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Abstract

The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick
peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids,
polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity
during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic
acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more
research because of their potential health-related benefits. It is now recognized that understanding the composition,
structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using

these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan,
teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of
these complex compounds, results that have emerged thanks to the tandem development of structural analysis and
whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-
positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded
some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied
strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention
to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms
underlying interactions between probiotic bacteria and their hosts.

Introduction

The cell wall of Gram-positive bacteria is a complex
arrangement of macromolecules. It consists of a pepti-
doglycan (PG) sacculus that surrounds the cytoplasmic
membrane and that is decorated with other glycopoly-
mers, such as teichoic acids (TAs) or polysaccharides
(PSs), and proteins. The cell wall has multiple functions
during bacterial growth, including maintaining bacterial
cell integrity and shape as well as resisting internal tur-
gor pressure. Furthermore, it must remain flexible to
accommodate the remodeling that is required for cell
division and growth. Since it serves as the interface
between the bacterial cell and its environment, the cell
wall also mediates bacterial interactions with abiotic sur-
faces, infecting bacteriophages, or eukaryotic host cells.
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Lactic acid bacteria (LAB) are Gram-positive bacteria
that belong to numerous genera, including Lactococcus,
Enterococcus, Oenococcus, Pediococcus, Streptococcus, and
Lactobacillus [1-3]. These bacteria metabolize sugars,
mainly converting them to lactic acid, and are widely
used as starters in the fermentation of food such as meat,
vegetables, fruit, beverages, and milk. They play key roles
in food preservation and contribute to the development
of food texture and flavor [4,5]. Furthermore, LAB are
present in the human gut microbiota. Certain natural
LAB strains, lactobacilli strains in particular, are com-
mercially sold as probiotics with health-promoting prop-
erties [6]. Finally, due to their GRAS (generally
recognized as safe) status, LAB may be suitable vectors
for the delivery of therapeutic proteins or antigens to
mucosal surfaces [7,8].

When it comes to the technological and health appli-
cations of LAB, cell wall composition, structure, and
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component organization play major roles. The LAB cell
wall has been the subject of research because it contains
receptors for bacteriophages that threaten milk fermen-
tation [9,10]. Research has also focused on the need to
favor LAB cell wall disruption to provoke autolysis, so
that, during cheese ripening, bacteria release their cyto-
plasmic content, which is rich in enzymes involved in
the development of organoleptic properties [11]. It has
also been suggested that increasing bacterial lysis by
weakening the LAB cell wall can improve the efficiency
of LAB as antigen-delivery vectors in immune system
stimulation efforts [12]. More recently, it has been pro-
posed that bacterial surface adhesins could favor the
persistence of probiotic bacteria in the gastrointestinal
tract [13]. Also, cell wall microbe-associated molecular
patterns (MAMPs) identified in pathogens could play a
role in the cross-talk that takes place between commen-
sal or probiotic bacteria and their hosts [14,15]. As pre-
dicted by Delcour et al. [16], the availability of whole
genome sequences has boosted research on LAB cell
wall structure and function over the last fifteen years.

Here, we review the current state of knowledge on the
structure and function of the cell wall components (PG,
TAs, PSs, and proteins) of the most investigated LAB,
including Lactococcus lactis and several lactobacilli,
mainly Lactobacillus plantarum, Lactobacillus casei, and
Lactobacillus rhamnosus.

Peptidoglycan

Chemical composition and structural analysis

PG is the main component of the Gram-positive cell
wall. It consists of glycan chains made of alternating
N-acetylglucosamine (GlcNAc) and N-acetylmuramic
acid (MurNAc) that are linked via -1,4 bonds (Figure 1).
Peptidic chains are linked covalently through their
N-terminus to the lactyl group of MurNAc. These pepti-
dic chains vary in composition across species and can be
cross-linked directly or indirectly, through short chains
of one or more amino acids that generate a three-dimen-
sional structure around the cell, which ensures bacterial
integrity. In LAB, the amino acid sequence of the stem
peptide is L-Ala-y-D-Glu-X-D-Ala, while the third amino
acid (X) is a di-amino acid. It is most often L-Lys (e.g., in
L. lactis and most lactobacilli) but can also be meso-
diaminopimelic acid (mDAP) (e.g., in L. plantarum) or L-
ornithine (e.g., in L. fermentum) [17]. Among LAB, D-Ala
predominates at position five in newly synthesized PG;
however, D-Lac residues are found in naturally vancomy-
cin-resistant lactobacilli such as L. casei and L. plan-
tarum. Cross-linking between neighboring stem peptides
takes place between the D-Ala in position four of one
peptide chain and the diamino acid in position three (4-3
cross-link) of another chain. A direct cross-connection is
seen in mDAP-type PG, which is typically found in
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Gram-negative bacteria but which is also present in
L. plantarum. In other LAB, the Lys-type PG is found
and includes an interpeptide bridge made of one
D-amino acid (e.g., D-Asp or D-Asn in L. lactis, L. casei,
and most lactobacilli) (Figure 1) or several L-amino acids
(e.g., L-Ala, or L-Alas in Streptococcus thermophilus)
[17]. PG peptide chains connected by 3-3 cross-links,
which predominate in Mycobacterium tuberculosis [18]
and in Clostridium difficile [19], have not been described
in LAB to date.

Although a given bacterial species has a basic, charac-
teristic PG structure, the PG layer remains in a dynamic
state throughout a bacterium’s life, and PG structure is
the result of complex biosynthetic, maturation, and
degradation reactions, which will be described below.
Structural analysis of PG muropeptides using HPLC and
mass spectrometry has allowed the identification of the
nature of peptide cross-bridges, the degree of cross-link-
ing, and the frequency of maturation and hydrolysis
events. It has also revealed the existence of covalent PG
modifications, such as O-acetylation, N-deacetylation, or
amidation; these modifications may play essential roles
in bacterial physiology. Detailed PG structure has been
ascertained for several LAB, including L. lactis [20],
L. casei [21], L. rhamnosus [22], and L. plantarum [23].
The first three species were found to have D-Ala*-D-
Asp/Asn-L-Lys® cross-bridges, while the latter has a
direct D-Ala*-mDAP? cross-bridge (Figure 1).

Biosynthesis as a multi-step process
PG synthesis can be divided in three general steps: the
first step takes place in the cytoplasm and leads to the
synthesis of lipid II, the second step involves the transfer
of lipid II to the extracellular side of the membrane, and
the third step results in the polymerization of the synthe-
sized subunits into a macromolecule [24] (Figure 2).
Assembly of lipid II starts with the synthesis of uridine
diphosphate-N-acetyl glucosamine (UDP-GlcNAc) via
the enzymatic conversion of glucosamine to energetically
activated UDP-GIcNAc. UDP-MurNAc is then generated
from UDP-GIcNAc, following two successive enzymatic
reactions: the synthesis of enolpyruvate-UDP-GIcNAc
and its subsequent reduction, which is catalyzed by
MurA and MurB. Then, the UDP-MurNAc-pentapeptide
precursor is assembled in a series of successive ATP-
dependent enzymatic steps catalyzed by Mur ligases [25].
MurC and Mur D catalyze the addition of L-Ala and D-
Glu, respectively, and MurE the one of L-Lys or mDAP.
Finally, in a single step, MurF adds two residues in the
form of a dipeptide (D-Ala-D-Ala) or a depsipeptide (D-
Ala-D-Lac), whose synthesis requires D-D-ligases (Ddl).
Specific racemases convert the naturally occurring L-
stereoisomer of Ala and Glu to the D-forms found in PG
[25]. In addition, in L. plantarum, which synthesizes
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Figure 1 Schematic representation of the structure of peptidoglycan. This is the type of structure found in L. lactis and numerous
lactobacilli. In other LAB species, the nature of the interpeptide cross-bridge (depicted as D-Asp/D-Asn in the figure) may vary, the third di-
amino acid (L-Lys) may be replaced by mDAP or L-ornithine, and the D-Ala in position five of the stem peptide may be replaced by D-lactate.
Possible modifications of the PG structure, such as O-acetylation (O-Ac), N-deacetylation (leading to GIcNH,), or amidation (NH,), are indicated in

red. The cleavage sites of the different classes of PG hydrolases are indicated with arrows.

precursors that terminate with D-Lac, D-Ala-D-Ala-
dipeptidase (Aad) eliminates D-Ala-D-Ala dipeptides that
are produced by the Ddl ligase, thereby preventing their
incorporation into the precursors [26]. PG precursors
terminating with D-Ala-D-Lac instead of with D-Ala-D-
Ala were successfully produced in L. lactis when the L.
plantarum Ddl ligase gene was heterologously expressed.
Modification of the last residue of the stem peptides of
PG precursors has been shown to result in significant
changes to PG structure and cell morphology [27]. The
UDP-MurNAc-pentapeptide is then attached with a pyr-
ophosphate link to the lipid transporter, bactoprenol

(undecaprenyl-phosphate), by the membrane translocase
Mray, a process that yields undecaprenyl-pyrophosphoryl-
MurNAc-pentapeptide, or lipid I (Figure 2). Finally, the
glycosyl-transferase MurG adds GlcNAc to lipid I, forming
undecaprenyl-pyrophosphoryl-disaccharide-pentapeptide,
or lipid II, which is the basic subunit used in PG assembly
[28].

Another important enzymatic step that takes place in
the cytoplasm is the assembly of peptide side chains that
are added either to the nucleotide MurNAc-pentapeptide
or the lipid precursors, depending on the species [29].
D-Asp, the amino acid most commonly included in LAB
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Figure 2 Schematic representation of the main steps of peptidoglycan and wall teichoic acid biosynthesis. Grey arrows denote the steps
of PG biosynthesis, and brown arrows indicate the steps of WTA biosynthesis. The membrane-embedded undecaprenyl-phosphate carrier is
represented by dark grey curved lines The glycerol-phosphate units are represented with green circles. The linkages formed by PBP and LCP are
indicated with red arrows. The pre-existing PG is highlighted in gray. In the schematic, D-Asp is added to the lipid precursors; however,
depending on the bacterial species, it may also be added to soluble precursors.

side chains and that is found in L. lactis and in most lac-
tobacilli, is added to the third amino acid (L-Lys) of the
stem peptide by aspartate ligase (AslA) (Figure 2) [30].
This enzyme belongs to the ATP-Grasp family, which
includes enzymes that catalyze ATP-dependent carboxy-
late-amine ligation reactions and that use activated D-
Asp—in the form of B-aspartyl phosphate—as a substrate
[31]. D-Asp is produced from L-Asp by the aspartate
racemase encoded by racD, which is located in the same
operon as the aslA gene in L. lactis [30,31]. The L-amino
acids of the PG side chains are transferred from aminoa-
cyl-tRNA by specific transferases, identified as BppA1l
and BppA2 in Enterococcus faecalis [32], a species that
has L-Ala-L-Ala cross-bridges like S. thermophilus.

Lipid II (with or without a side chain) is then translo-
cated outside the cytoplasmic membrane by a flippase
(Figure 2). The integral membrane protein FtsW has
been shown to transport lipid-linked PG precursors
across the membrane and is proposed to act at the sep-
tum level. The RodA homologous protein appears to be

involved in lateral PG synthesis during cell elongation in
ovococci and bacilli [33].

In the last step of PG synthesis, PG monomer units
are polymerized via transpeptidation and transglycosyla-
tion reactions, which take place outside the cytoplasmic
membrane (Figure 2). The major proteins involved in
PG assembly are called penicillin-binding proteins
(PBPs) because they are targets for penicillin and other
beta-lactam antibiotics [34]. Class A PBPs contain both
transglycosylation and transpeptidation domains located
at the N- and C-terminals of the protein, respectively,
whereas class B PBPs are exclusively involved in trans-
peptidation. During transglycosylation, lipid II's disac-
charide is bound to the pre-existing PG chain; the
bactoprenol loses one inorganic phosphate and is
recycled to the inner side of the cytoplasmic membrane
to initiate another round. To create a solid PG mesh
around the bacterial cell, newly extended chains must
be connected to neighboring chains by transpeptidation.
A covalent bond is created between the carbonyl group
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of the D-Ala in position four of one pentapeptide chain
(donor chain) and the free amine of either the diamino
acid in position three of a second peptide chain or the
attached side-chain amino acid (acceptor chain). This
step leads to the release of the C-terminal D-Ala or D-
Lac of the donor chain. Alternative 3-3 cross-links
require L,D-transpeptidases, which are not PBPs [19,35].

Analysis of the genome of L. lactis, an ovococcus spe-
cies, has revealed the presence of six PBPs: five high
molecular weight (HMW) PBPs (PBP1a, PBP1b, PBP2a,
PBP2b, and PBPx) and one low molecular weight
(LMW) PBP (D-Ala-D-Ala-carboxypeptidase DacA) [36].
L. lactis also possesses an L,D-carboxypeptidase (DacB),
which cleaves the L-Lys>-D-Ala* bonds of the stem pep-
tides (Figure 1) [20]. Ovococci display both septal and
peripheral growth, which results in the slight longitudi-
nal expansion that generates their ovoid shape. It has
been shown that lateral or septal growth is mediated by
functionally different PG biosynthesis mechanisms, each
under the control of a specific class B PBP: PBP2b and
PBP2x, respectively. The other PBPs appear to have
redundant functions, acting in both biosynthetic path-
ways [36]. Furthermore, alteration of PBP2x and PBP2b
activity has been proposed to directly affect the coccus-
to-rod transition and further filamentation observed in
L. lactis during growth, both in planktonic conditions
and biofilms [37].

Only part of the PG stem peptides are connected by
transpeptidation, and the degree of cross-linking is a PG
characteristic. During the exponential growth phase, the
cross-linking index has been estimated to be 35.5% in
L. lactis, 37.5% in L. plantarum, 34% in L. casei, and
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36.5% in L. rhamnosus (Table 1). D,D-carboxypeptidase
DacA and L,D-carboxypeptidase DacB participate in PG
maturation and thus produce tetra-and and tripeptide
chains in mature PG [20-23].

Another important feature of PG that likely influences
PG architecture is glycan chain length. In L. lactis, long gly-
can chains (chains with more than 50 disaccharides, which
represent 50% of all chains) were detected after an amidase
treatment [38]. PG nanoscale architecture was examined
using atomic force microscopy (AFM) in living L. lactis
cells. When a mutant without PSs on its surface was
imaged, using a tip functionalized with the PG-binding
LysM domain, PG was found to be organized in the form
of cables running parallel to the short axis of the cells [39].

Peptidoglycan structural variations

In most bacterial species, PG basic structure is partially
modified—either the glycan chains undergo N-deacetyla-
tion or O-acetylation or the free carboxyl groups of the
amino acids in the peptide chains are amidated (Figure 1)
(Table 1) [40]. These structural modifications usually
have functional consequences (Table 2); for instance,
they may modulate the activity of endogenous PG hydro-
lases (PGHs) as well as that of exogenous PGHs pro-
duced by eukaryotic organisms, such as lysozyme. PG
modifications have been shown to allow pathogenic bac-
teria to escape from the host’s innate immune system
[41]. Below, we will review PG modifications by chemical
groups, given that wall TA or PS polymers that covalently
attach to PG may also be considered to be modifications;
they can even be linked to the same sites on PG (see text
below).

Table 1 Peptidoglycan structural variations in selected LAB and genes involved in PG synthesis or modification.

Peptidoglycan L. lactis L. casei L. rhamnosus L. plantarum WCFS1
MG1363 BL23 GG
Cross-linking type L-Lys-D-Asp L-Lys-D-Asp L-Lys-D-Asp mDAP direct
Cross-linking index 355 % 34% 365 % 37.5%
aslA gene + + -
racD gene + + +
Fifth residue stem peptide D-Ala D-Lac D-Lac D-Lac
Acetylation of MurNAc 32% 30 % 37 % 39 %
oatA gene + + +
Acetylation of GIcNAc no no no 9 %
oatB gene - - +
N-deacetylation of GIcNAc 9% no no no
pgdA gene + + -
Amidation of D-Glu 100 % 100 % 100 % 100 %
murl/gatD genes + + +
Amidation of D-Asp 75% 100 % 100 % No D-Asp
asnH gene + + -
Amidation of mDAP No mDAP No mDAP No mDAP 100%
asnB1 gene - - +
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Table 2 Role of cell wall glycopolymers and their structural variations in LAB.
Role Organism* Ref.
PG variations
O-acetylation of MurNAc Resistance to lysozyme L, Lc Lp [23,45]
Activation of autolysis by amidase LytH Lp
O-acetylation Inhibition of major autolysin Acm?2 Lp [23]
of GIcNAc (glucosaminidase)
N-deacetylation Resistance to lysozyme L [54]
of GIcNAc Inhibition of autolysis L
Inhibition of AcmA major autolysin L
(glucosaminidase)
Amidation Resistance to lysozyme Ll [56]
of D-Asp Inhibition of autolysis L
Resistance to nisin. L
Amidation Essential for growth Lp [57]
of mDAP Control of septation Lp
Increase DacB L,D-carboxypeptidase activity Lp
Teichoic acids
WTA Bacterial morphogenesis and division Lp [120]
LTA Immunomodulatory properties La [127]
TA alanylation Cell morphology Lp, Lrh [85,112]
UV stress response Ll [114]
Protein secretion L [113]
Resistance to nisin L, Lp [52,85111]
Bacteriophage receptor Ld [122]
Adhesion to epithelial cells Lj [123]
Decrease of anti-inflammatory properties Lp, Lrh [100,126]
Colonization of mouse gastrointestinal tract Lr [124]
Polysaccharides
Cell division and morphology L [131]
Bacteriophage receptor Ll [131,133,144]
Protection against phagocytosis L [131]
Immunosuppressive function Lc, Lp [136,142]
Decrease adhesion and biofilm formation Lrh [137]
Protection against antimicrobial peptides (LL-37) Lrh [147]

* LI, Lactococcus lactis; Lc, Lactobacillus casei; Lp, Lactobacillus plantarum; Lrh, Lactobacillus rhamnosus; La, Lactobacillus acidophilus; Ld, Lactobacillus delbruekii

subsp. lactis; Lj, Lactobacillus johnsonii; Lr, Lactobacillus reuteri.

O-Acetylation of glycan chains

In many Gram-positive pathogens, O-acetylation of
MurNAc is associated with resistance against lysozyme
[42]. A certain proportion of MurNAc residues have an
extra acetyl group linked to their C6-OH that can be
used to form a 2,6-N,O-diacetyl muramic acid (Figure 1).
The first MurNAc O-acetyltransferase, named OatA, was
identified in Staphylococcus aureus [43]. OatA is con-
served among a large number of Gram-positive species,
including LAB [23,44,45]. The enzyme is composed of
two domains: the N-terminal domain contains 11 pre-
dicted transmembrane helices, whereas the C-terminal
domain appears to contain a catalytic acetyltransferase
domain. The donor of the acetyl group is probably
acetyl-CoA [46]. The acetyl group is likely added to the
newly polymerized PG outside the cytoplasmic mem-
brane since O-acetylation of lipid precursors has not
been observed [43] and the OatA acetyltransferase
domain is predicted to be located outside the membrane.
O-acetylation of MurNAc residues has been detected in

the different LAB species for which structural analysis of
PG has been performed; estimated levels of O-acetylation
vary, from rather low in L. lactis MG1363 (3.2%) [20] to
intermediate in lactobacilli: L. casei BL23 (30%) [21],
L. plantarum NZ7100 (39%) [23], and L. rhamnosus GG
(37%) (Table 1) [22].

In L. lactis, the oatA gene has been shown to be regu-
lated at the transcriptional level in response to cell
envelope stress, which may be provoked by lysozyme or
other cell wall-targeting antimicrobials such as bacitra-
cin, vancomycin, and plantaricin [45,47]. It has been
proposed that the first lactococcal response to treatment
with lysozyme is the activation of the two-component
system (TCS) CesSR, which then activates the transcrip-
tion of several genes belonging to the cesSR regulon,
among which is spxB [47], which belongs to the family
of global transcriptional factors found in Gram-positive
bacteria [48]. SpxB activates oatA expression; OatA
activity increases PG resistance to lysozyme and thus
counteracts cell wall stress [45]. Interestingly, while
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increased PG O-acetylation makes L. lactis more resis-
tant to the PGH activity of lysozyme, it has been shown
that the cesSR regulon is induced by overexpression of
membrane-anchored proteins [49,50] or by bacterioph-
age infection [51]. The regulon has also been shown to
be induced in an L. lactis mutant resistant to the bacter-
iocin nisin [52].

The O-acetylation of GIcNAc, never before described
in bacteria, was discovered in L. plantarum; both
GlcNAc and MurNAc are acetylated in this species [23].
In this bacterium, around 9% of GlcNAc residues are O-
acetylated. The addition of the acetyl group to GlcNAc
is performed by a second, specific O-acetyltransferase—
OatB-that shares a similar two-domain structure with
L. plantarum OatA but has a rather low amino acid
sequence identity (21%). It is noteworthy that, until
now, the presence of two Oat proteins has only been
found in a very limited number of bacterial species,
including two other LAB species, Lactobacillus sakei
and Weissella paramesenteroides [23].

PG O-acetylation has an impact on L. plantarum
autolysis. The O-acetylation of GlcNAc inhibits the
N-acetylglucosaminidase Acm2, the major autolysin of
L. plantarum. In contrast, in this species, O-acetylation
of MurNAc has been shown to activate autolysis
through the activity of the putative N-acetylmuramoyl-
L-alanine amidase LytH [23]. Thus, both O-acetyltrans-
ferases, OatA and OatB, which co-occur in L. plan-
tarum, play antagonistic roles when modulating the
activity of endogenous autolysins. In contrast to the O-
acetylation of MurNAc, the O-acetylation of GlcNAc
does not inhibit lysozyme activity [23].

N-Deacetylation of glycan chains

The N-deacetylation of GIcNAc, which leads to the pre-
sence of glucosamine (GlcNH, on Figure 1) in the PG
backbone, is performed by PG-deacetylase PgdA, which
was first identified in Streptococcus pneumoniae thanks
to its sequence homology with chitin deacetylases [53].
GlcNAc deacetylation has been found to occur at a level
of around 9% in L. lactis; in this species, it protects PG
from hydrolysis by AcmA autolysin [54] and increase
resistance to lysozyme [45]. In contrast, the N-deacetyla-
tion of GIcNAc has not been observed in L. casei,
L. rhamnosus, or L. plantarum under laboratory growth
conditions. A pgdA homolog is present in the L. casei
BL23 genome, while no homolog exists in the L. plan-
tarum genome (Table 1). Deacetylated MurNAc residues
were found in Bacillus anthracis PG [40] and, recently, a
MurNAc-deacetylase was discovered in Bacillus subtilis
[55]; neither have been found in LAB to date.

Amidation of amino acids

The free carboxyl groups of PG-forming amino acids
can be amidated; these amino acids include D-Glu and
mDAP found on stem peptides and D-Asp on side

Page 7 of 23

chains or cross-bridges (Figure 1). These modifications
are catalyzed by specific enzymes and take place intra-
cellularly; PG precursors, either UDP-MurNAc-penta-
peptide or lipid intermediates, are amidated before the
molecules are translocated through the cytoplasmic
membrane [29]. Amidation of D-Asp cross-bridges has
been observed in L. lactis [20]. D-Asn and D-iso-Asn
are not substrates for aspartate ligase, as has been
shown in L. lactis and Enterococcus faecium, a species
that also has D-Asp cross-bridges [30,31]. As a result,
amidation of the alpha-carboxyl group of D-Asp takes
place after D-Asp has been added to the PG precursor
and is performed by an asparagine synthase (AsnH),
which was identified in L. lactis [56] (Figure 2). In
L. lactis, amidation of the D-Asp cross-bridge during
the exponential phase is partial (75%); in contrast, in
L. casei, it is almost complete (near 100%) during all
growth phases. PGH activity is affected by D-Asp ami-
dation. Indeed, an L. lactis asnH mutant with PG that
contained exclusively D-Asp bridges exhibited a higher
autolysis rate than the wild-type strain, as well as
increased sensitivity to lysozyme. D-Asp amidation also
decreases L. lactis sensitivity to cationic antimicrobials
such as nisin, which may be explained by a decrease in
the negative charge inside the cell wall [56].

In L. plantarum, almost all the mDAP side chains are
amidated. In this bacterium, amidation has also been
shown to be mediated in the cytoplasm by an amido-
transferase named AsnBl, the first enzyme to be asso-
ciated with such activity [57]. Interestingly, the asnB1
gene co-localizes with murE, which encodes the ligase
catalyzing the addition of mDAP to the PG precursor
UDP-N-muramoyl-L-Ala-D-Glu. The asnB1 gene has
been found to play an essential role in L. plantarum. In a
mutant strain with a mDAP amidation defect, growth
and cell morphology were strongly affected; filamentation
and long-chain formation were observed, suggesting that
mDAP amidation may play a critical role in controlling
the septation process. In addition, L-D-carboxypeptidase
DacB activity requires mDAP amidation to reach optimal
levels [57].

The D-Glu on the PG stem peptide has an amidated
a-carbonyl group (which transforms it into an iso-Gln)
in several bacterial species, including LAB. The level of
amidation is close to 100% in all four of the LAB species
studied [20-23]. The genes responsible for D-Glu amida-
tion have been identified in S. aureus [58,59]. The con-
version of iso-Glu to iso-Gln is catalyzed by the
glutamine amidotransferase GatD and the Mur ligase
homolog MurT. Lipid precursors, but not soluble UDP-
MurNAc-pentapeptide precursors, are substrates for this
enzymatic complex [59]. The murT and gatD genes are
grouped in an operon and play an essential role in
S. aureus. Past research has found that inhibition of
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amidation results in a markedly reduced bacterial
growth rate, which suggests that amidated PG may serve
as a better substrate for proteins that catalyze PG bio-
synthesis and cell division; furthermore, resistance to
beta-lactam antibiotics and increased sensitivity to lyso-
zyme have been observed [58]. Homologs of co-localized
gatD and murT genes are present in LAB with amidated
D-Glu PG including L. lactis and L. plantarum; in
L. casei and L. rhamnosus, both genes can be found but
at different places in the genome sequences (Table 1).

Degradation by PGHs

PGHs are enzymes that can hydrolyze specific bonds in
bacterial cell wall PG. Among them are bacterial autoly-
sins and phage endolysins. Autolysins are endogenous
bacterial PGHs whose activity may lead to autolysis, in
particular when cells experience stressful conditions.
Moreover, the cleavage of PG strands is required to
insert newly synthesized PG subunits during bacterial
cell growth and to separate daughter cells following cell
division [60,61]. Bacteriophage genomes encode PGHs
called endolysins that, in association with holins, are
responsible for host cell destruction after the viral parti-
cles have multiplied during phage dissemination [62].
They may also encode PGHs that are tail-associated
lysins involved in phage entry into the host bacteria
[63]. From a technological cheese making point of view,
highly focused, applied studies have sought to under-
stand and control LAB lysis, with the aim of being able
to release the intracellular pool of enzymes of starter
bacteria to improve cheese flavor development [11,64].

Different classes of PGHs can be defined on the basis of
their hydrolytic specificity for different bonds (Figure 1):
(i) N-acetylmuramidases (muramidases) hydrolyze the
B1-4 bond between MurNAc and GlcNAc—among the
known muramidases are lysozymes that result in a pro-
duct with a terminal-reducing MurNAc residue and lytic
transglycosylases that yield anhydromuropeptides as a
result of the formation of a 1,6-anhydro ring inside Mur-
NAg; (ii) N-acetylglucosaminidases (glucosaminidases)
hydrolyze the B1-4 bond between GIcNAc and MurNAg;
(iii) N-acetylmuramyl-L-Ala amidases (amidases) hydro-
lyze the bond between the lactyl group of MurNAc and
the a-amino group of L-Ala, which is the first amino acid
of the lateral peptidic chain; and (iv) peptidases, including
endopeptidases and carboxypeptidases, hydrolyze a vari-
ety of PG bonds.

Bacterial PGHs as well as phage endolysins usually
exhibit modular organization and have a catalytic
domain associated with a cell wall binding domain
(CWBD). The catalytic domain determines hydrolytic
specificity for the PG molecule, whereas the CWBD,
because it specifically recognizes a cell wall component,
influences localization, target bacteria specificity, and/or
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PGH catalytic efficiency. CWBDs, such as the LysM
domain, the SH3 domain, or the Lc-LysBD domain, that
are found in PGHs but also possibly in other cell wall
proteins are described in more detail in the text below.

The catalytic domains present in LAB PGHs are charac-
teristic of the following enzyme families: the glucosamini-
dases (glycoside hydrolase family 73, PF01832), the
muramidases (glyco_hydro_25, PF01183), the lytic trans-
glycosylases (transglycosylase-like, PF06737), the amidases
(two domains: Amidase_2, PF01510 and Amidase_3,
PF01520), the CHAP-domain enzymes with amidase or
endopeptidase specificity (the cysteine, histidine-depen-
dent amidohydrolase/peptidase domain) (PF05257), and
the y-glutamyl-diamino-acid endopeptidases (NlpC_P60,
PF00877). Furthermore, the Peptidase_S11 domain
(PF00768) is present in D,D-carboxypeptidases (DacA)
and the VanY domain (PF02557) is found in L,D-carboxy-
peptidase (DacB).

The availability of complete genome sequences allows
the full PGH complement of a given bacterial species to
be analyzed and identified using amino acid sequence
similarity searches that employ representative sequences
of all known classes of PGHs. Most Gram-positive bac-
teria possess a complex PGH complement that includes a
variable number of PGHs. Generally, a given bacterial
species produces several PGHs that have various hydroly-
tic specificities, although not necessarily all the specifici-
ties listed above. In LAB, sequence analyses have revealed
that rather complex PGH systems exist; 12 PGHs were
identified in L. casei [21], 9 in L. helveticus [65], and 12
in L. plantarum [66]. Five PGHs were initially identified
in L. lactis, before the description of the CHAP domain
[67]; re-examination of the genome sequence of L. lactis
MG1363 has allowed us to identify 4 additional putative
PGHs that contain a CHAP domain (unpublished
results).

Before whole genome sequencing, the first LAB PGH
characterized at the molecular level was the major autoly-
sin AcmA in L. lactis [68]. AcmA has a modular structure;
its N-terminal catalytic domain demonstrates N-acetylglu-
cosaminidase specificity [69], and its C-terminal domain is
made up of three LysM sequences. The LysM repeats have
been shown to bind to PG, and binding appears to be hin-
dered by other cell wall constituents, which results in loca-
lized binding of AcmA to the cellular septum [70]. In
L. plantarum, the major autolysin Acm?2 is also an N-acet-
ylglucosaminidase, but its modular structure differs from
that of AcmA. In addition to its catalytic domain, it has
three SH3 domains and an N-terminal Ala/Ser/Thr
(AST)-rich domain [66,71]. Two other major PGHs with
v-D-Glu-L-Lys-endopeptidase activity, Mspl (p75) and
Lc-p75, have been characterized in L. rhammnosus [22] and
L. casei [21], respectively. In contrast, Cse in S. thermophi-
lus, which has a CHAP domain, has demonstrated D ,
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L-endopeptidase activity and mediates cleavage of the PG
cross-bridge [72]. It is worth noting that these enzymes
are, respectively, the major autolysins of the aforemen-
tioned bacterial species and they are involved in daughter
cell separation. They illustrate the diversity that exists
among bacterial species in cell-separating enzymes, a
point highlighted in past research [73]. In each species,
inactivation of the corresponding genes led to defects in
daughter cell separation and long-chain formation. In
agreement with their role, all these PGHs were located at
the cell septum. Also, AcmA and Acm?2 are the major
autolysins involved in the bacterial cell autolysis that is
observed during the stationary phase or after bacteria are
transferred to buffer solution. Other PGHs have been
characterized in L. lactis: three other glucosaminidases,
one with a LysM domain (AcmD) and two without LysM
domains (AcmB and AcmC) as well as one y-D-Glu-L-
Lys-endopeptidase, YjgB [74]. AcmB and AcmD contri-
bute to autolysis, in tandem with AcmA [75,76] and
AcmD but not AcmB, is involved in cell separation [76].
In L. plantarum, LytA with putative y-D-Glu-L-Lys-endo-
peptidase activity, appears to be required for cell shape
maintenance and cell wall integrity [66].

Interestingly, several LAB PGHs have recently been
shown to be O-glycosylated [71,77,78]. Their sugar resi-
dues are covalently linked to low complexity domains
rich in Ala, Ser, and Thr (AST domains). L. rhamnosus
p75 (Mspl) has been found to be glycosylated with
hexoses, and probably mannose, given that they are
recognized by the lectin concanavalin A. O-glycosylation
of p75 (Msp1) appears to confer protection against pro-
teolytic degradation [77]. Furthermore, L. plantarum
Acm?2 contains more than 20 bound N-acetyl-hexosa-
mines: most are probably GIcNAc residues given that
they are recognized by wheat germ agglutinin [78]. In
this species, O-glycosylation has been shown to modu-
late Acm2 PG-degradation activity (see section 1.5) [71].
Very recently, the glycosyltransferases involved in Acm2
O-glycosylation were identified [79].

Factors controlling PG hydrolysis

A strong PG mesh is needed to maintain cell shape and
to counteract both high turgor pressure and cell wall
stress related to environmental factors. At the same
time, the growth and separation of bacterial cells also
require a high degree of PG elasticity. These two oppos-
ing demands require the coordinated and balanced
action of PG synthetic and degradation enzymes. The
loss of this equilibrium may cause growth arrest and cell
lysis. In bacteria, such equilibrium is achieved mostly by
regulating activities of potentially lethal autolytic
enzymes that are PGHs. PGH regulation can take place
at the transcriptional level but may also be mediated by
mechanisms involving post-transcriptional modifications
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of PGHs or modification of their substrate, PG
[60,61,80].

Control of PGH activity

One of the factors that affects autolysin activity is pro-
teolytic degradation. It has been shown that the main
lactococcal autolysin, AcmaA, is degraded by extracellular
proteinase PrtP and that the autolysis of L. lactis
MG1363 depends on the expression of the plasmid
encoded cell wall-anchored proteinases PrtPI and PrtPIII
[81]. Also, the cell wall-housekeeping protease HtrA has
been shown to process lactococcal autolysin AcmA [82].

The activity of a given PGH can also be affected by its
specific location in the bacterial cell. Depending on their
role in bacterial physiology, PGHs may be distributed all
along the cell periphery or located at the septum, as has
been observed for PGHs involved in daughter cell
separation. By immunofluorescent labeling, the major
LAB autolysins (L. lactis AcmA, L. casei Lc-p75,
L. rhamnosus p75, S. thermophilus Cse, and L. plan-
tarum Acm2) were found to be localized in the septal
zone of dividing cells [21,22,70-72].

Secondary cell wall polymers (TAs or PSs) can modulate
autolytic activity by shielding PG [83]. In L. lactis, second-
ary cell wall polymers can hinder the binding of AcmA
LysM domain to PG, which results in the localized binding
of AcmA [70]. Furthermore, the autolysis of LAB strains
can be influenced by the level of D-alanylation of TAs. An
L. lactis ditD mutant, deficient in LTA alanylation, exhib-
ited increased autolysis, which was tied to the decreased
degradation of AcmA by HtrA protease [84]. The absence
of D-Ala on LTAs in L. plantarum increases autolysis,
caused, at least partially, by the autolysin Acm2 [85].

Also, as described above in the text above, structural
variations in the PG substrate, such as the O-acetylation
of glycan chains and the amidation of peptide chains,
can contribute to the modulation of PGH activity.

Finally, glycosylation of the autolysin Acm2 has
recently been shown to control the enzyme’s activity [71].
The N-terminal AST-rich domain of Acm2 is glycosy-
lated; this domain bears 21 mono-GlcNAc that are linked
to Ser or Thr residues. When the AST domain is not O-
glycosylated, Acm2 enzymatic activity significantly
increases. In the model that has been proposed, the
access of the Acm?2 catalytic domain to its substrate may
be hindered by the AST domain; O-glycosylation could
change the domain conformation and/or mediate inter-
domain interactions [71].

Regulation at the transcriptional level

Most studies have focused on the transcriptional regula-
tion of the genes encoding endogenous PGHs in the con-
text of the cell envelope stress response [86]. It has been
shown that the expression of PGH genes is positively
regulated by WalRK TCS in S. aureus [87] and by the
alternative sigma factor D in B. subtilis [88]. Interestingly,
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instead of affecting the transcription of genes that encode
endogenous PGHs, the lactococcal TCS that responds to
cell envelope stress, CesSR, increases expression of the
oatA gene, and this gene encodes PG O-acetyltransferase,
whose activity increases PG resistance to the PGH lyso-
zyme [45] (see text above).

PG and PGH as mediators of bacteria-host interactions
PG and certain of its fragments are known MAMPs that
are recognized by host pattern-recognition receptors
(PRRs), such as Nod receptors or Toll-like receptors
(TLR) [89]. Nod receptors are intracellular receptors
expressed by both epithelial cells and immune cells,
such as dendritic cells. The minimum ligand recognized
by Nod1 is the dipeptide D-Glu-mDAP, which is present
in most Gram-negative bacteria, and the minimum
ligand recognized by Nod2 is MurNAc-L-Ala-D-Glu,
which is present in most bacteria [90]. In addition to
the activity of host PGHs such as lysozyme and certain
PG-recognition proteins (PGRP), endogenous bacterial
PGHs may contribute to the release of PG fragments
that can modulate host response [80]. For example, the
PG of an L. casei mutant contained less disaccharide-
dipeptide (GIcNAc-MurNAc-L-Ala-D-GlIn), a known
Nod2 agonist; this mutant lacked the major PGH Lc-
p75, which demonstrates y-D-Glu-L-Lys-endopeptidase
activity [21], a fact that possibly affected Nod2 signaling.
When the PG structures of two Lactobacillus strains
with different inflammation profiles were compared, the
presence of the muropeptide MurNAc-L-Ala-D-Glu-L-
Lys (M-tri-Lys) in the PG structure and the anti-inflam-
matory properties of Lactobacillus salivarius Ls33 were
found to be correlated [91]. The corresponding synthetic
muropeptide has been shown to have a protective effect
in a mouse model of intestinal inflammation (Nod2-
dependent). These results show that PG originating
from probiotic or commensal LAB may play an active
role in the gut’s immune balance.

Furthermore, in the well-documented probiotic
L. rhamnosus GG, two secreted PGHs, Mspl (p75) and
Msp2 (p40), were found to promote the survival and
growth of epithelial cells under pro-inflammatory condi-
tions [92]. Furthermore, p40 has been shown to prevent
and treat colonic epithelial cell injury and inflammation
in mouse models of colitis through a mechanism that is
dependent on the epidermal growth factor (EGF) recep-
tor [93]. The non-catalytic N-terminal domain, which
does not contain any characterized functional domains,
appears to be responsible for the beneficial effects [94].

Teichoic acids

Structures of teichoic acids

The cell wall of most Gram-positive bacteria contains
TAs, which are anionic polymers made of alditol-
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phosphate repeating units [95]. They are classified into
two groups: wall teichoic acids (WTAs), which are cova-
lently linked to the PG molecule, and lipoteichoic acids
(LTAs), which are anchored in the cytoplasmic mem-
brane with a glycolipid moiety. WTAs may constitute
up to half of cell wall total dry weight in certain bacter-
ial species [96].

The most common WTA structures are poly-glycero-
phosphate [poly(Gro-P)] or poly-ribitolphosphate [poly
(Rbo-P)] chains. They are covalently attached to PG by
a phosphodiester linkage to the C6-hydroxyl of Mur-
NAg, via a linkage unit usually consisting of a disacchar-
ide, N-acetylmannosaminyl-B (1-4)-N-acetylglucosamine,
and a Gro-P unit (Figure 3). The typical LTA structure
consists of a poly(Gro-P) chain linked to a glycolipid
anchor (Figure 3). The free hydroxyl groups on the Gro-
or Rbo-alditol units are partly decorated with D-Ala or
monosaccharides, such as Glc, Gal or GlcNAc. The
length of the poly(Gro-P) or poly(Rbo-P) chains varies
between species and strains, as does the substitution
level. In most Gram-positive bacteria, LTAs and WTAs
coexist, but certain bacterial species, including L. casei
and L. rhamnosus, appear to contain only LTAs.
Remarkably, in L. plantarum (depending on the strain),
the two types of WTAs—with either poly(Gro-P) or poly
(Rbo-P) chains—have been found [97]; in addition, cer-
tain strains contain the genes needed to synthesize the
two types of WTAs [98]. In an L. plantarum mutant in
which the Gro-P type WTA synthesis was abolished, an
alternative ribitol-type WTA was synthesized instead of
the wild-type Gro-P type WTA [99]. LTA purified from
L. rhamnosus and L. plantarum were analyzed by NMR;
they were found to have poly(Gro-P) backbones contain-
ing an average of 50 and 22 Gro-P repeating units (for
each species, respectively), with D-Ala being the only
detectable substituent (74% and 42% D-Ala/GroP,
respectively) [100,101]. L. lactis was found to have poly
(Gro-P) LTAs with D-Ala and Gal substituents [52].

Biosynthesis of WTAs and attachment to PG

Depending on the nature of the alditol constituent, bio-
synthetic enzymes are named Tag (for Gro-containing
WTAs) or Tar (for Rbo-containing WTAs) [102,103].
We present here the synthesis of Gro-containing WTAs,
which has mainly been described for B. subtilis; how-
ever, a similar biosynthesis scheme was found for Rbo-
containing WTAs present in S. aureus. The first step is
initiated on the cytoplasmic face of the membrane by
TagO, an enzyme that transfers GlcNAc-1-P from UDP-
GlcNAc to undecaprenol phosphate, the lipid carrier
also involved in PG synthesis (Figure 2). Then, acetyl-
mannosamine (ManNAc) is transferred from UDP-Man-
NAc by TagA. UDP-ManNAc is synthesized by the
epimerization of UDP-GIlcNAc to UDP-ManNAc by
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MnaA. The synthesis of the linkage unit is finished
when TagB primase sequentially attaches one Gro-P
unit taken from CDP-glycerol. CDP-glycerol is formed
from CTP and glycerol by TagD. WTA polymerization
is catalyzed by TagF, which adds Gro-P taken from
CDP-glycerol to the nascent WTA chain. Up to 60 aldi-
tol-phosphate groups may be successively added. After
the intracellular steps are completed, the WTA chain is
translocated to the extracellular side of the membrane
by the ABC transporter TagGH; subsequently, the chain
is covalently linked to PG-on the C6-OH of MurNAc.
Three transferases (TagTUV) belonging to the LytR-
CpsA-Psr (LCP) family involved in the transfer of the

bactoprenol-linked neo-synthesized WTAs to PG have
been identified in B. subtilis [104]. Homologous
enzymes are also found in LAB such as L. lactis, but
their role has yet to be investigated.

Biosynthesis of LTAs and their anchoring in the
cytoplasmic membrane

LTAs are linked to the bacterial cell by a glycolipid
inserted in the outer layer of the membrane (Figure 3).
This glycolipid is a diglucosyldiacylglycerol synthesized
from diacylglycerol by the successive addition of two
Glc from UDP-Glc by YpfP [105]. LtaA then transfers
the diglucosyldiacylglycerol from the inner to the outer



Chapot-Chartier and Kulakauskas Microbial Cell Factories 2014, 13(Suppl 1):5S9

http://www.microbialcellfactories.com/content/13/51/59

side of the membrane. Once outside the membrane, the
diglucosyl portion of the lipid anchor is elongated by
LtaS via a polymerization process that adds, in most
species, Gro-1-P units; the resulting LTA chain can con-
tain up to fifty such units. In certain species, the first
unit is added by a specific LTA-primase (LtaP), the role
of which is to initiate elongation. The donor of Gro-P is
a phosphatidyldiacylglycerol molecule. The diacylgly-
cerol that is released can be recycled to synthesize
another LTA molecule.

Modifications of teichoic acids

As mentioned above, the free hydroxyl groups of the aldi-
tol-phosphate chains of both the WTAs and the LTAs
may be replaced by different sugars (e.g., Glc, Gal, or
GIcNAc) or by D-Ala. In B. subtilis, a glycosyltransferase
named TagE adds Glc to WTAs [106]. The D-alanylation
process is the best characterized and involves the
dltABCD operon [107]. The first step is the activation of
D-Ala, which consumes ATP, and the alanylation of the
DItC carrier by DItA. Two models have been proposed
for the next steps involving DItB and DItD [108,109]. In
the first model [110], DItB transfers D-Ala from DItC to
undecaprenol-phosphate lipid (C55-P) and is then flipped
outside the membrane. DItD is then involved in transfer
of D-Ala to LTA. In the second model [107], DItD would
rather act in the cytoplasm by promoting transfer of D-
Ala to DItC. The DItC-Ala is then transported through
the membrane by the protein DItB. DItC would be the
only protein required for the transfer of D-Ala to LTA.
Recent data rather substantiates the first model although
a lipid-linked intermediate has not been detected until
now [109]. It seems that D-Ala residues are then free to
move along a single alditol-phosphate chain or between
different chains, which allows the D-alanylation of WTAs
[107]. D-alanyl substituents can modulate the net nega-
tive charge of teichoic acids by providing protonated
amino groups that serve as counterions to the negatively
charged phosphate groups. These modifications widely
contribute to TA functionality (see text below).

A dit operon has been identified in the different LAB
that have been studied. In L. plantarum, the dit operon
contains two supplementary genes, pbpX2 and ditX, that
encode, respectively, a protein whose sequence is similar
to that of a low molecular weight PBP endowed with D,
D-carboxypeptidase activity and a small protein of 49
amino acids in length whose function is unknown [85].
When the dit operon is inactivated, D-Ala substituents
on teichoic acids are completely absent or strongly
reduced in number, a result that has been observed in
L. lactis, L. rhamnosus, and L. plantarum [84,85,111,112].
Unexpectedly, D-Ala-depleted LTAs in the L. plantarum
NCIMB8826 ditB mutant contained high levels of Glc
subtituents that were absent from wild-type LTAs and
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that were threefold longer than wild-type LTAs [100].
Also, in L. rhamnosus GG, LTA extracted from a ditD
mutant revealed longer fatty acid chains of the glycolipid
anchor, and shorter chain of Gro-P compared to the
wild-type LTA [112].

Functions of teichoic acids

WTAs and LTAs contribute significantly to cell wall
functionality (Table 2). The various roles attributed to
TAs are, at least in part, related to their anionic charac-
ter or their distribution within the bacterial cell wall.
The level of D-Ala substituents, which modify the global
and local charge of TAs, also has a major impact on
their functionality [107].

In general, TAs provide a reservoir of ions close to the
cell wall that may be required for enzymes to function
properly. Due to their anionic character, they can bind
both cations, such as Mg>*, and protons, thus creating a
pH gradient across the cell wall [107]. They play other
roles: they control autolysins, maintain bacterial cell mor-
phology, recognize bacteriophages, interact with the host
immune system, and are involved in host colonization.
These roles are detailed below. In L. lactis, LTA D-alanyla-
tion also has an impact on the efficiency of protein secre-
tion [113], UV stress resistance [114], and resistance to the
cationic antimicrobial peptide nisin [52].

TA and autolysis control

TAs and their substituents have long been considered to
play a role in the control of bacterial autolysis in certain
Gram-positive bacterial species; they are thought to act
using several proposed mechanisms. LT As were initially
considered to be autolysin inhibitors. By determining the
number of binding sites for cationic autolysins, their
degree of D-alanylation has been also proposed to be a
means of regulating autolysis [107]. Finally, WTAs/LTAs
have been shown to prevent autolysin binding on the
bacterial surface, except to the cell septum, where these
molecules are presumably absent [115].

In LAB, L. lactis, L. plantarum, and L. rhamnosus dlt
mutants had faster autolysis rates than did wild-type
strains, as a result of the activity of the major autolysins
AcmA, Acm?2, and Mspl, respectively [84,85,112]. In
L. lactis, this phenotype was associated with a decreased
degradation of AcmA by HtrA, cell wall-housekeeping
protease [84].

Role of TAs in bacterial cell morphogenesis

WTAs were long considered to be essential molecules
because deletions of genes related to the WTA bio-
synthesis pathway are lethal in B. subtilis. However,
more recent reports have indicated that the lethal effects
of the mutations were due either to the accumulation of
toxic intermediates or to the sequestration of the unde-
caprenol phosphate carrier that is also required for PG
synthesis [116] (Figure 2). This argument is supported
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by the fact that viable mutants lacking WTAs were
obtained in B. subtilis and S. aureus by inactivating the
tagO and tarO genes, respectively; they each encode the
first enzyme of the biosynthesis pathway. As a result,
WTAs are no longer considered as essential in B. subti-
lis, although their absence severely alters cell morphol-
ogy and growth [117]. The role of teichoic acids in cell
division and morphogenesis has been investigated in
B. subtilis, and it appears that WTAs are involved in
bacterial elongation, while LTAs participate in cellular
division [118]. The concurrent absence of WTAs and
LTAs is lethal for B. subtilis, which suggests that anionic
polymers are a necessary component of Gram-positive
cell walls. In S. aureus, WTAs have been described as
acting as temporal and spatial regulators of PG cross-
linking [119].

In L. plantarum, a tagO deletion mutant revealed that
while WTAs are not essential for survival, they are
required for proper cell elongation and cell division
[120]. Atomic force microscopy (AFM) imaging of the
bacterial cell surface combined with fluorescent labeling
with lectin probes has revealed that WTAs exhibit a
polarized distribution across the cell surface and that
they are absent from the cell’s poles. In addition, it
appears that the polarized distribution of WTAs plays a
key role in controlling cell morphogenesis (surface
roughness, cell shape, and elongation and division)
[120]. Furthermore, in L. plantarum, D-alanylation of
LTAs plays an important role in cell morphology: the
longer bacterial cells observed in the d/tD mutant indi-
cate that its elongation process is altered [85].

LTAs as bacteriophage receptors

LTAs have been shown to be receptor components for
the bacteriophage LL-H that infects Lactobacillus del-
bruekii subsp. lactis ATCC15808 [121]. Moreover,
D-Ala and a-Glc substituents of the poly(Gro-P) LTA
backbone affect phage adsorption. A high degree of
D-alanylation decreased adsorption, whereas Glc substi-
tuents were required for efficient binding, indicating
that these LTA structural modifications affect how well
the anti-receptor protein of the phage tail binds to
LTAs [122].

Role of LTAs in bacteria-host cross-talk

LTAs appear to play a prominent role in host-lactoba-
cilli interactions [101]. First, LTAs have been reported
to be major players in Lactobacillus johnsonii Lal adhe-
sion to human intestinal epithelial cells (Caco-2), possi-
bly via hydrophobic interactions [123]. Also, TA D-Ala
depletion can result in impaired colonization of the
mouse gastrointestinal tract by L. reuteri [124].

Moreover, LTAs are MAMPs that bind to Toll-like
receptor 2 (TLR2), a PRR that is present on the surface
of epithelial and antigen-presenting cells and that, after
being stimulated, can activate cytokine release [89]. It
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has been reported that LTAs purified from L. casei YIT
9029 and L. fermentum YIT 0159 significantly induce
TNE-o secretion from murine macrophages, via a
TLR2-mediated strain-dependent mechanism [125]. A
dlt mutant of L. plantarum NCIMB8826—whose LTA
D-alanylation was substantially reduced—exhibited anti-
inflammatory properties, which contrasted with the
properties demonstrated by the parental strain. In the
mutant as compared to the wild type, the secretion of
pro-inflammatory cytokines, such as TNFa and IL12, by
peripheral blood monocyte-derived cells (PBMCs) was
dramatically reduced and IL10 secretion was concur-
rently increased [100]. Moreover, the dlt mutant con-
ferred protection against inflammation in a murine
model of trinitrobenzene sulfonic acid (TNBS)-induced
colitis. These results were confirmed using highly puri-
fied LTAs, which stimulated TLR2-dependent pro-
inflammatory cytokine production [100]. In contrast, in
in vitro studies, an L. rhamnosus GG dIltD mutant,
whose LTAs lacked D-alanyl esters, did not demonstrate
significantly changed cytokine production [112]; how-
ever, it was associated with improvement in some colitic
parameters in moderate to severe DSS-induced colitis in
a murine model [126]. Furthermore, in an Lactobacillus
acidophilus ItaS mutant deficient in LTAs, IL12 and
TNEF-a secretion in bone marrow-derived dendritic cells
(DCs) was downregulated, while IL10 secretion and the
expression of costimulatory molecules on the surfaces of
the DCs were significantly enhanced. When mice with
DSS-established colitis were treated with the /taS
mutant, their condition improved as a result of a
mechanism involving IL10 and CD4+ FoxP3+ T-regula-
tory cells [127].

Wall polysaccharides

Structure and biosynthesis

Gram-positive cell walls frequently contain PSs in addi-
tion to PG and TAs. Bacterial PSs can be divided in three
groups: exopolysaccharides (EPSs), which are loosely
associated with the microbial cell surface and released
into the surrounding environment; capsular polysacchar-
ides (CPSs), which are permanently attached to the cell,
forming a shield around the bacterium; and cell wall
polysaccharides (WPSs), which may or may not be cova-
lently attached to the cell wall but that do not form a
capsule. It is worth noting that there is some controversy
at the experimental level with regards to the definition of
these three groups, and that the nomenclature is not
strictly followed in the literature; for instance, EPS is also
used to mean extracellular polysaccharide. Bacterial PSs
exhibit great diversity, not only in sugar composition but
also in linkage, branching, and substitution. We will not
review here the sensu stricto EPSs that are released in the
culture medium and that have been the subject of
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extensive research because of their role in adding texture
to fermented milk products; they have been covered by
other reviews [128,129]. We will only examine the PSs
that have been found to be associated with bacterial cells.

The genes encoding molecules involved in PS biosynth-
esis are typically organized in clusters of 8 to 25 genes,
which are located in the chromosome or plasmids. These
clusters contain genes that encode glycosyltransferases
and genes that are responsible for export, and regulation
[130]. The PS synthesis pathway may overlap with those
responsible for generating other cell wall polymers, such
as PG or WTAs, since it may also involve undecaprenyl
phosphate as a lipid carrier (Figure 2).

In L. lactis MG1363, a WPS was discovered at the
bacterial surface and subsequently characterized [131].
AFM as well as complementary transmission electron
microscopy observations have shown that this WPS type
forms a compact outer layer that surrounds the cell,
named the pellicle. Its structure was established by
NMR and is distinct from those of other bacterial PSs,
including the previously characterized L. lactis EPS. The
PS chains are composed of hexasaccharide-phosphate
repeating units that contain rhamnose (Rha). They are
likely covalently attached to the cell wall since they were
only able to be extracted using a harsh acid treatment.
In L. lactis MG1363, the molecules involved in PS
synthesis are encoded by a single large cluster of genes.
This gene cluster is found in many different L. lactis
strains but exhibits a rather high level of genetic diver-
sity, which suggests that there are structural variations
in the WPSs synthesized by different L. lactis strains
[132]. The structures of WPSs purified from two other
L. lactis strains, 3107 and SMQ-388, were recently
described and confirmed the PS structural diversity
between L. lactis strains. Like the WPSs making up the
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MG1363 PS pellicle, these WPSs are acidic PSs made of
oligosaccharide repeating units that are linked by phos-
phodiester bonds; however, the structure of the oligosac-
charide repeating units differs among the three strains
(Figure 4) [133,134].

HeteroPSs, which are composed of different sugar
moieties (Glc, Gal, Rha, GlcNAc, and GalNAc), and
other residues, such as glucuronic acid and Gro-3-P,
have also been found to be associated with the cell sur-
faces of lactobacilli [135]. Notably, the L. plantarum
WCES1 genome contains four gene clusters associated
with surface PS production [136]. The structure of these
different PSs has not yet been determined. In L. rham-
nosus GG, a long galactose-rich PS (named EPS—extra-
cellular polysaccharide—by the authors) was detected at
the bacterial surface using AFM [137,138]. It likely cor-
responds to a previously described PS structure [139].
L. rhamnosus strain GG and other strains show genetic
differences in the gene cluster that encodes PS biosynth-
esis, differences that are linked to variation in PS com-
position [140]. Exploration of the L. rhamnosus GG cell
surface using AFM revealed that its morphology is
rough and characterized by wave-like structures [138].
In contrast, the cell surface of a PS-negative mutant was
found to be much smoother, which suggests that the
wave-like structures reflect PS production. Furthermore,
single molecule force spectroscopy with lectin-modified
tips revealed that cell surface PS chains had heteroge-
neous structures: there were PSs rich in mannose (or
glucose) that had moderate extensions and PSs rich in
galactose that had much longer extensions [138]. A lec-
tin microarray developed to compare the surface gly-
comes of L. casei strains revealed that different strains
had different profiles, which suggests that their WPSs
are different [135]. In probiotic L. casei Shirota, two
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Figure 4 Structure of the sugar-phosphate polysaccharide pellicle of three different L. lactis strains MG1363, 3107 and SMQ-388.
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types of WPSs were found: longer, high molecular mass
PS-1 and shorter low molecular mass PS-2. The struc-
ture of PS-1 has been described [141], and the gene
cluster encoding proteins involved in PS-1 biosynthesis
has been identified [142]. Furthermore, it was recently
observed that Lactobacillus helveticus strains differ in
WPS structure, and it has been hypothesized that these
differences may partially explain variation in autolytic
properties among the strains studied [143]. In conclu-
sion, WPSs are omnipresent components of LAB cell
surfaces, and it is likely that they differ structurally
among strains of the same species.

Functions of WPSs

A number of roles have already been assigned to WPSs
in LAB in bacterial physiology as well as in interactions
with bacteriophages or eukaryotic hosts (Table 2).

WPSs as bacteriophage receptors in L. lactis

In L. lactis, WPSs are now considered to be receptors
for bacteriophages belonging to the 936 and P445
families, which means that they allow bacteriophage
adsorption at the cell surface. An L. lactis MG1363
mutant that lacked a PS pellicle made of hexasaccharide
subunits linked through phosphodiester bonds was
shown to be resistant to the 936-bacteriophage sk1,
which strongly suggests that this WPS could be the skl
phage receptor [131]. Indeed, previous studies using
transposon random mutagenesis mapped the genes
required for the adsorption of two 936-type bacterio-
phages in their respective host strains; these genes were
found inside gene clusters potentially implicated in WPS
biosynthesis in L. lactis 1L1403 and Wg2 [144] and that
are homologous to the cluster that encodes the PS pelli-
cle in MG1363. Recent research revealed a correlation
between the pellicle genotype of a given L. lactis strain
and the host range of these 936-type phages [132]. The
findings support the PS pellicle’s proposed role as a
936-phage receptor and suggest that variation in PS pelli-
cle structure among strains could explain the narrow
host range of this phage group. On the basis of bioinfor-
matic analysis of the PS-encoding gene cluster, three
major groups of L. lactis strains were distinguished (types
A, B and C) [132]; more recently five subtypes (C1 to C5)
could be identified in the C-group on the basis of differ-
ences in the variable region present in the C-type PS bio-
synthesis locus [133]. When genes from the variable
region of the C2 subtype strain 3107 were expressed in a
mutant of L. lactis NZ9000 of subtype C1 deficient in
WPS synthesis, the resulting recombinant NZ9000 strain
synthesizes WPS with the structure of subtype C2. In
addition, by challenging the recombinant strain with bac-
teriophages infecting L. lactis 3107, it was shown that
WPS is the host cell surface receptor of the tested phages
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from 936 and P335 groups [133]. At the phage level,
receptor-binding proteins (RBPs; also named anti-recep-
tors) located at the tip of phage tail are involved in phage
adsorption: they specifically recognize receptors on the
bacterial surface. The 3D structures of RBPs in different
lactococcal phages have been established, which means
that the recognition mechanism that mediates interac-
tions between RBPs and the PS pellicule can now be
explored, with a view to understanding the molecular
mechanisms underlying recognition specificity [145]. As
a first step, surface-plasmon resonance experiments have
demonstrated that bacteriophage p2 RBPs bind to PS pel-
licle purified from the phage’s host strain-MG1363 [146].
Other functions of WPSs
An L. lactis MG1363 mutant that lacked surface WPSs
produced long chains of unseparated cells that showed
some morphological defects [131]. These observations
suggest that WPSs are required for normal cell mor-
phology and that they play a role in cell division.
Additionally, surface-exposed PSs are involved in a
wide range of bacterial properties and functions, includ-
ing adhesion to abiotic surfaces and biofilm formation;
they also participate in interactions with other microor-
ganisms and host cells. Inactivation of the glycosyltrans-
ferase welE gene in L. rhamnosus GG greatly reduced
levels of high molecular mass, galactose-rich WPSs [137].
The welE mutant exhibited increased adherence and a
greater capacity to form biofilms, possibly because sur-
face adhesins, such as pili structures, were more exposed.
Bacterial CPSs have been shown to be potent immuno-
modulating molecules; they have largely been character-
ized in pathogenic species [130] and are considered to be
virulence factors that act by preventing phagocytosis.
The L. lactis PS pellicle has also been shown to protect
bacteria against phagocytosis by murine macrophages in
vitro [131], which suggests that WPSs may shield other
cell surface components and prevent them from being
recognized by macrophage receptors. An L. casei Shirota
mutant that produced lower levels of high molecular
mass WDPSs generated higher levels of IL6, IL10, and
IL12 cytokines after being co-incubated with murine
macrophages in vitro. These results highlight the immu-
nosuppressive function of WPSs [142]. Similar results
were obtained with L. plantarum mutant produced by
deleting the four gene clusters that encode the proteins
that make up the PS biosynthesis pathways. The mutant
as compared to the wild type, elicited a dramatic increase
of TLR2-mediated NF-«B activation which suggests that
the presence of surface PSs reduces the exposure of
TLR2-activating molecules [136]. Finally, the galactose-
rich PSs of L. rhamnosus GG confer protection against
host innate defense molecules, such as the LL-37 antimi-
crobial peptide [147].
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Cell wall proteins

Different modes of attachment to the cell wall

After being synthesized in the cytoplasm, 5-10% of bac-
terial proteins are released outside the cytoplasmic
membrane [148]. In Gram-positive bacteria, most of
these proteins are secreted by the universally conserved
and essential Sec pathway. This pathway has been exten-
sively studied in E. coli, and genome analyses have
revealed that homologs exist in other bacteria, including
LAB [149]. Almost all proteins that are targeted by this
secretory pathway have an N-terminal signal peptide
composed of approximately 30 amino acids. Once the
proteins have been translocated across the cytoplasmic
membrane, this signal peptide is cleaved off by the
appropriate signal peptidase. Then, the protein is either
released into the extracellular medium or, alternatively,
it is retained in the cell envelope, if it contains a specific
sequence ensuring its attachment to the cytoplasmic
membrane or the components of the cell wall in addi-
tion to the signal peptide. In LAB, surface-associated
proteins make up around 80% of predicted secreted pro-
teins [148]. Secreted proteins can be covalently attached
to the cell surface by sortase-mediated reactions or non-
covalently attached via i) transmembrane anchors; ii)
lipid anchors; or iii) different cell wall binding domains
(CWBD) [150,151]. We will review here LAB proteins
which are linked to cell wall components through cova-
lent or non covalent binding.

PG-anchored proteins

A portion of a given cell wall protein is covalently
bound to PG by a transpeptidation mechanism that is
catalyzed by sortase A (SrtA, also called housekeeping
sortase). In addition to an N-terminal signal peptide,
they also contain, at their C-terminal, a conserved
LPXTG motif that is followed by a stretch of hydropho-
bic residues and a positively charged tail [149,152,153].
Transpeptidase SrtA, which is located in the membrane,
cleaves the Thr-Gly bond of the LPXTG motif and links
the Thr carboxyl group to the free amino group of the
side chain of the lipid II PG precursor. The presence of
SrtA and LPXTG-containing proteins is well documen-
ted in pathogens such as S. aureus [154], E. faecalis,
E. faecium [155], and L. monocytogenes [156]. This SrtA-
specific mode of protein attachment to PG is character-
istic of all Gram-positive bacteria, including LAB [157].
Inactivation of srtA in L. lactis L1403 has demonstrated
that this gene is responsible for the cell wall anchoring
of at least five LPXTG-containing proteins [158].

One remarkable family of LPXTG proteins found in
LAB is the one of mucus-binding proteins. These pro-
teins contain mucus-binding domains (MUB or MucBP)
that are thought to play an important role in the adhe-
sion of LAB to the mucus layer that covers intestinal
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epithelial cells [159]. Other functionally important
LPXTG proteins are the pilins, which are the structural
components of pili. Pili (or fimbriae) are long filamen-
tous structures that extend from the surfaces of various
Gram-negative and Gram-positive bacteria. Most studies
on pili in Gram-positive bacteria have been conducted
on pathogenic species, including streptococci, entero-
cocci, corynebacteria, and bacilli [160-162]. Pili have
been shown to be involved in adhesion to host cells and
tissues and are thus considered to promote host coloni-
zation and invasion [162]. In Gram-positive bacteria, the
sortase-dependent pili (Spa-type for sortase-mediated
pilus assembly) are composed of a major backbone pilin,
whose subunits are covalently assembled by sortase C,
and of one or two accessory pilins. The minor pilins are
located at the base and the tip of the pilus and are pos-
sibly also dispersed along the shaft. The pili structures
are anchored to PG by housekeeping sortase A [161].
The presence of pili in LAB and in bifidobacteria has
also been described and has been linked to the ability of
these bacteria to colonize the guts of their hosts and
persist in their gastrointestinal tracts [163,164]. L. rham-
nosus GG cells have been found to contain multiple pili
(an average of 10-50 per cell) with lengths of up to 1
pm that are predominantly located near the cell poles
[165]. More recently, L. lactis surface pili were visualized
using electron microscopy and AFM [166,167]. In a nat-
ural L. lactis isolate, a plasmid-encoded pilin gene clus-
ter that encodes sortase-dependent pili was shown to be
responsible for the assembly of surface pili [167]. This
strain produces thin pili that are rather short (averaging
350 nm length).

Proteins that are noncovalently bound to the cell wall
These proteins contain specific CWBDs that have been
described in several reviews [151,168]. Here we focus on
CWBDs that are found in LAB and their bacteriophages.
LysM domain

The LysM sequence (Lys motif, PF01476) is about 40
amino acid residues long and is present in more than
2,000 eukaryotic and prokaryotic proteins. Several LysM
sequences linked by intervening sequences constitute a
LysM domain [70,168,169]. Studies examining the bind-
ing patterns of different PG chemotypes have found that
LysM non-covalently binds to the GlcNAc moiety of
glycan chains [70]. However, binding is not disrupted by
N-deacetylation of GIcNAc [54] or by O-acetylation of
MurNAc [170].

LysM domains are most commonly found in the N-
terminal or C-terminal regions of PGHs [168,171] and
contain one to six LysM sequences. The presence of an
optimal number of LysM sequences is crucial for the
enzymatic activity of PGHs and, as a consequence, for
the different functions of these bacterial enzymes: they
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are involved in cell growth, cell separation, and autolysis.
The main lactococcal autolysin AcmA, which is one of
the best studied PGHs, has a modular structure and a C-
terminal LysM domain that contains three LysM
sequences and an N-terminal N-acetyl-glucosaminidase
catalytic domain [68]. All three LysM sequences are
required for AcmA to function optimally [69], but a sin-
gle LysM suffices for PG binding [172]. AcmA also binds
to PG in other bacteria, and even to the cells of different
Gram-positive species in mixed communities [173].

It has been shown that, in L. lactis, the AcmA LysM
domain binds near the cell poles and the cell septum
[70]. At the surface of Gram-positive bacteria, the bind-
ing of LysM-containing proteins may be hindered by
CW polymers, such as WPSs or WTAs, which results in
localization of PGHs in the septal region of the cell
[169]. In the case of the lactococcal autolysin AcmaA, it
has been proposed that attachment to the cell wall can
be hindered by CW constituents; LTAs are suggested
candidates [70,174]. Another possible candidate is the
surface PS pellicle: using AFM and employing tips
coated with the AcmA-derived LysM domain, L. lactis
PS pellicle was found to be capable of blocking the
binding of LysM to PG [39,175].

Bacterial SH3b domain (including the subfamilies SH3_3,
SH3_4, and SH3_5)

This domain is the bacterial equivalent of the well-char-
acterized SH3 domain that is found in eukaryotes and
viruses. Conflicting results have been obtained when it
comes to the PG motif recognized by this domain. In
staphylococci with a five-Gly PG crossbridge, the length
and amino acid composition of the cross-bridge have
been found to have a significant impact on the binding
of the SH3-containing homolog of lysostaphin ALE-1
[176]. Also, it has been proposed that the C-terminal
domain of lysostaphin, which contains the SH3_5
domain, directs the enzyme to the cross-linked PG
[177]. However, more recently, single-molecule AFM
experiments using tips functionalized with the L. plan-
tarum Acm2 (which contains five SH3_5 domains) have
found that SH3b domains bind to PG glycan chains and
that the binding site contains GIcNAc [178].

WxL domain

This domain was initially identified based on in silico
analysis of gene clusters that encode the cell surface
proteins of lactobacilli, enterococcoci, and listeria spe-
cies [179]. Proteins containing the WxL domain have
been experimentally shown to non-covalently bind to
PG in E. faecalis [180]. Proteins containing the WxL
domain are present in L. plantarum (19), L. sakei (15),
L. lactis (7), L. casei, and Lactobacillus coryniformis (1)
[180]; however, their functions have not yet been
identified.
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Lc-LysBD domain

This domain was recently discovered in the C-terminal
of the endolysins (Lc-Lys and Lc-Lys2) of prophages
found in the complete genome sequence of L. casei
BL23 [181]. It does not share amino acid sequence simi-
larity with any known CWBDs. The domain can bind to
PG and can specifically recognize the amidated D-Asp
cross-bridge that occurs in L. casei PG (Figure 1).
Remarkably, it does not bind to PG molecules with non-
amidated D-Asp cross-bridges or PG molecules with dif-
ferent types of cross-bridges, such as the L-Ala-L-Ala/L-
Ser bridge. This domain is also present in the endolysins
of other L. casei phages—A2 and PL-1-and in the endo-
lysin of L. lactis phage 949 [182].

SLH-domains

The surface (S) layer entirely coats the bacterial surface
and is composed of (glyco)proteins that intrinsically
form a two-dimensional paracrystalline structure. Most
prokaryotic S-layer proteins possess a signal peptide.
These proteins bind non-covalently via their N- or C-
terminus to PG or secondary cell wall polymers. The
attachment is mediated by S-layer homologous domains
(SLHDs), which can also be found in other enzymes of
Gram-positive bacteria [149,183]. Most often, S-layer
proteins possess three SLHDs, each consisting of 50-70
amino acids. S-layer proteins are present in lactobacilli,
and their structure and functions have already been
extensively reviewed [184]. The cell wall ligands of the
S-layer proteins isolated from different Lactobacillus
species have been proposed to be carbohydrates either
teichoic acids or neutral polysaccharides [184].

Role and applications of cell wall proteins

Role of cell wall proteins in bacteria-host interactions

The surface proteins of probiotic or commensal bacteria
are thought to facilitate mucosal colonization and per-
sistence in the gastrointestinal tract; they may also favor
cross-talk with immune cells by mediating direct contact
with the intestinal mucosa. The role of pili appendages
and mucus-binding proteins as surface determinants in
certain LAB strains has been underscored: they allow
bacteria to adhere to intestinal epithelial cells or mucus.
Notably, the pili identified in L. rhamnosus GG confer
the ability to adhere to the intestinal epithelial cells
(Caco-2) and human intestinal derived mucus; they also
promote biofilm formation [185,186]. Furthermore, pili
synthetized by a natural isolate of L. lactis allow the
strain to adhere to intestinal epithelial cells (Caco-2)
[167]. Two types of surface determinants—pili and
mucus-binding proteins—have also been shown to play a
role in bacterial adhesion to model mucins, and mucus-
binding proteins make a greater contribution under
shear flow conditions [187]. Moreover, L. rhamnosus
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GG pili are involved in reducing IL8 mRNA expression
provoked by other cell surface components, such as
LTAs in intestinal epithelial cells [185]. Other cell wall-
associated or secreted proteins of probiotic strains have
also been shown to be involved in modulating the
response of the host immune system. In L. acidophilus
NCEM, the S-layer protein A (SIpA) has been found to
be a ligand that is recognized by the surface lectin
receptor DC-SIGN, which is functionally involved in the
modulation of DCs [188]. The attachment of bacteria to
DCs has been shown to stimulate immature DCs and
regulate T-cell function. Also, p40 and p75, two proteins
described above (section 1.6) that demonstrate PGH
activity and that are secreted by L. rhammnosus, prevent
cytokine-induced apoptosis in IECs, and anti-inflamma-
tory properties have been attributed to the action of
p40’s N-terminal [92-94].

Applications for vaccine development

From an applied perspective, LAB, because of their GRAS
status, are considered to be convenient vectors for deli-
vering therapeutic proteins or antigens to gastrointestinal
tract mucosa. In an alternative approach to vector crea-
tion that avoids the use of genetically modified bacteria,
proteins of interest can be fused with CWBDs found in
cell wall proteins and then anchored on the surfaces of
LAB. The ability of LysM and SLH domains to bind to
bacterial cell walls has been exploited to display protein
antigens on LAB surfaces when developing oral vaccines
[184,189].

Concluding remarks and perspectives
Remarkable advances have been made in the last two
decades in terms of understanding the structure and
function of LAB cell walls. Cell wall components have
been purified from several LAB species, which has
allowed the elucidation of fine-scale cell wall structure as
well as interspecific and intraspecific variation. In tan-
dem, genes involved in cell wall biosynthesis, modifica-
tion, and degradation pathways have been identified,
which has allowed for the construction of mutants that
can be used to investigate the role of such genes in bac-
terial physiology; the results obtained can also inform
technological and health applications of LAB. Specific
progress has been made with regards to deciphering the
molecular mechanisms that control PGH activity and
bacterial autolysis, the anchoring of cell wall proteins on
the bacterial surface, the adsorption of bacteriophages to
the target bacterial surface, and the cross-talk between
probiotic bacteria and host cells. The results obtained
have underscored the importance of further investigating
LAB cell wall structure and function and thus expanding
into new directions of research.

Novel structural modifications of PG have been identi-
fied, along with the genes that are involved. However,
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the role of these modifications in bacterial physiology,
their distribution along the inner cell wall, and their
influence on bacteria-host interactions remain to be
investigated in detail. Furthermore, the enzymes respon-
sible for PG modifications, such as O-acetyltransferase
OatA [44], may be working in concert with other pro-
teins that are involved in cell division, proteins that
remain to be identified.

O-glycosylation of PGHs has been reported in LAB
and has been found to modulate the PG-hydrolyzing
activity of L. plantarum’s major autolysin Acm2. The
function of such modifications needs to be investigated
further in other LAB species and its role in bacteria-
host interactions should be characterized.

Among the secondary cell wall polymers that decorate
the PG sacculus are WTAs. However, WPSs are also
present, and they are essential for the proper septation
and division of bacterial cells, which indicates that they
probably play a crucial role in maintaining cell wall
architecture and integrity. Nonetheless, their exact func-
tion has not yet been deciphered. Further work should
aim to identify both WPS binding sites on PG as well as
the enzymes involved in creating the covalent bonds.
The full range of WPS activity and the control that
these molecules exert over cell wall protein localization
also require further investigation.

The arrangement of the different polymers inside the
cell wall remains largely unknown. AFM has already pro-
ven to be a powerful technique with which to explore bac-
terial surface architecture at the nanoscale. Topographic
imaging of the surface of several LAB, including L. lactis,
L. plantarum, and L. rhamnosus [175], has provided very
high resolution images of the bacterial cell surface struc-
tures (e.g., PG, TAs, PS, and pili) present on living cells, all
without provoking denaturation. In addition, single-mole-
cule force spectroscopy may be used to explore the spatial
distribution and molecular elasticity of such structures.

The structural diversity that exists in cell wall compo-
nents among bacterial species and strains may underlie
strain-dependent differences in processes such as autoly-
sis and characteristics such as stress resistance, probiotic
properties, or phage sensitivity; consequently, this diver-
sity merits further study. For instance, a better under-
standing of interstrain structural variation in L. lactis
WPSs combined with the characterization of the 3D
structure of phage RBPs should allow researchers to
unravel the molecular interactions that take place
between RBPs and WPS receptors. From an applied per-
spective, a more thorough comprehension of the mole-
cular mechanisms behind phage adsorption on host
bacteria should allow us to design practical strategies to
fight phage infections.

A first series of successes has stemmed from the char-
acterization of the cell wall determinants involved in
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interactions between probiotic bacteria and host cells.
The next step is to identify the host cell receptors that
are involved in the recognition of cell wall components
and the signal transduction pathways that lead to cell
response. The identification of the active compounds
found in probiotic bacteria could lead to the develop-
ment of disease treatment strategies, as in the case of
inflammatory bowel diseases, for instance.
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