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Abstract

Fluorescent proteins are genetically encoded, highly versatile reporters useful for monitoring
various aspects of recombinant protein production. In addition to the widely popular green
fluorescent protein (GFP) from Aequorea victoria, a variety of other fluorescent proteins have been
discovered that display a wide range of spectral properties. Synthetic variants have also been
developed to overcome limitations associated with their wild-type counterparts. Having a large
repertoire of fluorescent proteins with diverse traits opens new opportunities for rapid monitoring
and optimization of recombinant protein production.

Review

Introduction

Expression of recombinant proteins from a variety of host
organisms is now a common practice. However, produc-
tion of properly folded proteins with high yield and purity
may not always be achieved. Issues such as folding, solu-
bility, protein stability, transcription and translation effi-
ciency, posttranslational processing, secretion, metabolic
burden and other stress responses resulting from recom-
binant protein production, as well as protein purification,
need to be addressed in order to obtain biologically active
recombinant proteins with high purity and yield [1]. In
this regard, genetically encoded fluorescent reporters pro-
vide ample new opportunities to better tackle these issues.
Since the demonstration of the Aequorea victoria green flu-
orescent protein (GFP) as a versatile reporter [2], several
additional GFP-like fluorescent proteins with various
colors have been discovered and their genes cloned [3].
Synthetic fluorescent protein variants have also been
developed, exhibiting traits distinct from their wild-type
counterparts. The properties of selected fluorescent pro-
tein variants derived from the A. victoria GFP and the Dis-
cosoma red fluorescent protein (DsRed) [4] are

summarized in Table 1. Fluorescence spectra of enhanced
GFP variants along with DsRed are shown in Figure 1[5],
and fluorescence of purified protein variants derived from
DsRed [6] are shown in Figure 2. Readers are referred to
the work of Labas et al. [7] for information of additional
fluorescent proteins. These GFP-like proteins each has its
own unique properties, while sharing common structural,
biochemical and photophysical characteristics [3]. GFP-
like proteins are relatively small (25-30 kDa) and their
fluorescence mechanism is self-contained, requiring no
cofactors. These unique properties make GFP-like pro-
teins very attractive tools in non-invasive biological mon-
itoring applications. As a tool to improve recombinant
protein production, fluorescent proteins can be used to
monitor the protein product or the cellular processes rele-
vant to recombinant protein production.

Monitoring protein production, secretion, and culture
growth

Fluorescent proteins are commonly used as a reporter for
a protein of interest, normally by tagging the fluorescent
protein reporter to the protein of interest via genetic
fusion. Functional fusion of Aequorea GFP to a broad
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Table I: Properties of selected fluorescent proteins

http://www.microbialcellfactories.com/content/4/1/12

Fluorescent Excitation Peak Emission Peak Extinction Fluorescence Reference
Protein (nm) (nm) Coefficient (M-! cm~ Quantum Yield

N
EBFP 383 445 31,000 0.25 [5]
ECFP 434 477 26,000 0.40 [5]
Cerulean CFP 433 475 43,000 0.62 [38]
EGFP 489 508 55,000 0.60 [5]
EYFP 514 527 84,000 0.61 [5]
Venus YFP 515 528 92,200 0.57 [39]
Citrine YFP 516 529 77,000 0.76 [40]
DsRed 558 583 75,000 0.79 [6]
mRFPI 584 607 50,000 0.25 [6]
mHoneydew 487/504 537/562 17,000 0.12 [6]
mBanana 540 553 6,000 0.70 [6]
mOrange 548 562 71,000 0.69 [6]
mTangerine 568 585 38,000 0.30 [6]
mStrawberry 574 596 90,000 0.29 [6]
mCherry 587 610 72,000 0.22 [6]

range of protein partners at either N- or C- terminus has
been reported, and a direct quantitative correlation
between the GFP fluorescence intensity and the titer or
even the functional activity of the fusion partner can often
be established [8,9]. To minimize potential interference
by the GFP tag on its fusion partner, it is desirable and
sometimes necessary to incorporate a peptide linker to
allow sufficient spatial separation of the two protein moi-
eties to assure fusion protein stability and functionality.
Flexible linkers lacking large bulky hydrophobic residues
(e.g. GSAGSAAGSGEF [10]) are commonly used, while
hydrophilic helix-forming linker peptides have been
reported to be superior to flexible linkers in some cases
[11]. To allow removal of the GFP tag, an enzymatic cleav-
age site (e.g. enterokinase or Factor Xa cleavage sites) can
be engineered into the linker. It is preferred to splice the
GFP/linker to the N-terminus of the target protein, pro-
vided such fusion does not impair the target protein func-
tion and stability. With the majority of the enzymes
commonly used for tag removal, this fusion orientation
enables elimination of the tag without leaving extraneous
amino acid residues on the target protein after cleavage.
Alternatively, chemical cleavage based on cyanogen bro-
mide, formic acid, or hydroxylamine may be considered,
provided the target proteins are not susceptible to cutting
by these chemical agents. Further information of tag
removal can be found in a comprehensive review by
Hearn and Acosta [12]. In addition to tandem fusion,
insertional fusion (i.e. by inserting the protein of interest
into GFP or vise versa) may also be feasible [13]. Recom-
binant protein production can be monitored non-inva-
sively, in situ, and almost in real time, by monitoring
culture fluorescence using on-line optical sensors [14,15].

This information is useful in determining the optimal
product harvest time to avoid product degradation [16]
and to devise process control strategies to optimize cul-
ture/operating conditions to improve recombinant pro-
tein production [8,17]. GFP has also been used to
monitor recombinant virus titers in cell cultures [18], and
cell density in microbial [15], animal [19], and plant cell
cultures [8]; the cell growth information can be used, in
turn, to optimize the culture process for improved recom-
binant protein production (e.g. by optimizing the feeding
profiles of the limiting nutrient or the promoter inducer,
or by determining the optimal product harvest time
[8,17]). Additionally, GFP-fusion coupled with flow cyto-
metric analysis is useful for profiling recombinant protein
expression among different cell subpopulations, and
selection of high-producing cells [9].

GFP-fusion can also be used for monitoring protein secre-
tion and other subcellular protein localization and traf-
ficking events. In the event direct GFP fusion hampers
protein secretion, alternative protein fusion strategies may
be sought. One plausible approach is to express GFP and
a protein of interest as a cleavable chimeric polyprotein.
By targeting the polyprotein to the secretory pathway, the
target protein and the GFP tag may become separated and
secreted as individual proteins. Feasibility of such
approach has been demonstrated in fungi and plant cells
for the successful in-vivo cleavage of an glucoamylase-
interleukin-6 fusion protein [20] and a fusion antimicro-
bial polyprotein [21], respectively. Cellular processing in
plant cells of a polyprotein that consists of DsRed-GFP
fusion linked by a Kex2 cleavage sequence [22] is currently
being investigated in the author's laboratory. In another
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Fluorescence spectra of EGFP variants and DsRed (reproduced with the permission of [5]).

possible approach, one may express the target gene and
GFP in a dicistronic vector by incorporating an internal
ribosome entry site (IRES) [23]. One additional possibil-
ity would be to express target protein and GFP as separate
genes, but from the identical promoter. If a constant ratio
between GFP fluorescence and target protein concentra-
tion could be established, the independent GFP could be
used for fluorescent monitoring. Fluorescent protein
reporters can also be used to probe protein-protein inter-
actions that regulate the protein secretion process [24],

potentially leading to development of molecular strate-
gies that improve recombinant protein secretion.

Monitoring protein purification

The fact that GFP fluorescence is readily detectable makes
it a very attractive tool for optimizing purification of
recombinant proteins. Poppenborg et al. [25] optimized
immobilized metal affinity separation of a histidine-rich
protein tagged with GFP by tracking the fluorescence of
the fusion protein. Since GFP is a highly hydrophobic
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Figure 2

Fluorescence of DsRed variants developed by Shaner et al [6]
(from left to right, mHoneydew, mBanana, mOrange, tdTo-
mato, mTangerine, mStrawberry, mCherry; reproduced with
the permission of [6]; refer to the same reference for
details).

protein, recovery of GFP-fusion proteins can be facilitated
by using hydrophobic interaction chromatography (HIC)
[26]. GFP has also been engineered to allow affinity puri-
fication. Paramban et al [27] developed a chimeric GFP
tag having an internal hexa-histidine sequence. Such a
GFP tag allows efficient purification of GFP-fusion pro-
teins based on immobilized metal affinity separation, as
well as maximum flexibility for protein or peptide fusions
since both termini of the GFP are available.

Monitoring protein folding

Correct folding is one of the key challenges in recom-
binant protein production using simple hosts like
Escherichia coli. GFP has been proposed as a folding
reporter. By fusing GFP to a panel of proteins, Waldo et al
[10] demonstrated that display of GFP fluorescence in the
E. coli colonies expressing the fusion proteins indicated
proper folding of GFP's fusion partner. De Marco [28]
however cautioned that observation of GFP fluorescence
from the fusion protein may not guarantee the fusion
partner have reached its native structure.

Recently, Waldo and coworkers [29] reported a novel
split-GFP system that consists of a small (GFP 3 strand 11;
GFP 11) and a complementary large fragment (GFP [
strand 1-10; GFP 1-10). Neither fragment by itself dis-
plays fluorescence, but GFP fluorescence emerges upon
self-association of the two complementary fragments.
These researchers demonstrated that by tagging target pro-
teins with the GFP-11 tag, the solubility of the target pro-
teins can be checked by mixing with the GFP 1-10
fragment in vitro or by co-expressing the GFP 1-10 frag-
ment in vivo. Appearance of GFP fluorescence suggests the
target protein is soluble. This split-GFP may also be useful
for detecting protein-protein interaction in vivo, similar to
the luciferase fragment complementation systems
[30,31].

http://www.microbialcellfactories.com/content/4/1/12

Monitoring cellular responses

In addition to direct monitoring of protein expression,
processing, and secretion, fluorescent proteins can also be
used to monitor cellular events that are directly or indi-
rectly related to recombinant protein production. For
instance, FRET (fluorescence resonance energy transfer)-
based GFP sensors have been developed to detect proteol-
ysis in vivo. FRET-based GFP sensors have also been devel-
oped for measuring intracellular concentration of nitric
oxide, calcium, cAMP, zinc, activation of G protein-cou-
pled receptor (GPCR), and PKA-mediated phosphoryla-
tion [9]. Redox sensitive GFP variants have been
developed for monitoring the cellular oxidative states,
which strongly affect protein folding. In addition, intrac-
ellular pH can be measured using GFP. Metabolic stresses
induced by recombinant protein over-expression may
also be monitored in vivo using GFP linked to stress-
induced promoters as a reporter.

Optical sensing of culture GFP fluorescence

The presence of cell aggregates, debris, and other light
absorbing/scattering compounds in the culture medium
contributes to the "inner filter effect" (IFE) that could dis-
tort the optical measurement of culture GFP fluorescence.
Real-time compensation of IFE in monitoring cultures
expressing GFP-fusion proteins typically involves estab-
lishing a mathematical model to link the IFE to cell den-
sity, and to use an on-line laser turbidity sensor to report
the biomass density needed in the calculation of the IFE
[32]. An obvious drawback of such an approach is the
requirement of a turbidity sensor in addition to the opti-
cal sensor for monitoring culture fluorescence. We
recently developed a technique that allows real-time com-
pensation of IFE during on-line monitoring of culture
GFP fluorescence, without the need for an additional bio-
mass sensor [33]. This was achieved by developing a
model-based state observer, using the extended Kalman
filter (EKF) and on-line measurement of GFP culture fluo-
rescence using an optical light-rod sensor.

Applications involving multiple fluorescent protein
variants

Given the many facets of its applications, multiple fluo-
rescent protein reporters could potentially be used in par-
allel for multi-color in vivo sensing. For instance, GFP may
be used to tag the recombinant protein product, while a
red fluorescent protein could be linked to a stress-respon-
sive promoter such as the heat-shock promoter groEL to
monitor stress induced by recombinant protein over-
expression in E. coli [34]. Having a large repertoire of flu-
orescent proteins with diverse spectral properties is also
necessary for multiplex FRET-based sensing applications.
Through both structure-based modification and evolu-
tionary methods for protein engineering, several robust
variants of the Aequorea GFP have been created with blue,
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cyan, and yellow colors [35]. In a recent paper by Shaner
etal [6], development of a panel of novel monomeric red,
orange and yellow fluorescent proteins derived from the
Discosoma DsRed was reported. These new variants also
show additional traits that are useful for monitoring
recombinant protein production.

Monomeric fluorescent protein variants

Wild type DsRed is an obligate tetramer. When fused to a
protein of interest, the fusion protein often forms aggre-
gates, hampering normal localization, trafficking and pro-
tein-protein interactions of the protein of interest. A
monomeric DsRed variant, called mRFP1, was developed
by disrupting each subunit interface via insertion of
arginines, and then using directed evolution to accelerate
chromophore maturation and to restore fluorescence,
which takes 33 substitutions [36]. mRFP1 was further
improved by subjecting to additional rounds of directed
evolution [6]. The resulting eight variants display corre-
sponding emission peaks ranging from 537 to 610 nm.
Some of these new variants also show better tolerance to
N- and C- terminal fusions, higher extinction coefficients,
quantum yields, and photostability, though no single var-
iant has acquired all the desirable traits [6]. Since GFP is
known to have high tolerance to either N- or C- terminal
fusions, and DsRed and GFP share similar structures,
Shaner et al [6] engineered GFP-type termini into mRFP1,
rendering improved tolerance to protein fusion in the new
variant. Among the new monomeric variants, mCherry
(excitation at 587 nm, emission at 610 nm) is the most
red-shifted, and has the best photostability, fastest
maturation (15 min) and excellent pH resistance and tol-
erance to N-terminal fusions. The mOrange variant (exci-
tation at 548 nm, emission at 562 nm) has high extinction
coefficient and quantum yield, and is shown to be a supe-
rior FRET acceptor for GFP variants.

Conclusion

The repertoire of fluorescent protein variants has contin-
ued to expand, and is now covering almost the entire
color spectrum. With the advances in directed evolution
techniques [37], each of these new proteins is likely to be
further improved. The availability of improved multicolor
fluorescent protein reporters will undoubtedly lead to
development of innovative techniques that enable more
effective multiplex cellular sensing, and allow more effi-
cient on-line optimization of recombinant protein
production.
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