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Abstract
Since thousands of years humans have utilized insect silks for their own benefit and comfort. The
most famous example is the use of reeled silkworm silk from Bombyx mori to produce textiles. In
contrast, despite the more promising properties of their silk, spiders have not been domesticated
for large-scale or even industrial applications, since farming the spiders is not commercially viable
due to their highly territorial and cannibalistic nature. Before spider silks can be copied or
mimicked, not only the sequence of the underlying proteins but also their functions have to be
resolved. Several attempts to recombinantly produce spider silks or spider silk mimics in various
expression hosts have been reported previously. A new protein engineering approach, which
combines synthetic repetitive silk sequences with authentic silk domains, reveals proteins that
closely resemble silk proteins and that can be produced at high yields, which provides a basis for
cost-efficient large scale production of spider silk-like proteins.

Review
Types of spider silk
Spiders and silks always go together. Currently there are
over 34,000 described species of spiders, all of which have
a varied tool kit of task-specific silks with divergent
mechanical properties [1-6]. Although some spiders may
use silk sparingly, most make rather elaborate nests, traps
and cocoons typically using more than one type of silk
(Figure 1), which are produced by a wide and diverse
range of glands, ducts and spigots.

Among the various spider silks the major ampullate (MA)
silk, which forms the primary dragline, is extremely tough.
MA silk reveals a tensile strength that is comparable to
Kevlar (4 × 109 N/m2) coupled with a reasonable viscoe-
lasticity (dragline 35 %, Kevlar 5 %). Spiders use dragline
silk as a strong yet flexible structural element in the web,

providing a framework to which other silks are attached,
and as a life line when a spider is dropping off to escape
an enemy. Minor ampullate (MI) silk, used for structural
reinforcement in construction of the web, has a similar
high tensile strength in comparison to major ampullate
silk but has little elasticity [7,8]. Due to the low elasticity
of MI silk it is irreversibly deforming when stretched. An
orb web's capture spiral, in part composed of viscid silk
formed by the flagelliform gland, which is therefore
named flagelliform silk, is stretchy and can triple in length
before breaking, but provides only half the tensile
strength of major ampullate silk [9]. The combination of
strength and stretchiness gives the capture spiral a tough-
ness (energy to break) greater than elastin, tendon, silk-
worm silk, bone, synthetic rubber, Kevlar, and high-
tensile steel.
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Composition and structural architecture of spider silks
Spider silks are protein polymers that display extraordi-
nary physical properties [1-4,8], but there is only limited
information on the composition of the various silks pro-
duced by different spiders. Among the different types of
spider silks, draglines from the golden orb weaver Nephila
clavipes and the garden cross spider Araneus diadematus are
most intensely studied. Dragline silks are generally com-
posed of two major proteins [5,10-13] and it remains
unclear whether additional proteins play a significant role
in silk assembly and the final silk structure. The two major
protein components of draglines from Nephila clavipes are
termed MaSp1 and MaSp2 (Major ampullate Spidroins)
and from Araneus diadematus ADF-3 and ADF-4 (Araneus
Diadematus Fibroin). The dragline silk proteins have
apparent molecular masses between 180 kDa and 720
kDa depending on the conditions of analysis [14-16]. It is
assumed that, based on amino acid composition, within
the dragline fiber the molecular ratio between MaSp1 and
MaSp2 and between ADF-4 and ADF-3 is approximately 3
to 2 [10,11,17].

Based on DNA analysis it could be shown that all spider
silk proteins are chains of iterated peptide motifs (so
called repeating units) (Figure 2). The small peptide
motifs can be grouped into four major categories: GPGXX
(with X often representing Q), alanine-rich stretches (An

or (GA)n), GGX, and spacers (Figure 2A). A fifth category
is represented by non-repetitive (NR) regions at the
amino- and carboxyl termini of the proteins (Figure 2),
often representing polypeptide chains of 100 amino acids
and more [7,10,11,18-22].

So far the largest sequence information could be obtained
for flagelliform silk from Nephila clavipes (Figure 2B). This
flagelliform silk protein is translated from a ~15.5 kb
mRNA transcript originating from a 30 kb Flag locus
[9,23]. The coding sequence is divided into 13 exons. The
NR amino-terminal region is split between exons 1 and 2.
All of the other exons are found to encode exactly one
repeating unit, built from the described motifs (Figure
2B). The final exon 13 in addition includes the NR car-
boxyl-terminal region.

On the basis of several studies, the major categories of
peptide motifs in spider silk proteins have been assigned
structural roles [24-28]. The GPGXX motif has been sug-
gested to be involved in a β-turn spiral, probably provid-
ing elasticity, based on structures of comparable proteins
[29-32]. If elasticity is due to GPGXX β-spirals, then this
motif should be found in the more elastic silks. Flagelli-
form silks, which show the highest elasticity with more
than 200 %, consist of contiguous repeats of this motif for
at least 43 times in each repeating unit (Figure 2B). The
only non-flagelliform silk proteins with GPGXX motifs
are MA proteins MaSp2, ADF-3, and ADF-4, which also
display some viscoelasticity. In accordance to the lower
elasticity of dragline silk in comparison to flagelliform silk
the number of tandemly arrayed repeats depicts at most 9
concatenated GPGXX motifs before interruption by
another motif [1,21]. Alanine-rich motifs contain typi-
cally 6–9 alanine residues and have been found to form
crystalline β-sheet stacks leading to tensile strength
[6,24,25,12]. The MA and MI silks are both very strong,
and at least one protein in each silk (there are always
pairs) contains the An or (GA)n motif. Interestingly, this
motif is not found in flagelliform silks. A glycine-rich 31-
helix is adopted by the GGX motif forming an amorphous
matrix that connects crystalline regions and that provides
elasticity [26,33,34]. The postulated GGX motif is widely
distributed and this motif can be found in MA, MI and
flagelliform silks (Figure 2A). Several groups have sug-
gested that the motifs GPGXX and GGX might be involved
in forming an amorphous matrix, which would provide
the elasticity of the fiber. The spacers contain charged
groups and separate the iterated peptide motifs into clus-
ters. Non-repetitive termini are common to all sequenced
MA, MI and flagelliform silks belonging to the Araneoidea
family with highly conserved carboxyl-terminal sequences
[19,35,36]. The structural impact of the spacer and termi-
nal regions is so far undetermined [37]. Recent findings
on single NR-regions of ADF-3 and ADF-4 (without

Scanning electron microscopy of major and minor ampullate and flagelliform silks collected from the garden cross spider Araneus diadematusFigure 1
Scanning electron microscopy of major and minor 
ampullate and flagelliform silks collected from the 
garden cross spider Araneus diadematus. Silk harvested 
from a web was placed on Thermanox plastic cover slips 
(Nalgene Nunc). Samples were vacuum coated with a gold 
layer and analyzed with a JSM-5900LV (JEOL Ltd.) at 20 kV.

10 µm
Page 2 of 10
(page number not for citation purposes)



Microbial Cell Factories 2004, 3:14 http://www.microbialcellfactories.com/content/3/1/14
Composition of spider silksFigure 2
Composition of spider silks. (A) Structural motifs occurring within spider silks. X indicates a residue that may vary within 
or between proteins. The spacer represents non-repetitive but conserved regions that disrupt the glycine-rich repeats. More 
details on the motifs can be found in the text. (B) The sequenced cDNAs of adf-3 and adf-4 code for the shown amino acid 
motifs and represent approximately 1/6th of the entire dragline silks. Both comprise a non-repetitive (NR) carboxyl-terminal 
region and a large repeat unit based on three major peptide motifs as visualized. The amino-terminal region is so far unresolved 
for any dragline silk. The predicted flagelliform silk protein is organized into non-repetitive (NR) amino-terminal and carboxyl-
terminal regions that flank a repetitive region made up of 11 iterations of a repeating unit. Each unit contents approximately 
440 amino acids. Three types of sub-repeats are present in an ensemble with the predominant unit being GPGXX.
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additional repeating units) revealed a secondary structure
comprising α-helices as determined by Circular Dichr-
oism and they seem to retain this structural feature in pro-
teins that additionally contain repeating units [36]. It can
be speculated that the α-helical NR carboxyl-termini
might play a crucial role during assembly of the silk fiber
[19,36,38].

Natural spider silk assembly
Silk assembly in vivo is a remarkable process. For instance,
dragline silk proteins are stored at concentrations up to 50
% (w/v) in the respective glands [39]. This highly concen-
trated protein solution forms the silk dope (spinning
solution), which displays properties of a liquid crystal
[40-42]. Therein, the polyalanine motifs are thought to
adopt an α-helical conformation, while the glycine-rich
motifs form either β-turns or random coil conformation
[39,43,44].

Thread assembly is initiated during a passage of the silk
dope through the spinning duct accompanied by extrac-
tion of water, sodium and chloride [45,46]. Simultaneous
secretion of potassium and hydrogen ions into the lumen
of the duct lowering the pH from 6.9 to 6.3 is thought to
initiate partly unfolding of the proteins by disrupting their
water shell and altering coulombic forces [42,45-48]. The
silk proteins are thought to extend somewhat, align and
get packed much closer in the extensional flow-field of the
draw-down taper found in the distal part of the duct. As
the hydrophobic polyalanine segments of the silk
proteins align and are drawn closer together by exten-
sional flow, they are exposed to an increasingly hydro-
phobic environment, which might trigger their
conversion from an α-helical to a β-pleated structure
resulting in the formation of numerous interchain hydro-
gen bonds. The latter would act as multifunctional
crosslinks at nodes between the more mobile glycine-rich
segments. Thus the assembly of the thread can be seen as
a liquid-crystalline phase transition involving separation
into polymer-rich and solvent-rich phases [47].

While some aspects of spider silk assembly have been
unraveled, the contribution of the individual silk proteins
to the assembly process still needs to be resolved in more
detail. Comparative studies of the two major dragline silk
proteins of Araneus diadematus, ADF-3 and ADF-4,
revealed that, although their amino acid sequences are
rather similar [5], they display remarkably different solu-
bility and assembly characteristics: While ADF-3 is soluble
even at high concentrations [49], ADF-4 is virtually insol-
uble and self-assembles into filamentous structures under
specific conditions [50]. At a closer look, the different sol-
ubilities of ADF-3 and ADF-4 could be explained by the
hydrophobicities of the two proteins. The hydrophilic
ADF-3 interacts favourably with the aqueous solvent and

thus remains soluble under most conditions. In contrast,
the more hydrophobic ADF-4 favours interactions with
other protein molecules and thus tends to aggregate.
Interestingly, all pairs of dragline silk proteins from differ-
ent spider species display a common distinct distribution
of hydrophobicity. In direct comparison, MaSp1 / ADF-4
proteins generally display relatively high hydrophobicity,
while the corresponding MaSp2 / ADF-3 partner protein is
more hydrophilic [50].

Applications for spider silks
Laboratory-scale production of spider silk would initiate a
new generation of ecological materials. Spider silk is for
instance a promising tool with broad usability in medical
devices. In the middle ages spider webs were used as
wound dressing – some reports are even dated back to
ancient Greek and Roman cultures. Silkworm silk does
not cause allergic reactions and it is thought that spider
silk behaves similarly [51]. The unmatched toughness of
spider silk would allow to improve several medical prod-
ucts such as wound closure systems, band-aids, and
extremely thin sutures for neurosurgery. Additionally, spi-
der silks can be further used in artificial ligaments and ten-
dons for durable implants. High performance fibers built
from spider silks can be employed in several technical and
industrial applications. In addition to specialty ropes and
fishing nets, spider silk can be utilized for parachutes, bal-
listic applications (body armor), sporting goods, textiles,
and lightweight constructions for airplanes [52,53].
Therefore, one day industrially produced spider silk could
out-compete man-made fibers.

Production of recombinant spider silk proteins
Recombinant production of spider silk proteins has been
complicated by the highly repetitive nature of the under-
lying genes, by their high gc-content, by the length of the
constructs, and by the specific codon usage of spiders. In
first studies, in vitro translation of mRNA from excised
major ampullate glands of Nephila clavipes was performed
using tRNA from E. coli, but translation was discontinu-
ous [14,54]. In the era of recombinant proteins and
genetic engineering one would envisage to easily produce
spider silk proteins (mainly from draglines) in microbes
or cell culture. Unfortunately, no dragline silk gene has
been cloned in its entirety and only sequence data from
the 3' end of partial cDNA clones of dragline genes from
Nephila clavipes and Araneus diadematus and other spiders
have been reported [10,11,20-22]. Therefore, all recent
studies used partial cDNA constructs of dragline silk genes
to produce recombinant silk proteins in E. coli [55], in
MAC-T (bovine) and BHK (hamster) cells [49], or in
insect cell lines from Spodoptera frugiperda using the bacu-
lovirus expression system [50]. The most promising
expression system seems to be the baculovirus system,
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since it was possible to efficiently produce dragline silk
components at a high yield.

Designing of synthetic spider silk proteins
Cloning strategies for designing genes for bacterial, yeast
or plant expression have been developed to produce
recombinant silk-like proteins closely resembling natural
dragline [29,36,56-62] or flagelliform silk proteins [63].
Since gene manipulation and amplification of spider silks
is difficult by PCR due to the repetitive nature of silk
genes, cloning strategies involved engineering of synthetic
DNA modules. These modules were optimized for the
codon usage adapted by the corresponding expression
host. The use of synthetic modules constructed from small
size oligonucleotides repeats has allowed control over pri-
mary gene and protein sequence and final protein size.
Tobacco, potatoes, the yeast Pichia pastoris and mainly E.
coli have been utilized as expression hosts for synthetic
genes yielding proteins with up to 150 kDa [29,56-62].
Unfortunately, expression levels from the synthetic genes
have been low and mostly the recombinant silk proteins
represented only up to 5% of the total protein in the cell
[13]. Although once production levels of up to 1000 mg/
l of cell culture have been reported [57], large losses in
yield are encountered during purification due to precipi-
tation and non-specific interactions. For the microbial
expression systems, yields of purified proteins have been
generally in the 10 to 40 mg/l range (>90% purity)
[[55,56,59,60], summarized in [13]].

In a recent study, genes coding for spider silk-like proteins
were generated using a cloning strategy, which was based
on a combination of synthetic DNA modules and PCR-
amplified authentic gene sequences (Figure 3) [36]. This
approach was in contrast to previous protein designs,
which did not include the carboxyl-terminal NR-regions
that are found in all dragline silks. The dragline silk pro-
teins ADF-3 and ADF-4 [10] from the garden spider
Araneus diadematus were chosen as templates for the syn-
thetic constructs. A seamless cloning strategy [64] allowed
controlled combination of different synthetic DNA mod-
ules as well as authentic gene fragments. A cloning vector
was designed comprising a cloning cassette with a spacer
acting as placeholder for synthetic genes [36] (Figure 3B).

To mimic the repetitive sequence of ADF-3, two modules
have been designed. The sequence of one module, termed
A, was derived from the poly-alanine containing consen-
sus sequence of ADF-3 (Figure 3A). The sequence of a sec-
ond module termed Q contained four repeats of the
GPGQQ motif. In a first cloning step the spacer region of
the cloning vector was replaced by one of the synthesized
DNA modules. Subsequently two modules could be
joined in a site-directed way. To study different length
repeat units, one or two Q modules were combined with

one A module to obtain (AQ) (Figure 3B) or (QAQ) (Fig-
ure 3C). The complementary 3'-single strand extensions
gg (sense) and cc (antisense) were used for connecting two
modules (Figure 3B). Thus the DNA sequence required to
link two modules was confined to a glycine codon (ggn).
Glycine is naturally abundant in spider silk proteins
(~30%), therefore modules could be designed to match
authentic amino acid sequences. Since the arrangement of
the cloning cassette's elements remained unchanged upon
cloning, repeat units could be multimerized to generate
synthetic genes coding for the repetitive proteins (rep-pro-
teins) (AQ)12 and (QAQ)8 (Figure 3C).

The repetitive part of ADF-4 is generally composed of a
single conserved repeat unit displaying only slight varia-
tions. These variations were combined and one consensus
module termed C has been designed (Figure 3A), which
was multimerized to obtain the rep-protein C16 (Figure
3C).

ADF-3 and ADF-4 both display NR-regions at their car-
boxyl termini, comprising 124 and 109 amino acids
respectively. Gene sequences coding for these regions
were amplified by PCR, and codons problematic for bac-
terial expression were changed to more suitable codons by
site directed mutagenesis. In the described system, all syn-
thetic genes could be combined with the appropriate
authentic NR-regions. Additionally NR3 and NR4 could
be expressed individually. All constructs could be purified
by a heat step followed by an ammonium sulfate precipi-
tation [36], which has been employed in previous studied
for purifying spider silk proteins [35,62].

Based on this protein engineering approach, which com-
bines synthetic repetitive sequences with authentic NR-
regions, proteins closely resembling authentic silk pro-
teins could be produced at high yields. Bacterial produc-
tion in Erlenmeyer flasks yielded similar protein amounts
for all constructs. Yields of individual preparations ranged
from 10 to 30 mg of purified protein per liter of culture
medium. Fermentation of cells increased the yield of puri-
fied protein to 140 and 360 mg/l (purity >95%). There-
fore, the established bacterial expression system provides
the basis for cost-efficient large scale production of spider
silk-like proteins.

Assembly of recombinant spider silks
One important feature of spider silk proteins is their stor-
age at high protein concentrations (up to 50% w/v) in the
dope without apparent aggregation or assembly. How-
ever, spider silk proteins can rapidly assemble into highly
stable fibers when needed. The determination of solubil-
ity and self-assembly of recombinant spider silk proteins
is therefore important to create commercially available
silk fibers. For instance, pH-shifts are involved in natural
Page 5 of 10
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Cloning strategy for constructing synthetic spider silk genesFigure 3
Cloning strategy for constructing synthetic spider silk genes. (A) Amino acid sequences of designed silk modules were 
derived from dragline silk proteins ADF-3 and ADF-4 and back translated into nucleotide sequences using the bacterial codon 
usage. (B) The cloning cassette comprised restriction sites required for module insertion and multimerization. During gene 
construction a spacer region was replaced by modules and module multimers. The first codon of each module (ggn) deter-
mined the "linking" amino acid glycine. (C) Single modules were connected resulting in controlled assembly of synthetic genes. 
To study different length repeat units, one or two Q modules were combined with one A module to obtain (AQ) or (QAQ). 
These repeat units were multimerized to generate synthetic genes coding for the repetitive proteins (rep-proteins) (AQ)n and 
(QAQ)n. The repetitive part of ADF-4 is generally composed of a single consensus module termed C, which was multimerized 
to obtain the rep-protein Cn. Additionally, carboxyl-terminal non-repetitive (NR)-regions from the natural genes were ampli-
fied by PCR and optionally linked with the synthetic genes [50].
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silk assembly, but the exact function of acidification dur-
ing spider silk assembly has not yet been determined. It
seems likely that negatively charged groups are
protonated reducing the net charge of spider silk proteins.
Phosphoryl groups of phosphorylated amino acid resi-
dues, which have been detected in dragline silk [65], dis-
play pKA-values [66] near the range of the pH-shift
observed during the spinning process and thus could be
involved in triggering silk assembly. Therefore, changes in
pH can be used to initiate assembly of recombinant spider
silk proteins [36]. Interestingly the intracellular pH 6.3 of
Sf9 cells (derived from the fall armyworm Spodoptera fru-
giperda) used for producing ADF-4 corresponds to the pH
in the spinning dope prior to silk thread assembly [50].
These pH conditions, among additional factors, might be
involved in initiating aggregation of ADF-4 within the
cytosol of Sf9 cells [50]. Surprisingly, investigating the
aggregates in adf-4 expressing cells revealed filaments that
coiled throughout the cytoplasm, whereby most of the
cells contained only one or few filaments. In contrast, Sf9
cells infected with control viruses or the adf-3 encoding

virus never produced such filaments. The diameter of the
ADF-4 filaments (0.2 – 1.5 µm) was in the range of native
dragline silks (1.0 – 4.0 µm), but length of the filaments
formed in the Sf9 cells seemed to be constrained by the
volume of the cells, making them too short for mechani-
cal force measurements. Strikingly, the purified ADF-4
filaments (Figure 4B) showed a similar morphology and
chemical stability in comparison to natural dragline silk
threads of Araneus diadematus [50].

Phosphate, like other lyotropic ions, is known to increase
the surface tension of water, promoting hydrophobic
interactions [67]. In the case of spider silk proteins it is
likely that the addition of phosphate initiates interactions
between the hydrophobic poly-alanine motifs, causing
the aggregation of the proteins. Accordingly aggregation
of polyalanine-rich proteins is pronounced in comparison
to synthetic silks which contained one third less poly-
alanine motifs [36]. Strikingly, recombinant spider silk
proteins are highly soluble in most aqueous solutions, but
form nanometer-sized fibers upon addition of methanol,
phosphate or other suitable ions (Figure 4A).

Artificial spinning of spider silks
A remaining critical step concerning commercial produc-
tion of silk fibers is the successful spinning of recom-
binant proteins into fibers resembling the natural silks in
their microstructure and in their mechanical properties,
which are outstanding by any measure. Besides the chem-
ical parameters discussed above, several mechanical
parameters play important roles in generating silk. To
draw silk under natural spinning conditions, spiders
attach their dragline to an object with glue from the piri-
form glands, before drawing the silk out by moving away
or by descending and using their weight to draw the silk.
It is common practice to take advantage of the drawing
process by the forced silking of captive animals to collect
silk for experiments. Analysis of the differences between
naturally and forcibly spun dragline silk provided evi-
dence for discrepancies in their material properties
[44,68,69]. Forced spinning under spinning speeds rang-
ing from 0.1 to 400 mm/s and temperatures ranging from
5 to 40°C revealed dramatic differences in strain at break-
ing, breaking energy, initial Young's modulus and point
of yielding [70]. Therefore, in case of spinning recom-
binant silk proteins in vitro several aspects have to be
taken into account to gain materials with expected
properties.

Several attempts are reported in the literature and even
more have been performed to wet-spin recombinant spi-
der silk proteins. In a first attempt, microfabricated spin-
nerets were constructed using silicon microfabrication
methods [71-73]. These spinnerets allowed for the pro-
duction of meters of silk fibers from solutions containing

Morphology of self-assembled fibers of recombinant spider silk proteinsFigure 4
Morphology of self-assembled fibers of recombinant 
spider silk proteins. Images of nanofibers of the synthetic 
protein C16 assembled in vitro (A) and of ADF-4 fibers assem-
bled in insect cells (B) were obtained by atomic force micro-
scopy (AFM). The left images depict the height information, 
the right images the deflection. The average height of the 
C16-nanofibers is 2 – 4 nm, the height of the visualized ADF-4 
fiber is 0.7 µm.
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as little as 10 mg of protein. First the spinneret was vali-
dated and tested by producing fibers from dissolved silk
from the silkworm Bombyx mori [71], before solubilized
dragline silk from Nephila clavipes was wet-spun [72]. The
diameters and mechanical properties of the regenerated
silkworm silks converged the native silk ones. However,

the wet-spun spider silks exhibited diameters of about 40
µm compared to the natural fiber diameter of 2.5 to 4.0
µm with mechanical properties that did not match the
natural ones [72]. Other attempts of wet-spinning
revealed fiber diameters of approximately 10 – 60 µm
[49,74]. These fibers were subjected to either single or

Engineering of a synthetic silk proteinFigure 5
Engineering of a synthetic silk protein. The future objective of silk engineering might not be to prepare identical copies of 
natural silks, but rather to capture its key structural and functional features in designs. The soluble synthetic silk should be able 
to assemble into protein fibers with desired properties, which includes the possibility to specifically functionalize the fiber sur-
face e.g. by chemical cross-linking with biologically or chemically active groups. Synthetic silk engineering could be accom-
plished by assembling modules either originating from authentic genes, mimicking silk motifs or being entirely synthetic with 
defined functionality. The follow-up strategy would be to modify the resulting monomeric soluble protein either with the 
desired functionality prior to assembly into fibers, or to incorporate a reactive group that will subsequently permit the con-
junction with desired functionality after the fibers have assembled.
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double postspinning draw, first in 70 to 80 % methanol
(single and double draw) and then in water (double draw
only) to increase their mechanical properties. Fibers sub-
jected to higher draw ratios displayed greater toughness,
tenacity, and modulus values [49]. However, even the best
values obtained by such technique were in the range of the
regenerated Nephila fibers [72], but lower than the
reported values for natural dragline silks [2].

Perspectives
Engineering of precision fibers
The future objective might not be to prepare identical cop-
ies of natural silk fibers, but rather to capture its key struc-
tural and functional features in designs that could be
useful for engineering applications (Figure 5). Using "pro-
tein engineering" based on knowledge achieved from
investigations of the natural silks, artificial proteins can be
designed that allow bacterial synthesis at high yields [75].
The soluble synthetic silk would be able to assemble into
protein fibers with desired properties, which includes the
possibility to specifically functionalize the fiber surface by
chemical cross-linking with biologically or chemically
active groups. Such protein fibers could be optimized by
additional protein engineering in order to gain fibers that
allow the formation of interconnected nano- or microm-
eter-scale networks, which are capable of various biologi-
cal, chemical or physical processes (e.g. enzymatic
reactions, chemical catalysis, electronic signal propaga-
tion, etc.) (Figure 5). The main strategy would be to mod-
ify the monomeric proteins either with the desired
functionality prior to assembly into fibers, or to incorpo-
rate a reactive group that will subsequently permit the
conjunction with desired functionality after the fibers
have assembled. Protein fibers could for instance be cova-
lently linked with external units through chemically spe-
cific amino acid side chains (e.g. SH-groups of cysteines)
[76-78].

Since the physical and chemical properties of bio-poly-
mers and their assembly processes depend on the amino
acid composition of the underlying polypeptide, engi-
neering "synthetic" proteins with specific structural fea-
tures will create a new class of fibrous proteins. However,
to design new biomaterials based on spider silk, all prop-
erties of the underlying proteins have to be analyzed and
in the best case successfully mimicked [35]. Therefore, the
crucial design features of both the feedstock of the dope
and the spinning process have to be closely adopted,
which would allow for managing the commercial produc-
tion of new materials.
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