() (Clostridium botulinum)

BoNTB(H() (Clostridium botulinum)

BoNTC,(H¢) (Clostridium botulinum)

BoNTE(H() (Clostridium botulinum)

BoNTF(H() (Clostridium botulinum)

DT (Corynebacterium diphtheriae)

BSP | and BSP2 (Bacillus sphaericus)

Cry2 (Bacillus thuringiensis)
Cyt2Aal (Bacillus thuringiensis)

Cyt2Aal (Bacillus thuringiensis)

Ace (Vibrio cholerae)

Cef (Vibrio cholerae)

CTB (Vibrio cholerae)

LTB (Escherichia coli)

LTB (Escherichia coli)

intracellular expressiont of a synthetict gene
encoding the tetanus toxin fragment C (B) [18]
intracellular expressiont of a synthetic genet
encoding the heavy fragment C of the
botulinum neurotoxin serotype A
[BoNTA(H)] (B) [19, 22-25]

intracellular expressiont of a synthetic genef
encoding the heavy fragment C of the
botulinum neurotoxin serotype B
[BoNTB(H)1 (B) [, 20, 24]

intracellular expressiont of a synthetic gene¥
encoding the heavy fragment C of the
botulinum neurotoxin serotype C,
[BoNTC,(Ho)] (B) [25]

intracellular expression of a synthetic gene¥
encoding the heavy fragment C of the
botulinum neurotoxin serotype E
[BoNTE(H)] (B) [25]

intracellular expression of a synthetic gene#
encoding the heavy fragment C of the
botulinum neurotoxin serotype F [BONTF(Hc)]
(B) [21, 26]

secreted expression of a synthetic genef
encoding the truncated diphtheria toxin (DT)
fused to a bivalent antibody fragment (B) [30-
33]

intracellular co-expressiont of synthetic genes*
encoding the mosquitocidal B. sphaericus
polypeptides | and 2 (BSPI and 2) (SF) [44]
intracellular expression of Cry2 using the
native bacterial DNA sequence (SF) [43]
intracellular expression of a synthetic genet
encoding Cyt2Aal (SF) [34]

synthetic genet encoding Cyt2Aal fused to a
human scFv; secretory targeting resulted in ER-
retention of the recombinant product (SF) [35]
secreted expression of the accessory cholera
enterotoxin (Ace) using the native bacterial
DNA sequence (SF) [28]

secreted expression of Chinese hamster ovary
(CHO) cell-elongating factor (Cef) using the
native bacterial DNA sequence (SF) [29]
secreted co-expression of the cholera toxin
subunit B (CTB) and CTB-viral antigen fusion
protein using the native bacterial DNA
sequence (SF) [4]

secreted expression of the heat-labile
enterotoxin subunit B (LTB) using the native
bacterial DNA sequence (SF) [27]

intracellular expression of a LTB and a viral
antigen fusion protein using the native bacterial
DNA sequence (SF) [27]

12 g'I! culture*

770 mg'I-! culture

390 mg-kg! cells

200-500 mg-kg! cells

200-500 mg-kg! cells

240 mg-kg! cells

120 mg'I! culture*®

<30% tcp*

N.D.
~| mgl-! culture*

10 mg-! culture

7 mg-I! culture®

N.D.

N.D.

8 mg:l"! culture

N.D.

tUsing P. pastoris transformants that are selected for the presence of multiple copies of the chromosomally-integrated heterologous expression
cassettes; fsynthetic gene with optimal P. pastoris codon usage and reduced A+T-content; Sonly the highest final yields are reported in this table;
*estimated total expression; (SF): shake-flask culture, (B): bioreactor culture; N.D.: no data available; ER: the endoplasmic reticulum.
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genes and their novel recombinant fusions may still pose
unique challenges. For instance, bacterial toxins often
have deleterious effects on the host cell physiology that
may limit the final yields or may even exclude the use of
certain recombinant expression systems altogether. Fur-
thermore, bacterial genes may be unsuitable for heterolo-
gous expression in certain recombinant expression hosts
due to the inherent features of the prokaryotic DNA
sequences such as differences in codon usage and/or high
A+T-content that may contain cryptic eukaryotic polyade-
nylation signals. Finally, if the bacterial toxins or their
derivatives are destined for clinical use, more stringent
recombinant production methods are necessary to ensure
utmost purity, hence in some cases further limiting the
choice of heterologous expression hosts. In this manu-
script, we review the use of the Pichia pastoris (P. pastoris)
expression system for the recombinant production of bac-
terial toxins and their derivatives, with special emphasis
on their potential clinical applications.

P. pastoris as a recombinant expression host

As a methylotrophic yeast, P. pastoris can use methanol as
its sole carbon and energy source in the absence of a
repressing carbon source [6,7]. The first step in the metab-
olism of methanol is its oxidation to formaldehyde by the
enzyme alcohol oxidase (AOX) using molecular oxygen.
In addition to formaldehyde, this reaction also generates
hydrogen peroxide. To avoid hydrogen peroxide toxicity,
methanol metabolism takes place within a specialised
organelle called the peroxisome that sequesters the toxic
by-products away from the rest of the cell. Since AOX has
a poor affinity for oxygen, P. pastoris compensates by gen-
erating large amounts of the enzyme, which can accumu-
late to comprise up to 30% of total cell protein (tcp)
during induction with methanol [8]. There are now a vari-
ety of vectors available that are mostly based on the pow-
erful AOX1 promoter for the regulated overproduction of
intracellular and secreted proteins in P. pastoris [9-11].

In contrast to the prokaryotic recombinant expression sys-
tems such as those based on Escherichia coli (E. coli), P. pas-
toris possesses eukaryotic features such as a secretory
pathyway based on compartmentalized endomembranes,
which is better equipped for post-translational modifica-
tions. Consequently, P. pastoris allows efficient secretory
expression of complex recombinant proteins with correct
intra- and inter-molecular disulphide bonds that do not
require additional in vitro unfolding and refolding strate-
gies. Furthermore, secreted expression in P. pastoris is a
particularly attractive option because while it only secretes
low-levels of endogenous proteins, it is capable of high-
level secretion of the heterologously expressed proteins. P.
pastoris can also be grown on simple, chemically-defined
media, therefore secretion of the heterologous protein
often becomes an effective purification step itself.

http://www.microbialcellfactories.com/content/4/1/33

Other key features that contributed to the rapid emer-
gence of P. pastoris as a robust recombinant expression
host include: (1) the speed, ease and cost-effectiveness
with which it can be manipulated and propagated com-
pared to the other eukaryotic expression systems [12], (2)
possession of tightly-regulated promoters, such as that of
the alcohol oxidase 1 gene (AOX1), which is uniquely
suited for the controlled expression of foreign genes
[13,14], (3) synthesis of N-linked glycosylation moieties
that resemble the mammalian high-mannose type [15],
and (4) a strong preference for aerobic growth, a key phys-
iological trait that greatly facilitates culturing at high cell
densities relative to the fermentative yeast, Saccharomyces
cerevisiae (S. cerevisiae). Indeed, P. pastoris can be grown up
to 130 g- 11 dry cell weight on simple defined media [6].
Generally an immediate improvement in the percentage
yield of heterologous protein expression is also observed
on going from shake-flask cultures to bioreactor cultures

[6].

Heterologous expression of bacterial toxins and their
derivatives in P. pastoris

As discussed in the previous section, P. pastoris is a popular
recombinant expression host for a wide variety of prokary-
otic and eukaryotic proteins [6,7]. Here we present a
recent literature survey of the bacterial toxins and/or their
derivatives that have been successfully produced in P. pas-
toris (Table 1).

Experience with the recombinant production of the
Clostridium neurotoxin fragments in P. pastoris provides
good examples for the typical problems encountered with
the heterologous expression of bacterial toxins in this
yeast and the subsequent high yields attainable once these
problems are properly addressed. Clostridium botulinum is
the causative agent of botulism, which is a severe neu-
roparalytic disease brought about by one of the seven anti-
genically distinct neurotoxin (BoNT) variants (A, B, C, D,
E, F and G) produced by this bacterium [1-3]. Similarly,
Clostridium tetani produces tetanospasmin or the tetanus
neurotoxin (TeNT) that causes the spastic paralysis condi-
tion associated with the tetanus disease. Both TeNT and
the BoNT variants are potent exotoxins that are initially
synthesized as a single polypeptide chain that typically
undergoes subsequent proteolytic processing into a het-
erodimer of heavy and light chains bound together by a
disulphide bond. In both TeNT and the BoNT variants,
the carboxyl-terminal domain of the heavy chain (H) is
non-toxic and associated with binding to specific recep-
tors present on the target nerve cells, and since it is anti-
genic, it has been exclusively used for vaccine
development [1,2]. Currently, a pentavalent botulinum
toxoid from natural sources composed of variants A
through E and a toxoid of variant F are used to immunize
at-risk individuals, such as scientists and health care work-
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ers that handle BoNT or armed forces personnel that may
be subject to weaponized forms of the bacterial toxin
[2,3]. However, this strategy has many shortcomings
because: (1) C. botulinum produces only low-levels of the
most toxin variants, (2) large-scale production is very
costly and dangerous, requiring dedicated facilities in
accordance with the current Good Manufacturing Prac-
tices, (3) the final products are whole toxins that are only
partially homogenous, which may in turn influence
immunogenicity or reactivity of the vaccine, and (4) the
toxoiding process involves the use of chemicals such as
formaldehyde and thimerosal that are still present in the
final product formulation, hence rendering it reactogenic
[2,3]. Consequently, there is a great demand for the devel-
opment of a new generation of recombinant vaccines that
would alleviate many of the problems associated with the
current toxoid formulations.

Recombinant tetanus neurotoxin fragment C [TeNT(H)]
was the first bacterial toxin that was successfully expressed
in P. pastoris [16]. Earlier attempts at heterologous
TeNT(H) expression in E. coli and S. cerevisiae necessi-
tated the use of synthetic genes due to the unfavorable
codon bias of the A+T-rich C. tetani DNA sequence and
the presence of cryptic polyadenylation signals that led to
premature mRNA transcript termination in yeast [17].
Following a similar approach, Clare et al. used a synthetic
gene with altered codon usage that had a substantially
reduced A+T-content to achieve recombinant production
of TeNT(H_) in P. pastoris with final yields as high as 12 g
per liter of bioreactor culture [18]. Recombinant produc-
tion in P. pastoris of BoNT variants was also very successful
when using synthetic genes that were optimized for heter-
ologous expression in this yeast [1,2,19-26]. As in the case
of TeNT(H;) [18], heterologous expression of
BoNTA(H.), B(H.), and E(H() in P. pastoris was also
attempted by secretory targeting of the recombinant prod-
ucts [1,2]. However, in both cases the recombinant pro-
teins secreted into the culture medium were glycosylated
due to the presence of fortuitous N-linked glycosylation
sites in the prokaryotic primary amino acid sequences.
This glycosylation rendered them immunologically inac-
tive, hence unfit for vaccine development unless a costly
in vitro deglycosylation step was carried out [1,2,18].
Accordingly, both TeNT(H;) and the BoNT(H) variants
are now exclusively produced by intracellular heterolo-
gous expression in P. pastoris (Table 1). For vaccine devel-
opment, production in P. pastoris offers additional
advantages over E. coli in avoiding the formation of inclu-
sion bodies during heterologous expression and eliminat-
ing the potential presence of bacterial endotoxins
requisite to achieve Food and Drug Administration licen-
sure [2,3].

http://www.microbialcellfactories.com/content/4/1/33

P. pastoris also proved very useful in the development of
vaccines for the heat-labile enterotoxin (LT) of E. coli and
the cholera toxin (CT) of Vibrio cholerae, which both cause
diarrhea in humans [4,27]. Both LT and CT have a hetero-
hexameric structure consisting of a toxic A subunit and
five non-toxic B subunits that function in binding to the
target cells. The LT subunit B (LTB) was successfully
expressed in P. pastoris using the bacterial gene and effi-
ciently secreted into culture medium in a native-like pen-
tameric form that was biologically active and
immunogenic [27]. Fingerut et al. also reported intracellu-
lar expression in P. pastoris of a genetic fusion of LTB with
a viral antigen to demonstrate the adjuvant activity of
recombinant LTB produced in the methylotrophic yeast
[27]. Similarly, CT subunit B (CTB) and a genetic fusion
of CBT with a viral vaccine antigen were successfully co-
expressed in P. pastoris using the native bacterial CBT gene
[4]. This allowed efficient co-secretion of the recombinant
CBT and CBT fusion proteins into the culture medium in
a biologically active hetero-pentameric form, which could
then be purified by a single-step affinity-tag based chro-
matography strategy. Other V. cholerae toxins also success-
fully expressed in P. pastoris are the accessory cholera toxin
(Ace) and the Chinese hamster ovary (CHO) cell-elongat-
ing factor (Cef) [28,29]. Despite having a key role in V.
cholerae pathogenesis, the accessory cholera toxin (Ace) is
produced only at low levels by it natural host, which ini-
tially hampered its further characterization [28]. While
recombinant production of Ace in E. coli was not feasible
due to inherent toxicity effects to the host cells, Trucksis et
al. reported subsequent success using the P. pastoris
expression system, where secreted enterotoxin could be
purified to homogeneity in a biological active form and at
levels as high as 7 mg- I-! culture [28].

Bacterial toxins have further clinical applications, such as
in the development of novel therapeutic agents. These
include immunotoxins (ITs) comprised of a potent bacte-
rial toxin that is recombinantly fused to a cell-binding lig-
and such as an antibody fragment specific for tumor cells
[5]. Recombinant expression of ITs can be particularly
challenging due to the deleterious effects of the toxin moi-
ety on the host cell physiology and/or the presence of
multiple disulphide bonds in the antibody fragment moi-
ety that are requisite for its function. However, recent lit-
erature suggests that the P. pastoris expression system
might be an attractive alternative for recombinant IT pro-
duction. For example, Woo et al. reported successful fine-
tuning of the P. pastoris expression system for the produc-
tion of a recombinant IT based on a truncated version of
the diphtheria toxin (DT) [30-32]. This strategy necessi-
tated the construction of a synthetic gene optimized for P.
pastoris expression that encoded the first 390 amino acids
of the DT toxin (DT390) previously shown to be the min-
imum DT truncate suitable for IT production [30]. The
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multi-domain DT390-based IT could be efficiently
secreted by P. pastoris in a biologically active form and at
yields as high as 10 mg-I! of shake-flask culture [30].
Notably, P. pastoris proved to be a particularly suitable
recombinant expression host in this case as it has a higher
tolerance for DT toxicity compared to S. cerevisiae and
other eukaryotes. While the introduction of a DT resistant
mutation into the chromosomal EF-2 locus of P. pastoris
did not help to further increase the final yields of biolog-
ically active IT, secreted expression levels as high as 120
mg - I-! culture were eventually achieved using a bioreactor
and empirically optimized methanol induction condi-
tions [31-33].

We have recently reported the successful recombinant
production in P. pastoris of the Cyt2Aal d-endotoxin from
the Bacillus thuringiensis (B. thuringiensis) subspecies kyush-
uensis, as well as that of a membrane-acting Cyt2Aal-
based IT [34,35]. B. thuringiensis is a ubiquitous aerobic,
gram-positive bacterium that is best known for its crystal-
line d-endotoxin inclusions produced during sporulation
[36]. These d-endotoxins are pore-forming proteins with
very specific larvicidal activities for insects in the order of
Lepidoptera, Coleoptera and Diptera. All active §-endo-
toxins belong to either the Cry or Cyt family of toxins that
share very little amino acid sequence identity but are both
initially produced as protoxins that need to be solubilized
at the appropriate pH prior to activation by proteolytic
processing. Cyt toxins are smaller than the Cry toxins and
are further distinguished from the latter by: (1) their
highly specific mosquitocidal activity in vivo, (2) their
broad cytolytic activity to a variety of invertebrate and ver-
tebrate cells in vitro after solubilisation and activation by
proteolytic processing, and (3) their ability to spontane-
ously insert into membranes containing zwitterionic
phospholipids with unsaturated acyl chains [37-39]. This
unique combination of features makes Cyt toxins highly
suitable for the development of membrane-acting ITs, an
alternative idea in the field that was initially explored in
our laboratory using chemical conjugation strategies
[40,41].

Considering that recombinant production methods
would provide more homogenous Cyt-based ITs com-
pared to the chemical conjugation strategies, subsequent
attempts in our laboratory were based on the use of the E.
coli expression system. However, this strategy led to only
limited success due to the invariable formation of inclu-
sion bodies in this prokaryotic expression host, which in
turn limited the final yields of biologically active Cyt-
based ITs. Consequently, we next attempted the recom-
binant production of Cyt2Aal-based ITs in P. pastoris
using the native bacterial gene. However, as it has been
the case for the majority of other bacterial toxins that are
also encoded by A+T-rich genes (Table 1), recombinant

http://www.microbialcellfactories.com/content/4/1/33

production of Cyt2Aal and Cyt2Aal-based ITs in P. pas-
toris necessitated de novo design and construction of a syn-
thetic toxin gene that was optimized for heterologous
expression in this yeast [34,35]. Since de novo design and
construction of synthetic genes is often a prerequisite for
achieving heterologous expression of bacterial toxins in P.
pastoris (Table 1), we present general guidelines to this end
in the next section based on our experience with the het-
erologous Cyt2Aal expression in this yeast.

In contrast to the intracellular expression of the native
bacterial gene in P. pastoris, that of the synthetic gene led
to the recombinant production of the Cyt2Aa toxin, albeit
severe product toxicity effects were observed [34]. Similar
toxicity effects were also observed with the intracellular
expression of the Cyt2Aal-based IT in the same heterolo-
gous expression host, which could be largely alleviated by
the secretory targeting of the recombinant product. While
the Cyt2Aal-based IT failed to be secreted from the P. pas-
toris cells, secretory targeting proved beneficial in this case
since it sequestered the deleterious recombinant product
from the yeast cytosol, where a wide range of organelles
would otherwise be prone to Cyt2Aal-based membrane
damage [35]. Instead, the recombinant Cyt2Aal-based IT
accumulated to high-levels in the yeast endoplasmic retic-
ulum, where the high local Ca2?+ concentration in this
organelle is expected to be inhibitory to the basic Cyt2Aal
toxin activity [35,42]. Furthermore, secretory targeting
allowed proper formation of the disulphide bonds requi-
site for the function of the cell-binding domain of the
recombinant Cyt2Aal-based IT, which could then be
recovered in a biologically active form at 10 mg- 1! culture
by a chaotropic denaturation step that was followed with
an on-the-column refolding strategy [35]. While the final
yield of biologically active Cyt2Aal-based IT could be
potentially increased through the selection of multi-copy
integrants of the recombinant expression cassette and/or
large-scale bioreactor cultures (Table 1), we did not find
this to be necessary for the purposes of our project, which
was the development of an in vitro model system to test
the potency of Cyt2Aal-based ITs. However, it has also
not escaped our attention that Cyt2Aal-expressing P. pas-
toris cells can have further potential use in the control of
disease vectors, as has proved to be the case for the last
two examples of P. pastoris heterologous expression that
we present below.

Recombinant expression in P. pastoris of the B. thuringien-
sis insecticidal Cry2 toxin has also been described using
the native bacterial gene [43]. In addition, high-level (up
to 30% tcp) P. pastoris co-expression of two biologically
active B. sphaericus mosquitocidal proteins BSP1 and BSP2
was reported using synthetic genes that were optimized
for heterologous expression in this yeast [44]. Here, P. pas-
toris cells expressing the B. sphaericus insecticidal proteins
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Table 2: P. pastoris codon preference. This codon preference table was compiled from literature and is based on highly expressed genes
in P. pastoris, as well as those in other yeast species such as S. cerevisiae [44, 51-53].

Amino acid Ist preference 2nd preference

Amino acid Ist preference 2nd preference

Ala (A) GCT GCC
Arg (R) AGA CGT
Asn (N)* AAC AAT
Asp (D) GAC GAT
Cys (O)* TGT TGC
G (Q)f CAA CAG
Glu (E)t GAG GAA
Gly (G) GGT GGA
His (H)* CAC CAT

lle (Iyt ATT ATC

Leu (L) TG CTT/CTG
Lys (K) AAG AAAS
Met (M) ATG -

Phe (F) TTC TTTS
Pro (P) CCA ccT
Ser (S)t TCT TCC
Thr (T)t ACT ACC
Trp (W) TGG -

Tyr (Y)* TAC TAT
Val (V) GTT GTC

TAmino acids for which there is a minimal bias between the first and second-most preferred codons; frare amino acids constituting a major
discrepancy between the P. pastoris and S. cerevisiae codon preferences; *amino acids with a very high bias for the first preference codon. Other
general trends observed with yeast codon preferences are as follows: (1) Scodons that contain 100% G, C, A or T are best avoided, (2) there is a
strong avoidance of side-by-side GC base pairs in codon-anticodon interactions, (3) there are three codons used for translational termination,
which are used with the frequency TAA > TAG > TGA, and (4) the S. cerevisiae consensus sequence for translation initiation context is A/'Y A A/
U A AUG UCU (where Y is a pyrimidine base, C or T), however it has been shown to have only a moderate effect on translation [51, 53, 54].

were heat-killed without a significant reduction in the bio-
logical activity of the recombinant toxins and then fed to
Dipteran larvae, which are filter-feeders that usually find
yeast cells palatable [44]. This strategy has a minimal risk
of releasing the heterologous toxin gene into environment
since it would be integrated into the yeast genome unlike
the autonomous plasmids used for heterologous expres-
sion in E. coli.

Design and de novo synthesis of bacterial genes for optimal
expression in P. pastoris

There are now various commercial services available that
offer total gene synthesis at competitive prices. However,
it is also possible to design and construct any given DNA
sequence using well established protocols [30,34,44-46].
Here we present as an example, the strategy that we have
successfully used for the design and de novo construction
of a synthetic gene coding for the B. thuringiensis Cyt2Aal
toxin that was optimized for expression in P. pastoris
[34,35].

As discussed previously, our initial attempts at heterolo-
gous Cyt2Aal expression in P. pastoris were unsuccessful
due to inherent problems with the eukaryotic expression
of the bacterial gene. This was attributed to the high A+T-
content of the native Cyt2Aal gene containing cryptic
polyadenylation sites that resulted in premature transcrip-
tion termination in yeast [17,18]. To achieve optimal het-
erologous expression in P. pastoris, we designed a
synthetic gene based on the primary amino acid sequence
of the proteinase K-activated form of the Cyt2Aal toxin
[34]. To this end, the overall A+T-content of the bacterial
gene was systematically reduced by changing its codon
usage to that preferred by P. pastoris (Table 2). Our man-

ual selection largely favoured the most-preferred P. pas-
toris codons, but in certain instances the second-most
preferred codons were selected instead to ensure an over-
all reduction in the A+T-content of the resulting DNA
sequence. This strategy resulted in the reduction of the
A+T-content from ~70% to 50%, while retaining only
18.5% of the original codon usage. Furthermore, our syn-
thetic gene design also ensured that the initial 50-75
nucleotides of the corresponding mRNA would be free of
stable secondary structures, especially in the vicinity of the
translation initiation codon [47], and the overall DNA
sequence would not contain the restriction enzyme sites
that would be used during the subsequent cloning strate-
gies, etc. Rational design of the synthetic gene was facili-
tated by the use of the Genetics Computer Group (GCG)
software package (Wisconsin Package version 10.2-UNIX,
Madison, WI) [48], especially the programs MFold, Plot-
Fold and Map. A Kozak consensus translation initiation
sequence for yeast was also introduced into synthetic gene
to ensure its efficient heterologous expression in P. pastoris
[49]. Finally, de novo synthesis of the synthetic Cyt2Aal
gene was readily achieved by a recursive PCR strategy that
used overlapping oligonucleotides representing the par-
tial sequence of the sense and anti-sense strands of the
proposed DNA sequence [34,35,45]. Briefly, all oligonu-
cleotides were designed to be between 57-71 nucleotides
and to have a similar theoretical melting temperature
(52-56°C), as well as a 19-23 bp overlap at their 3'-end.
To ensure the specificity of each pairing and the absence
of any undesirable secondary structures, all oligonucle-
otide selections were extensively analysed by GCG FastA
and Stemloop programs [48,50]. The mutual extension of
the overlapping oligonucleotides produces longer double-
stranded products, and ultimately the full-length syn-
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thetic gene construct, which is then amplified by the 5'-
outermost flanking primers [34].

Conclusion

P. pastoris is a robust recombinant expression host that has
also seemingly emerged as an alternative heterologous
expression host for a variety of bacterial toxins and their
derivatives. In particular, secretory targeting is an advanta-
geous strategy for the recombinant production of toxins
and/or their derivatives that require proteolytic processing
and/or proper disulphide bond-formation for their activ-
ity. In this respect, P. pastoris may be better suited than the
E. coli- and S. cerevisiae-based expression systems and it
may also allow higher yields of biologically active recom-
binant protein as it can be grown to high cell densities
under aerobic conditions. As in the case of B. thuringiensis
Cyt2Aal toxin that is not secreted by the native host,
secretory targeting of the fusion proteins may also help
alleviate product toxicity effects on the P. pastoris cells.
However, undesirable glycosylation of the secreted bacte-
rial toxins may need to be addressed when using this strat-
egy, such as by: (1) introducing silent mutations to
remove cryptic glycosylation sites present in the prokary-
otic primary amino acid sequence, (2) although it may be
cost-prohibitive for large-scale applications, in vitro enzy-
matic deglycosylation can be carried out, or alternatively,
(3) intracellular expression of the toxin can be attempted.
A further potential problem that is often encountered dur-
ing heterologous expression of the bacterial toxins in P.
pastoris centers on differences in the codon bias of the
A+T-rich prokaryotic toxin genes that can minimize or
even preclude the recombinant production of the full-
length proteins. However, there are now many examples
in the literature on the successful use of de novo synthe-
sized bacterial genes that are optimized for heterologous
expression in this yeast.

List of abbreviations used

AOX: alcohol oxidase; AOX1: P. pastoris major alcohol oxi-
dase gene; tcp: total cell protein; BONT and TeNT, botuli-
num and tetanus neurotoxins, respectively; BoNT(H)
and TeNT(H.), the carboxyl-terminal domain of the
heavy chain fragment of the botulinum and tetanus neu-
rotoxins, respectively; LT and CT: the heat-labile E. coli
enterotoxin and the V. cholerae toxin, respectively; LTB
and CTB: B subunit of the heat-labile E. coli enterotoxin
and the V. cholerae toxin, respectively, CHO: Chinese
hamster ovary; Cef: cell-elongating factor; IT: immunoto-
xin; DT: diphtheria toxin; DT390: truncated version of DT
corresponding to the first 390 amino acid residues.

Acknowledgements

C.G. is currently sponsored by a Cystic Fibrosis Post-Doctoral Research
Fellowship. We thank Drs Atanas V. Koulov and Paul LaPointe for a critical
review of this manuscript.

http://www.microbialcellfactories.com/content/4/1/33

References

I. Smith LA: Development of recombinant vaccines for botuli-
num neurotoxin. Toxicon 1998, 36:1539-1548.

2. Byrne MP, Smith LA: Development of vaccines for prevention of
botulism. Biochimie 2000, 82:955-966.

3. Smith LA, Jensen M), Montgomery VA, Brown DR, Ahmed SA, Smith
T): Roads from vaccines to therapies. Mov Disord 2004,
19(Suppl 8):548-52.

4.  Harakuni T, Sugawa H, Komesu A, Tadano M, Arakawa T: Hetero-
pentameric cholera toxin B subunit chimeric molecules
genetically fused to a vaccine antigen induce systemic and
mucosal immune responses: a potential new strategy to tar-
get recombinant vaccine antigens to mucosal immune sys-
tems. Infect Immun 2005, 73:5654-5665.

5.  FitzGerald D), Kreitman R, Wilson W, Squires D, Pastan |: Recom-
binant immunotoxins for treating cancer. Int | Med Microbiol
2004, 293:577-582.

6.  Cereghino JL, Cregg JM: Heterologous protein expression in the
methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 2000,
24:45-66.

7.  Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM: Heterolo-
gous protein production using the Pichia pastoris expression
system. Yeast 2005, 22:249-270.

8.  Couderc R, Baratti J: Oxidation of methanol by the yeast Pichia
pastoris: purification and properties of alcohol oxidase. Agric
Biol Chem 1980, 44:2279-2289.

9.  Sears IB, O'Connor J, Rossanese OW, Glick BS: A versatile set of
vectors for constitutive and regulated gene expression in
Pichia pastoris. Yeast 1998, 14:783-790.

10. Higgins DR, Busser K, Comiskey ], Whittier PS, Purcell T}, Hoeffler JP:
Small vectors for expression based on dominant drug resist-
ance with direct multicopy selection. Methods Mol Biol 1998,
103:41-53.

Il.  Gurkan C, Symeonides SN, Ellar DJ: High-level production in
Pichia pastoris of an anti-pI85HER-2 single-chain antibody
fragment using an alternative secretion expression vector.
Biotechnol Appl Biochem 2004, 39:115-122.

12.  Cregg JM, Barringer KJ, Hessler AY, Madden KR: Pichia pastoris as
a host system for transformations. Mol Cell Biol 1985,
5:3376-3385.

13. Cregg JM, Madden KR, Barringer K], Thill GP, Stillman CA: Func-
tional characterization of the two alcohol oxidase genes from
the yeast Pichia pastoris. Mol Cell Biol 1989, 9:1316-1323.

14.  Tschopp JF, Brust PF, Cregg M, Stillman CA, Gingeras TR: Expres-
sion of the lacZ gene from two methanol-regulated promot-
ers in Pichia pastoris. Nucleic Acids Res 1987, 15:3859-3876.

I15.  Grinna LS, Tschopp JF: Size distribution and general structural
features of N-linked oligosaccharides from the methylo-
trophic yeast, Pichia pastoris. Yeast 1989, 5:107-115.

16. Clare J, Sreekrishna K, Romanos M: Expression of tetanus toxin
fragment C. Methods Mol Biol 1998, 103:193-208.

17.  Romanos MA, Makoff AJ, Fairweather NF, Beesley KM, Slater DE,
Rayment FB, Payne MM, Clare JJ: Expression of tetanus toxin
fragment C in yeast: gene synthesis is required to eliminate
fortuitous polyadenylation sites in AT-rich DNA. Nucleic Acids
Res 1991, 19:1461-1467.

18. Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA:
High-level expression of tetanus toxin fragment C in Pichia
pastoris strains containing multiple tandem integrations of
the gene. Biotechnology (N Y) 1991, 9:455-460.

19. Byrne MP, Smith TJ, Montgomery VA, Smith LA: Purification,
potency, and efficacy of the botulinum neurotoxin type A
binding domain from Pichia pastoris as a recombinant vac-
cine candidate. Infect Immun 1998, 66:4817-4822.

20. Potter KJ, Bevins MA, Vassilieva EV, Chiruvolu VR, Smith T, Smith LA,
Meagher MM: Production and purification of the heavy-chain
fragment C of botulinum neurotoxin, serotype B, expressed
in the methylotrophic yeast Pichia pastoris. Protein Expr Purif
1998, 13:357-365.

21. Byrne MP, Titball RW, Holley ], Smith LA: Fermentation, purifica-
tion, and efficacy of a recombinant vaccine candidate against
botulinum neurotoxin type F from Pichia pastoris. Protein
Expr Purif 2000, 18:327-337.

22. Potter KJ, Zhang W, Smith LA, Meagher MM: Production and puri-
fication of the heavy chain fragment C of botulinum neuro-

Page 7 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9792170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9792170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11086225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11086225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15027054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16113283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16113283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16113283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15149034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15149034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10640598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10640598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15704221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15704221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15704221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9675822
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9680632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9680632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9680632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12962542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12962542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3915774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3915774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2657390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3108861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2711751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9680641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9680641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2027754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2027754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2027754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1367310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1367310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1367310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9746584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9746584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9746584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9693060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9693060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9693060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10733887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10733887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10733887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10910730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10910730

Microbial Cell Factories 2005, 4:33

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

toxin, serotype A, expressed in the methylotrophic yeast
Pichia pastoris. Protein Expr Purif 2000, 19:393-402.

Zhang W, Bevins MA, Plantz BA, Smith LA, Meagher MM: Modeling
Pichia pastoris growth on methanol and optimizing the pro-
duction of a recombinant protein, the heavy-chain fragment
C of botulinum neurotoxin, serotype A. Biotechnol Bioeng 2000,
70:1-8.

Weatherly GT, Bouvier A, Lydiard DD, Chapline ], Henderson |,
Schrimsher JL, Shepard SR: Initial purification of recombinant
botulinum neurotoxin fragments for pharmaceutical pro-
duction using hydrophobic charge induction chromatogra-
phy. J Chromatogr A 2002, 952:99-110.

Zhang W, Smith LA, Plantz BA, Schlegel VL, Meagher MM: Design of
methanol Feed control in Pichia pastoris fermentations
based upon a growth model. Biotechnol Prog 2002, 18:1392-1399.
Johnson SK, Zhang W, Smith LA, Hywood-Potter K|, Todd Swanson
S, Schlegel VL, Meagher MM: Scale-up of the fermentation and
purification of the recombinant heavy chain fragment C of
botulinum neurotoxin serotype F, expressed in Pichia pas-
toris. Protein Expr Purif 2003, 32:1-9.

Fingerut E, Gutter B, Meir R, Eliahoo D, Pitcovski J: Vaccine and
adjuvant activity of recombinant subunit B of E. coli entero-
toxin produced in yeast. Vaccine 2005, 23:4685-4696.

Trucksis M, Conn TL, Fasano A, Kaper |B: Production of Vibrio
cholerae accessory cholera enterotoxin (Ace) in the yeast
Pichia pastoris. Infect Imnmun 1997, 65:4984-4988.

McCardell BA, Sathyamoorthy V, Michalski ], Lavu S, Kothary M,
Livezey |, Kaper )B, Hall R: Cloning, expression and characteri-
zation of the CHO cell elongating factor (Cef) from Vibrio
cholerae OI. Microb Pathog 2002, 32:165-172.

Woo JH, Liu YY, Mathias A, Stavrou S, Wang Z, Thompson |, Neville
DM Jr: Gene optimization is necessary to express a bivalent
anti-human anti-T cell immunotoxin in Pichia pastoris. Pro-
tein Expr Purif 2002, 25:270-282.

Woo JH, Liu YY, Stavrou S, Neville DM Jr: Increasing secretion of
a bivalent anti-T-cell immunotoxin by Pichia pastoris. Appl
Environ Microbiol 2004, 70:3370-3376.

Woo JH, Liu YY, Neville DM Jr: Minimization of aggregation of
secreted bivalent anti-human T cell immunotoxin in Pichia
pastoris bioreactor culture by optimizing culture conditions
for protein secretion. | Biotechnol 2005. (doi:10.1016/j.jbio-
tec.2005.1007.1004)

Liu YY, Woo JH, Neville DM: Targeted introduction of a diph-
theria toxin resistant mutation into the chromosomal EF-2
locus of Pichia pastoris and expression of immunotoxin in
the EF-2 mutants. Protein Expr Purif 2003, 30:262-274.

Gurkan C, Ellar DJ: Expression of the Bacillus thuringiensis
Cyt2Aal toxin in Pichia pastoris using a synthetic gene con-
struct. Biotechnol Appl Biochem 2003, 38:25-33.

Gurkan C, Ellar D): Expression in Pichia pastoris and purifica-
tion of a membrane-acting immunotoxin based on a syn-
thetic gene coding for the Bacillus thuringiensis Cyt2Aal
toxin. Protein Expr Purif 2003, 29:103-116.

Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum }, Feitelson },
Zeigler DR, Dean DH: Bacillus thuringiensis and its pesticidal
crystal proteins. Microbiol Mol Biol Rev 1998, 62:775-806.

Thomas WE, Ellar D): Bacillus thuringiensis var israelensis crystal
d-endotoxin: effects on insect and mammalian cells in vitro
and in vivo. | Cell Sci 1983, 60:181-197.

Thomas WE, Ellar DJ: Mechanism of action of Bacillus thuring-
iensis var israelensis insecticidal 3-endotoxin. FEBS Lett 1983,
154:362-368.

Du J, Knowles BH, Li J, Ellar DJ: Biochemical characterization of
Bacillus thuringiensis cytolytic toxins in association with a
phospholipid bilayer. Biochem | 1999, 338:185-193.

Drobniewski FA: Immunotoxins up to the present day. Biosci
Rep 1989, 9:139-156.

al-yahyaee SA, Ellar DJ: Cell targeting of a pore-forming toxin,
CytA 5-endotoxin from Bacillus thuringiensis subspecies israe-
lensis, by conjugating CytA with anti-Thy | monoclonal anti-
bodies and insulin. Bioconjug Chem 1996, 7:451-460.

Knowles B, Blatt M, Tester M, Horsnell J, Carroll ], Menestrina G,
Ellar D: A cytolytic delta-endotoxin from Bacillus thuringien-
sis var. israelensis forms cation-selective channels in planar
lipid bilayers. FEBS Lett 1989, 244:259-262.

http://www.microbialcellfactories.com/content/4/1/33

43. Ogunjimi AA, Chandler JM, Gbenle GO, Olukoya DK, Akinrimisi EO:
Heterologous expression of cry2 gene from a local strain of
Bacillus thuringiensis isolated in Nigeria. Biotechnol Appl Bio-
chem 2002, 36:241-246.

44. Sreekrishna K, Prevatt WD, Thill GP, Davis GR, Koutz P, Barr KA,
Hopkins SA: Production of Bacillus entomotoxins in methylo-
trophic yeast. US Patent 1998. 5,827,684

45. Prodromou C, Pearl LH: Recursive PCR: a novel technique for
total gene synthesis. Protein Eng 1992, 5:827-829.

46. Withers-Martinez C, Carpenter EP, Hackett F, Ely B, Sajid M,
Grainger M, Blackman M): PCR-based gene synthesis as an effi-
cient approach for expression of the A+T-rich malaria
genome. Protein Eng 1999, 12:1113-1120.

47. Baim SB, Sherman F: mRNA structures influencing translation
in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1988,
8:1591-1601.

48. Womble DD: GCG: The Wisconsin Package of sequence anal-
ysis programs. Methods Mol Biol 2000, 132:3-22.

49. Kozak M: Initiation of translation in prokaryotes and eukary-
otes. Gene 1999, 234:187-208.

50. Pearson WR, Lipman DJ: Improved tools for biological sequence
comparison. Proc Natl Acad Sci USA 1988, 85:2444-2448.

51. Bennetzen ]L, Hall BD: Codon selection in yeast. | Biol Chem 1982,
257:3026-3031.

52. Ernst JF: Codon usage and gene expression. Trends Biotechnol
1988, 6:196-199.

53. lkemura T: Correlation between the abundance of yeast
transfer RNAs and the occurrence of the respective codons
in protein genes. Differences in synonymous codon choice
patterns of yeast and Escherichia coli with reference to the
abundance of isoaccepting transfer RNAs. | Mol Biol 1982,
158:573-597.

54. Cigan AM, Donahue TF: Sequence and structural features asso-
ciated with translational initiator regions in yeast — a review.
Gene 1987, 59:1-18.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 8 of 8

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10910730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10910730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10940857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10940857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10940857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12064550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12064550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12064550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12467476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12467476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12467476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14680933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14680933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14680933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15951067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15951067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15951067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9393786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9393786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9393786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12135560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12135560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15184133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15184133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12880776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12880776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12880776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12628007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12628007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12628007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12729731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12729731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12729731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9729609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9729609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6874728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6832375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9931315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9931315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2669993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8853459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8853459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2465921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2465921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2465921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12452809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12452809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12452809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1287665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1287665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10611405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10611405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10611405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2837649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10395892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10395892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7037777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6750137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6750137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6750137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3325335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3325335
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Review
	P. pastoris as a recombinant expression host
	Heterologous expression of bacterial toxins and their derivatives in P. pastoris
	Design and de novo synthesis of bacterial genes for optimal expression in P. pastoris

	Conclusion
	List of abbreviations used
	Acknowledgements
	References

