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Abstract

Background: Lipases including the lipase from Burkholderia cepacia are in a main focus in biotechnology research
since many years because of their manifold possibilities for application in industrial processes. The application of
Burkholderia cepacia lipase for these processes appears complicated because of the need for support by a
chaperone, the lipase specific foldase. Purification and reconstitution protocols therefore interfere with an economic
implementation of such enzymes in industry. Autodisplay is a convenient method to express a variety of passenger
proteins on the surface of E. coli. This method makes subsequent purification steps to obtain the protein of interest
unnecessary. If enzymes are used as passengers, the corresponding cells can simply be applied as whole cell
biocatalysts. Furthermore, enzymes surface displayed in this manner often acquire stabilization by anchoring within
the outer membrane of E. coli.

Results: The lipase and its chaperone foldase from B. cepacia were co-expressed on the surface of E. coli via autodisplay.
The whole cell biocatalyst obtained thereby exhibited an enzymatic activity of 2.73 mU mL' towards the substrate
p-nitrophenyl palmitate when applied in an ODs,g =1. Outer membrane fractions prepared from the same culture
volume showed a lipase activity of 401 mU mL". The lipase-whole cell biocatalyst as well as outer membrane
preparations thereof were used in a standardized laundry test, usually adopted to determine the power of washing
agents. In this test, the lipase whole cell biocatalyst and the membrane preparation derived thereof exhibited the same
lipolytic activity as the purified lipase from B. cepacia and a lipase preparation which is already applied in commercial
washing agents.

Conclusions: Co-expression of both the lipase and its chaperone foldase on the surface of £. coli yields a lipid
degrading whole cell biocatalyst. Therefore the chaperone supported folding process, absolutely required for the
lipolytic activity appears not to be hindered by surface display. Furthermore, the cells and the membrane preparations
appeared to be stable enough to endure a European standard laundry test and show efficient fat removal properties
herein.

Background

Lipolytic enzymes are attractive biotechnological tools
[1]. Among them lipases (triacylglycerol acylhydrolases
EC 3.1.1.3), which catalyze the hydrolysis of triglycerides
in aqueous media, liberating free fatty acids and glycerol,
or the reverse reaction in organic solvents as well, have
gained particular interest, since they simultaneously show
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high enantio- and/or regio-selectivity as well as a high
catalytic activity and thermostability in organic solvents
[2,3]. Contrary to esterases, which preferentially break
ester bonds of short chain fatty acids, lipases are able to
catalyze the hydrolysis of water-insoluble long-chain acyl-
glycerols [1]. Interestingly, activation of lipases often de-
pends on the presence of a lipid-water interface, which
can be explained by their three-dimensional structure. In
an enzymatically inactive state, a surface loop, the so-
called lid, covers the active site of the lipase. Upon con-
tacting the lipid-water interface the lid switches open, and
the active site becomes accessible for the substrate [4].
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So far, lipases have been established in numerous in-
dustries, such as the food industry, paper manufacturing,
pharmaceutical processing [5], and detergents industry,
reflecting their great importance [4]. Despite this enor-
mous industrial interest, not more than around 20 lipases
have been established for industrial applications yet [6].
The sometimes troublesome and time-consuming purifi-
cation procedures to obtain pure enzyme preparations for
particular applications seem to be one possible obstacle in
broadening the use of lipases in industrial processes [7].
Moreover, to express lipases from Burkholderia and
Pseudomonas species in an active form, lipases which have
advantageous features regarding thermal stability, alkaline
pH tolerance and high substrate selectivity, and there-
fore making them promising industrial biocatalysts
[8-10], bears an additional problem. These enzymes
are dependent on the presence of a personal chaperon,
the so-called lipase-specific foldase (Lif), responsible
for correct folding of the lipase [1,11]. As a consequence,
former heterologous expression of the Burkholderia cepacia
lipase in E. coli resulted in a very low yield of active soluble
lipase, whereas the majority of the enzyme was expressed as
insoluble inclusion bodies. Significant amounts of active lip-
ase were only achieved by applying an additional in-vitro
refolding protocol [12].

An innovative way to gain access to the synthetic po-
tential of lipases is their display on the surface of a living
cell, in particular an E. coli cell [13]. Since the enzyme is
directly accessible for its substrate, costly purifications as
mentioned above are not necessary.

So far, various anchoring motifs like OmpC [14], ice
nucleation protein [15], OprF [16] and FadL [17] have
been used to display Pseudomonas and Bacillus lipases
on the surface of E. coli. Wilhelm et al. [18] were able to
display the LipH chaperone of P. aeruginosa in an active
state on the surface of E. coli by using the P. aeruginosa
autotransporter protein EstA. With these cells displaying
the lipase specific foldase, reconstitution of a purified
but denatured lipase into an active form was facilitated.
In another report, Yang et al. described the display of ac-
tive P. aeruginosa and B. cepacia lipases on the surface
of E. coli via co-expression of lipase and the Lif protein
within a single fusion protein [19]. Autodisplay, a bacter-
ial surface display system, appeared to be a convenient
tool for the expression of B. cepacia lipase, since it has
been proven to be well adapted for the surface display of
challenging enzymes. As an example it was possible to
express enzymatically active human hyaluronidases in
E. coli, a group of enzymes which are known to form
inclusion bodies, when expressed by other means [20].
Autodisplay is based on AIDA-I, the adhesin involved
in diffuse adherence in enteropathogenic E. coli (EPEC)
[21,22], a naturally occurring autotransporter protein in
E. coli. The gene construct applied in Autodisplay
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encodes a fusion protein comprised of an N-terminal
signal peptide derived from cholera toxin p-subunit
(CtxB), a variable passenger domain and the C-terminal
AIDA-T autotransporter including a linker to enable full
surface access of the passenger domain (Figure 1B). Most
probably, the linker and the p-barrel are responsible
for the translocation of the passenger protein across
the E. coli outer membrane (Figure 1A). One of the
most striking features of the Autodisplay system is the mo-
bility of the B-barrel serving as an anchor within the outer
membrane. This enables the self-driven dimerization or
multimerization of subunits to active or functional en-
zymes on the surface of E. coli, even in case they were
expressed as monomers. Examples for this self-driven
dimerization or multimerization of passsenger proteins on
the cell surface of E. coli are the active display of dimeric
adrenodoxin [23], dimeric sorbit dehydrogenase [24], mul-
timeric nitrilase [25] and dimeric prenyl transferase [26].
Moreover, Autodisplay has proven to be a robust expres-
sion platform for the surface display of enzymes in general
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Figure 1 Passenger transport across two membranes by
Autodisplay. A: The N-terminal signalpeptide facilitates the transport
across the inner membrane by the so called Sec-pathway [32] and is
then cut off by periplasmic signal peptidases. The C-terminal part forms
a porin-like B-barrel structure inside the outer membrane through
which the passenger is translocated to the surface by the linker. B and
C: The structure of the precursor proteins for LipBC-FP (B) and
FoldBc-FP (C) is shown schematically. The mature fusion proteins
anchored inside the outer membrane only consist of the passenger
(which would be here lipase or foldase, depicted in lightgrey) and the
autotransporter structure (linker (white) and B-barrel (black)). (The
genes for lipase and foldase were amplified from plasmid pHESS,
containing the complete sequence of the B. cepacia lipase [GenBank:
FJ638612] and cloned into appropriate Autodisplay-vectors via
restriction sites Xhol (5’-end) and Kpnl (3’-end).
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including cytochrome P450 enzymes of bacterial and hu-
man origin [27-29]. More recently, it was shown that
Autodisplay, which is defined as the surface display of a
recombinant protein by the autotransporter secretion
pathway [30], relies on a set of periplasmic chaperones in-
cluding a complex of proteins which corresponds to the
so-called Bam machinery in E. coli [31]. This makes the
prefix “auto” somewhat obsolete, but for clarity reasons it
appears to be favorable not to change the term Autodis-
play on these findings. In order to elucidate, whether
Autodisplay is not only capable of permitting subunits of
enzymes to aggregate on the cell surface, but can also be
used for the expression of two different enzymes on a sin-
gle cell, we chose Burkholderia cepacia lipase and its spe-
cific foldase as candidates. Lipolytic activity was tested in
common lab scale assays as well as in a standardized laun-
dry test which is typically used to evaluate the quality of
washing agents. Since the presence of recombinant bac-
teria in clothes after washing could cause some resistance
in application, also membrane preparations of the cells
co-expressing lipase and foldase were applied in the iden-
tical test as well.

Results:

Construction of the plasmid for autodisplay of lipase

By analyzing the amino acid sequence of B. cepacia
ATCC 21808 lipase using the SignalP computer program
[33], a classical signal peptide was identified at its N
terminus. Since this lipase inherent signal peptide is pro-
posed to interfere with the signal peptide used in auto-
display and thus constrain a proper transport across
the inner membrane, the lipase signal peptide encod-
ing 120 bp sequence was deleted by PCR. PCR-primers
were designed according to the deposited sequence of
the B. cepacia lipase [GenBank: FJ638612] and added
an Xhol (5'end) and a Kpnl restriction site (3’end) to
the PCR fragment in order to enable an in frame fu-
sion with the plasmid DNA encoding the autodisplay
domains. For PCR plasmid pHES8 was used, which re-
sembles pHES12 described by Quyen et al. [12] and
encodes the complete B. cepacia lipase operon (i.e. lip-
ase and its corresponding foldase) for intracellular ex-
pression in E. coli. After insertion into plasmid pCD003
[25] cleaved with Xhol and Kpnl as well, plasmid pAT-
LipBc was obtained encoding a fusion protein comprising
the signal peptide of CtxB at the N terminus followed
by the lipase as a passenger, the linker region and the
B-barrel from the AIDA-I autotransporter needed for
outer membrane translocation and full surface accessi-
bility (Figure 1B).

Surface display of lipase
E. coli BL21(DE3) pAT-LipBc were grown until an
ODs5y5 of 0.5 was reached. Expression of the lipase fusion
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protein was then induced by addition of isopropyl-p-
thiogalactosid (IPTG) to a final concentration of 1 mM
and incubation for one hour. Adjacently cells were har-
vested and the outer membrane proteins were isolated
according to the protocol of Hantke [34], modified by
Schultheiss et al. [35]. The obtained outer membrane
preparations were then subjected to SDS-PAGE to
analyze the expression of the lipase fusion protein. As a
control host cells E. coli BL21(DE3) and E. coli BL21
(DE3)pAT-LipBc without addition of IPTG were culti-
vated and outer membranes were prepared and analyzed
identically (Figure 2A, lanes 1 and 2). Inducing the pro-
tein expression of E. coli BL21(DE3) pAT-LipBc resulted
in expression of the lipase fusion protein with a size
of ~82 kDa (Figure 2A, lane 3). A lipase specific anti-
body was available, so the correct surface exposure of
lipase could be evaluated by fluorescence-activated
cell sorting (FACS). Since antibodies are too large to
cross the outer membrane, they can only bind on sur-
face exposed structures [36]. Therefore, cells express-
ing a passenger protein on their surface which is then
marked by fluorescently labeled antibodies can easily
be detected by FACS and will thereby cause an increase in
fluorescence values compared to cells without such sur-
face displayed protein. To identify effects caused by un-
specific binding, the native host strain E. coli BL21(DE3)
and another autodisplay strain displaying a different en-
zyme (NADH oxidase) on its surface (E. coli BL21(DE3)
pAT-NOx) were used as controls. It turned out that the
sample containing the lipase expressing cells showed a
tenfold increase in mean fluorescence intensity values
(Figure 3C) compared to the samples used as controls
which showed no increased fluorescence signal (Figure 3A
and B). The lipase antibody thus effectively bound the
enzyme but did not show unspecific binding effects.
Therefore the lipase expressed via autodisplay can be
regarded as surface exposed. Interestingly, like Yang
et al. [19] were already able to demonstrate, antibody la-
beling of the surface exposed lipase does not require the
involvement of its chaperone foldase.

Construction of the plasmid for autodisplay of foldase

According to Quyen et al. [12] the gene for foldase con-
tains a possible N-terminal 70 aa membrane anchor. This
structure is not required for the chaperone function of fol-
dase, but may interfere with correct surface expression via
autodisplay. Therefore foldase also was amplified from
plasmid pHESS8, which encodes the whole lipase operon
[12], deleting the first 210 bp encoding this particular an-
chor structure. PCR primers, designed using the deposited
sequence of the whole B. cepacia lipase [GenBank:
FJ638612] added an Xhol site at the 5'-end and a Kpnl
site at the 3'-end of the foldase gene, analogously as
described for the construction of plasmid pAT-LipBc.
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Figure 2 Expression of lipase fusion protein, expression and surface display of foldase fusion protein. A: SDS-PAGE of the outer membrane
protein preparation of E. coli BL21(DE3)pAT-LipBc. Lane 1 shows an outer membrane preparation of E. coli BL21(DE3), used as a control. Lanes 2
and 3 show outer membrane preparations of E. coli BL21(DE3)pAT-LipBc. B: SDS-PAGE of the outer membrane protein preparation of £ coli BL21
(DE3)pAT-FoldBc. Molecular weight markers are indicated on the left hand side. M: protein marker; IPTG: protein expression was induced by
adding IPTG (final concentration: T mM); Proteinase K: whole cells were treated with Proteinase K; concentrations are given in mg mL™. The
lipase and foldase fusion proteins are indicated by using black arrows. OmpA/OmpkF: native E. coli outer membrane proteins are also indicated
by a black arrow.

The derived fragment was ligated into autodisplay vector  Surface display of foldase

pBLO01, digested with Xhol and Kpnl before. Vector
pBLOO1 is a pCOLA Duet™ derivative, encoding the do-
mains needed for autodisplay. Vector pBL0O01 furthermore
provides a kanamycin resistance. Insertion of the foldase
gene into pBLO01 resulted in plasmid pAT-FoldBc encod-
ing an in frame fusion of the autodisplay domains with fol-
dase as a passenger (Figure 1C).

E. coli BL21 (DE3) pAT-FoldBc cells were grown to mid-
log phase and autotransporter fusion protein expression
(FoldBc-FP) was induced by adding 1 mM IPTG to the
fermentation broth and incubating the culture for an-
other hour. After preparation of the outer membrane
fraction, obtained protein samples were subjected to
SDS-PAGE. As can be seen in Figure 2B, induction of
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Figure 3 FACS analysis of lipase surface display. \Whole cells were treated with rabbit-anti-lipase-antibody and anti-rabbit Dylight coupled
secondary antibody. A: host cells £. coli BL21(DE3) used as a control, B: Cells displaying another enzyme on their surface (E. coli BL21(DE3)
pAT-NOx). These were used as control cells to test whether the anti-lipase-antibody binds parts of the autotransporter. C: BL21(DE3)pAT-LipBc
expressing the lipase via Autodisplay. Only the reaction with BL21(DE3)pAT-LipBc and the lipase-antibody caused a tenfold increase in mean
fluorescence values, which means that the lipase can be regarded as surface exposed.
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protein expression resulted in the appearance of a pro-
tein band with an apparent molecular mass of around
80 kDa (Figure 2B, lane 2), which is in good accordance
with the calculated molecular mass of 78.5 kDa for
FoldBc-FP. The SDS-analysis revealed the location of the
autotransporter fusion protein in the outer membrane
protein fraction. The investigation of surface exposure
via FACS was not possible for foldase, since there was
no specific antibody against foldase available. Therefore,
to elucidate if the passenger domain of FoldBc-FP is
truly surface exposed and not directed to the periplasm,
the accessibility of the fusion protein for proteases was
tested. Since proteases are too large to pass the outer
membrane, only surface exposed proteins will be de-
graded. In order to perform this degradation test whole
cells of E. coli BL21(DE3) pAT-FoldBc were incubated
with different concentrations of proteinase K. This treat-
ment resulted in degradation of FoldBc-FP (Figure 2B,
lanes 3 and 4). To demonstrate the integrity of the
outer membrane during protease treatment, outer mem-
brane protein A (OmpA) can be used as a reporter. The
C-terminal part of OmpA directs into the periplasmic
space while the N-terminal part builds a compact 3-barrel
structure inside the outer membrane [37]. A digestion of
OmpA therefore can only occur from the periplasmic side,
indicating that the outer membrane lost its integrity to en-
able the access for proteases into the periplasm. Thus, the
fact, that the performed protease accessibility test led to a
strong decrease of FoldBc-FP intensity (Figure 2B, lanes 3
and 4), without affecting OmpA intensity, provides strong
evidence for the surface exposure of FoldBc-FP.

Coexpression of both LipBc-FP and FoldBc-FP

Activity of the lipase from Burkholderia cepacia is
dependent on the presence of foldase, a specific chaperone,
enabling the correct folding of the lipase [1,12]. Since E. coli
BL21(DE3) pAT-LipBc cells showed no lipase activity at all
(data not shown), co-expression of pAT-LipBc together with
pAT-FoldBc in one host was conducted. To bring both plas-
mids into one E. coli expression strain, plasmid pAT-FoldBc
was transformed into electrocompetent cells of E. coli BL21
(DE3)pAT-LipBc. Since both plasmids encode for different
antibiotic resistances, transformants harboring pAT-LipBc
and pAT-FoldBc could be identified by using selection
media containing carbenicillin as well as kanamycin. The
obtained strain was named E. coli BL21(DE3)pAT-LiFoBc.
Cells co-expressing both LipBc-FP and FoldBc-EP were also
investigated for correct surface display of both autotranspor-
ter fusion proteins. Therefore co-expression of both proteins
was induced and cells were treated with proteinase K as de-
scribed above in order to determine the accessibility of lipase
and foldase fusion protein on the surface of one E. coli strain
for externally added proteases. Proteinase K treatment re-
sulted in digestion of both fusion proteins (Figure 4, lanes 4
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Figure 4 Coexpression and surface display of both lipase and
foldase fusion protein. SDS-PAGE of membrane preparations of
E. coli BL21(DE3)pAT-LiFoBc, coexpressing the lipase and foldase
fusion protein. Molecular weight markers are indicated on the
left hand side. Lane 1 shows a membrane preparation of E. coli
BL21(DE3), used as a control. Lanes 2-5 show outer membrane
preparations of £. coli BL21(DE3)pAT-LiFoBc. M: protein marker;
IPTG: protein expression was induced by adding IPTG (final concentration:
1 mM); Proteinase K: whole cells were treated with Proteinase K,
concentrations are given in mg mL'; OmpA/OmpF: native E. coli
outer membrane proteins. The foldase and lipase fusion proteins

are indicated by black arrows.

and 5). The decrease in intensity of the fusion protein bands
in comparison to the non-treated sample (Figure 4, lane 3)
indicated their surface exposure. Additionally, the constant
intensity of OmpA protein band indicates, that the cell in-
tegrity was sustained throughout this experiment.

Lipase Activity of whole cells co-expressing LipBc-FP and
FoldBc-FP

Lipases are known to split ester bonds and an established
and easily performable assay to determine lipase activity is
the lipolytic degradation of p-nitrophenyl palmitate
(p-NPP) into p-nitrophenolate and palmitate. The
nitrophenolate anion is colored yellow and its forma-
tion can be followed spectrophotometrically at 405 nm
(€nitrophenol = 17,000 L mol™* cm™). To determine the lipase
activity of whole cells, E. coli BL21(DE3)pAT-LiFoBc was
cultivated and protein expression was induced as de-
scribed above. As a control the host strain E. coli BL21
(DE3) without a plasmid was cultivated analogously. Cells
were then washed twice and resuspended to an ODs7g of
10 in potassium phosphate buffer (25 mM, pH 7.4). For
enzymatic conversion 20 pl of these cells were added to
180 pl of a 0.29 mM p-NPP solution in phosphate buffer
(25 mM, pH 7.4) resulting in a final substrate concentra-
tion of 0.26 mM and a final OD5;g =1. The assay was per-
formed in in a 96-well plate and the kinetics of lipase
reaction was measured as the increase in absorption at
405 nm for 25 min in a microplate reader at a constant
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temperature of 25°C. An increase of absorption values
could only be measured in the samples containing E. coli
BL21(DE3) pAT-LiFoBc (Figure 5). The host strain E. coli
BL21(DE3) showed no significant increase in absorption
at all. By using the initial enzyme reaction at min 1-4, the
extinction coefficient of p-NPP and a pathway of 0,52 cm
for a 200 pl reaction volume in the microplate reader, an
activity of 2.73 mU/ml could be calculated for E. coli BL21
(DE3) pAT-LiFoBc cells co-expressing lipase and foldase,
applied at an ODsg of 1.

In addition, we investigated whether mixing the cells
displaying only the lipase with cells displaying only the
foldase could lead to whole cell lipase activity. This ap-
proach was somehow similar to that of Wilhelm et al.
[18], who mixed cells displaying foldase with a dena-
tured lipase and ended up with lipase activity. In our in-
vestigation, for the combination of both types of cells, E
coli BL21(DE3) pAT-LipBc and E. coli BL21(DE3) pAT-
FoldBc were cultivated separately and protein expression
was induced as described above. Each type of cells was
washed and suspended to an ODs555 of 10 as described
before. Subsequently E. coli BL21(DE3) pAT-LipBc and
E. coli BL21(DE3) pAT-FoldBc were mixed in a ratio of
1:1. Half of the sample was incubated for one hour, the
other half was incubated for 24 hours at 20°C with vigor-
ous shaking (200 rpm) to avoid sedimentation. After the
incubation enzymatic activity was determined as de-
scribed for the cells co-expressing lipase and foldase.
However, mixing the cells displaying the foldase with
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cells displaying the lipase did not yield any activity at all,
neither after 1 h nor after 24 h. This is to indicate that
the surface displayed lipase needs to be co-expressed
with its chaperone foldase on the surface of a single cell
to gain its enzymatic activity.

Lipase activity of outer membrane preparations from E.
Coli BL21(DE3) pAT-LiFoBc

In order to apply not only whole cells but membrane
preparations for further washing experiments, the de-
scribed enzyme assay was carried out with samples of
membrane preparations as well. Membrane preparations
were derived from E. coli BL21(DE3) pAT-LiFoBc and
from previously combined E. coli BL21(DE3) pAT-LipBc
and E. coli BL21(DE3) pAT-FoldBc. To obtain the outer
membrane proteins, the preparation was performed ac-
cording to a protocol described by Schultheiss et al [35]
(see materials and methods). After the washing steps,
outer membrane proteins were suspended in 1 mL of
25 mM phosphate buffer (pH 7.4). 20 pL of a 200 pL
assay sample volume was composed of the membrane
protein suspension which was corresponding to an
amount of cells with a final ODs,g of 2. As we antici-
pated that outer membrane preparation could lead to a
loss in proteins and/or enzymatic activity, the amount of
outer membrane proteins were taken from double the
amount of cells assayed in the whole cell activity deter-
mination. The photometrical assays were then carried
out at 25°C according to the same protocol as was used
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Figure 5 Enzyme activity of whole cells displaying lipase and foldase. p-nitrophenyl palmitate was used as substrate and the increase of
absorption at 405 nm was observed photometrically. The assay was performed in potassium phosphate buffer pH 7.4 at a constant temperature
of 25°C. The increase in absorption is caused by the nitrophenylate anion after lipolytic cleavage of the ester bond conducted by the surface
displayed lipase. © = E. coli BL21(DE3)pAT-LiFoBc coexpressing both lipase and foldase A = E. coli BL21(DE3) pAT-LipBc and E. coli UT5600(DE3)
pAT-FoldBc mixed and preincubated for one hour m = £. coli BL21(DE3), host strain used as a control, I = substrate solution in buffer. Mean

T T T

15 20 25




Kranen et al. Microbial Cell Factories 2014, 13:19
http://www.microbialcellfactories.com/content/13/1/19

for whole cells. Only membrane protein preparations of
the strain co-expressing enzyme and chaperone (E. coli
BL21(DE3) pAT-LiFoBc) showed lipase activity (Figure 6).
From the linear part of the curve in Figure 6 the enzym-
atic activity was determined to be 4.01 mU/ml, whereas
membrane preparations of native E. coli BL21(DE3) cells
as well as those of the pre-incubated cell mixture of E. coli
BL21(DE3) pAT-LipBc and E. coli BL21(DE3) pAT-Fold-
Bc showed no lipase activity at all (Figure 6). The deter-
mined activity for the membrane preparation from the
cells coexpressing lipase and foldase on the surface was
only by a factor of 1.5 higher than the activity of whole
cells when applied in the same assay. But as described
above the outer membrane proteins from double the
amount of cells were applied, referring to the correspond-
ing ODs75.This indicates a loss of function or even a loss
of the lipase and/or foldase during the preparation proto-
col, but could also been due to a general loss in cellular
material during the centrifugation step. Nevertheless the
enzyme, co-expressed with its chaperone, showed activity
not only on the surface of E. coli cells but also in prepara-
tions of outer membrane proteins derived thereof.

Application of cells and membrane preparations in a
standardized laundry test

One major aim of this study was the application of an
autodisplay whole-cell biocatalyst in a real-life laundry
process. Therefore the lipolytic capability of E. coli BL21
(DE3) pAT-LiFoBc and membrane preparations thereof
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was determined in a standardized test imitating a con-
ventional machine washing process. During this test,
cells and membrane fractions were compared to soluble,
reconstituted lipase from B. cepacia and Lipex® a lipase
preparation, which is already applied in washing agents.
It turned out, that there was no significant difference in
lipase activity between the soluble enzyme from B. cepa-
cia, the lipase-whole cell biocatalyst and membrane
preparations thereof. These results indicate that the
lipase-whole cell biocatalyst and its membrane prepar-
ation endured the mechanically demanding procedure
(test cloth and steel balls within the washing vessel,
40°C, 45 rpm) yielding up to 100% of the lipolytic per-
formance given as relative brightening effect of Lipex®
against Butaris® (Figure 7). Lipolytic performance
against the other tested fat and grease spots moved in
the range of 90-95% relative activity compared to
Lipex®. The membrane stabilization of lipase by auto-
display therefore obviously revealed no significant im-
provement in efficiency compared to soluble lipase
within this test. Nevertheless, the low differentiation
values between the tested enzyme preparations and
the relatively high standard deviations are presumably
due to the small scale testing which was applied here.
Since this might be a statistical problem, a more exact
determination of differences between the several prep-
arations of lipase may be overcome by an enlargement
of the test set up and the application of a larger num-
ber of samples. Furthermore a better differentiation
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Figure 6 Enzyme activity of outer membrane preparations obtained from cells displaying lipase and foldase. Outer membranes were
prepared as described in materials and methods and then applied to an assay with p-nitrophenyl palmitate as substrate and in which the
increase of absorption at 405 nm was observed photometrically. The assay was performed in potassium phosphate buffer pH 7.4 at a constant
temperature of 25°C. The increase in absorption is caused by the nitrophenylate anion after lipolytic cleavage of the ester bond conducted by
the surface displayed lipase. O = outer membrane preparations of E. coli BL21(DE3)pAT-LiFoBc coexpressing both lipase and foldase, m = outer
membrane preparations of £. coli BL21(DE3) used as control, (I = substrate solution in buffer. Mean values with standard deviations are shown, n = 3.
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Figure 7 Laundry cleaning with different lipase samples in the Linitest plus testing system. The brightening effect caused by soluble
lipase, the lipase-whole cell biocatalyst and the membrane preparation, respectively are shown in per cent relatively to the brightening effect
caused by the detergent lipase. Average values determined from three measurement points and standard deviations are depicted. White bars:
detergent lipase, light grey bars: soluble lipase from B. cepacia, dark grey bars: the herein described lipase-whole cell biocatalyst, shaded

may be obtained by a more precise determination of
the exact number of enzymes on a single whole-cell-
biocatalyst and thus the number of enzymes applied in
one sample, which is possible by flow cytometry, for
example. Nonetheless it needs to be considered, that
this was the first time, whole cells with a surface dis-
played lipase and membrane preparations thereof were
subjected to a process like this.

Discussion

Since ecologically friendly housekeeping processes be-
come more and more important for a broad public and
within a steadily growing biotechnological industry the
need for cost efficient and easy accessible lipase prepara-
tions increases. By means of Autodisplay a new method
to make the challenging lipase from B. cepacia easily
available was developed: Within this study we were for
the first time able to use Autodisplay for the co-
expression of two different proteins, which need to
interact with each other, a lipase and its implicitly re-
quired chaperone, foldase. By co-expression of both
these proteins on the surface of one single E. coli cell we
obtained a functional lipase-whole cell biocatalyst. Sim-
ply combining two cell types, each displaying one of the
proteins, either lipase or foldase was not sufficient to
create a functional whole cell biocatalyst. This indicates
that the interaction between lipase and foldase can only
take place if they are expressed on the surface of a single
cell. Therefore, it can be assumed that a certain vicinity
of lipase and foldase is needed for the process of folding
supported by the chaperone. The novelty of the present
investigation is, that the lipase and its specific foldase
were expressed separately and both proteins interacted
spontaneously and self driven, finally yielding an enzy-
matically active lipase at the cell surface of E. coli. In this
respect the study goes beyond the aims of Wilhelm

et al., [18], which displayed a foldase on the surface of
E. coli and added the corresponding lipase as a purified
protein subsequently and it goes an important step fur-
ther than the work of Yang et al. [19] who obtained the
surface display of an active lipase after co-expression
with foldase in a single fusion protein. Our report is
the first time description of the separate expression
and surface display of two enzymes that finally inter-
acted with each other in order to obtain an enzymatic
activity. It paves the way for the surface display of
other multiprotein or multienzyme complexes by a
similar strategy, which was to the best of our know-
ledge up to now not taken into consideration. Our data
show, that this interaction and the anchorage within
the E. coli outer membrane deliver a biocatalyst stable
enough to endure even a stressing and mechanically
demanding procedure like the standardized laundry
tests which had been conducted here. The whole cell
biocatalyst and the membrane preparations yielded an
activity in the same order of magnitude to the purified
enzyme and a standard lipase formulation already used
in detergents (Lipex®). Taken the activity Of 4.01 mU/ml at
an ODs;5=1 as an example, the whole cell lipase/foldase
biocatalyst described here would reduce the costs in a 30
qm fermenter to 35% of those required for the purified en-
zyme to get the same amount of product, taken into con-
sideration fermentation, purification and stabilization of the
catalysts, as well as the necessary raw materials (G. Festel,
unpublished). But it would be also possible to gain an even
higher enzymatic activity by E. coli BL21(DE3) pAT-LiFoBc
which exceeds the activity of purified and reconstituted
B. cepacia lipase and the detergent lipase by further
optimization of the culturing conditions and culture
medium for instance. Moreover directed evolution ap-
proaches or site-directed mutagenesis could be applied
in order to gain higher lipase activities finally.
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Conclusion

Autodisplay offers once more a convenient alternative
to obtain a functional biocatalyst without precedent
laborious purifying steps and in the special case of
B. cepacia lipase and its chaperone foldase without a
strongly required reconstitution protocol. The suc-
cessful removal of fat or grease spots respectively dur-
ing standard washing procedures was possible by
simply applying surface engineered cells and E. coli
outer membrane preparations containing active sur-
face displayed lipase. Working with a cell-free prepar-
ation which achieves the same activities like the
whole cell biocatalyst is therefore also feasible. These
results give an outlook of possible applications for en-
zymes utilized by Autodisplay beyond laboratory scale
testing.

Methods

Bacterial strains, plasmids and culture conditions
Escherichia coli strains UT5600(DE3) [F, ara-14, leuB6,
secA6, lacY1, proCl4, tsx-67, AlompT-tepC)266, entA403,
trpE38, rfbD1, rpsL109(Str"), xyl-5, mtl-1, thi-1, \(DE3)]
and E. coli BL21(DE3) [B, F°, dcm, ompT, lon, hsdS(rB”
mB~), gal, \(DE3)] were used for the expression of auto-
transporter fusion proteins. E. coli TOP10 (F- mcrA
A(mrrhsdRMS-mcrBC) $80lacZDM15 AlacX74 deoR
recAl araD139 A(ara-leu) 7697 galU galK rpsL (Str®)
endAl nupG) and the vector pCR*4-TOPO® were used
for subcloning of polymerase chain reaction (PCR)
products, using the TOPO-TA cloning kit (Invitrogen,
Carlsbad, CA, USA). Site directed mutagenesis of the
restriction sites for Xhol and Kpnl inside the genes of
interest was performed using the QuikChange Site Di-
rected Mutagenesis Kit (Stratagene, Santa Clara, CA,
USA) and appropriate mutagenesis primers. Construc-
tion of plasmid pCDO003 which encodes the AIDA-I
autotransporter has been described elsewhere [25]. Plas-
mid pBLOO01 is a pCOLA-Duet'™-1—derivative. The sec-
ond MCS had been removed and the autotransporter
cassette was inserted using Ncol and Blpl restriction sites.
Plasmid pHESS, encoding the lipase and foldase from
Burkholderia cepacia, is a derivative of pHES12, which
has been described by Quyen et al. [12]. Bacteria were
routinely grown at 37°C in Lysogeny broth (LB) contain-
ing carbenicillin (100 mg LY or kanamycin (30 mg LY or
both antibiotics, respectively. For co-expression of both,
lipase and foldase, a culture from strain E. coli BL21(DE3)
pAT-LipBc, already containing the plasmid encoding for
lipase-autotransporter fusion protein, was prepared to ob-
tain electrocompetent cells according to a modified proto-
col from Sambrook et al. [38]. Plasmid pAT-FoldBc was
then transformed into an aliquot of these cells by electro-
poration resulting in strain BL21(DE3)pAT-LiFoBc which
contains both plasmids.
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Recombinant DNA techniques

For construction of plasmid pAT-LipBc, which contains
the gene encoding LipBc-FP, the lipase gene was ampli-
fied by PCR. Plasmid pHESS8 served as a template for
primers EK009 (CGCTCGAGGCGAGCGCGCCCGCC-
GAC) and EK010 (GGTACCCACGCCCGCGAGCTT-
CAGCCQ). To facilitate cloning of the lipase-PCR fragment
into the autotransporter cassette, a Xhol restriction site was
added to the 5'-end and a Kpnl restriction site was added to
the 3'-end via PCR. For construction of plasmid pAT-
FoldBc, containing the gene which encodes for FoldBc-FP,
the foldase gene was amplified by PCR, again using pHES8
as a template for primers CD004 (CTCGAGCCGTCGTC
GCTGGCCGGCTCC) and CD005 (GGTACCCTGCGCG
CTGCCCGCGCCGCG). 5'-Xhol and 3'-Kpnl-restriciton
sites were attached to the PCR fragment analogously.
Both PCR products were each inserted into vector
pCR°4-TOPO" and first brought to site directed muta-
genesis according to the protocols delivered by Strata-
gene to remove unwanted restriction sites within the
genes of interest. Mutated plasmids were then restricted
with Xhol and Kpnl. The restriction fragment containing
the lipase gene was ligated into pET-derivative pCD003
[25] restricted with the same enzymes. The restriction
fragment containing the foldase gene was ligated into
pCOLA-Duet™-1—derivative pBL001 restricted with the
same enzymes before. Both ligation steps yielded an in
frame fusion of lipase or foldase respectively, with the
autotransporter domains under the control of a T7/lac
promoter. Plasmid DNA preparation, restriction digestion,
ligation, DNA electrophoresis and transformation were
performed according to standard protocols [38]. Gel ex-
traction of digested fragments was performed using a gel
extraction kit from Qiagen (Hilden, Germany).

Outer membrane protein preparation

E. coli cells were grown overnight and 1 ml of the cul-
ture was used to inoculate LB medium (40 ml). Cells
were cultured at 37°C with vigorous shaking (200 rpm)
for about 2 hours until an ODs,5 of 0.5 was reached.
The culture was separated into two aliquots and protein
expression was induced by adding IPTG at a final con-
centration of 1 mM to one of the aliquots. Cultures then
were incubated at 30°C and shaking (200 rpm) for one
hour. Induction was stopped by incubating the cells on
ice for 15 min. After harvesting and washing of the cells
with Tris-HCl (0.2 M, pH 8), differential cell fraction-
ation was performed according to the method of Hantke
[34] as modified by Schultheiss et al. [35] In detail, cell
lysis was obtained by adding lysozyme (0.04 mg/mL
end concentration) in the presence of 10 mM sacchar-
ose and 1 uM EDTA in a final volume of 1.5 mL of
Tris-HCI (0.2 M, pH 8) and incubation for 10 min at
room temperature. Subsequently aprotinin (10 pg/mL),
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phenylmethylsulfonyl fluoride (PMSF) (0.5 mM), as
well as 5 mL of extraction buffer (50 mM Tris-HCI
pH8.0, 10 mM MgCl,, 2% Triton x 100) and DNAsel
(10 pg/mL) were added. After incubation on ice for
30 min the samples were centrifuged (2,460 g, 5 min,
4.0°C) to remove intact bacteria and large cell debris.
The supernatants representing the clarified bacterial
lysate were retained and centrifuged at higher speed
(38,700 x g, 30 min, 4.0°C) in order to obtain the
membrane protein fraction. The resulting supernatant,
containing soluble cytoplasmic and periplasmic pro-
teins, was completely aspirated. The pellet was sus-
pended in 10 ml phosphate-buffered saline (PBS) plus
1% Sarcosyl (N-lauryl sarcosinate, sodium salt) and
centrifuged again (38,700 x g, 60 min, 4°C). The super-
natant after this step contained the sarcosyl-soluble
cytoplasmic membrane proteins and was completely
aspirated. The sediment representing the outer mem-
brane protein fraction was washed twice with 10 ml of
water and dissolved in 30 pl water for SDS-PAGE or
an adequate volume of 25 mM potassium phosphate
buffer pH 7,4 for activity determination. For whole cell
protease treatment, E. coli cells were harvested, washed and
resuspended in 1 ml Tris-HCl (0.2 M, pH 8). Proteinase K
was added to final concentrations between 0.2 mg mL ™" and
0.5 mg mL™" and cells were incubated for 1 hour at 37°C.
Digestion was stopped by washing the cells twice with
Tris-HCI (0.2 M, pH 8) containing 10% fetal calf serum
(FCS) and outer membrane proteins were prepared as
described above.

For outer membrane proteins that were applied for ac-
tivity assays, cells were not treated with Proteinase K.

SDS-PAGE

Outer membrane isolates were diluted (1:1.5) with sam-
ple buffer (100 mM Tris/HCl (pH 6.8) containing 4%
SDS, 0.2% bromophenol blue, 200 mM dithiothreitol
and 20% glycerol), boiled for 10 minutes and analyzed
on 10% polyacrylamid gels. Proteins were stained with
Coomassie brilliant blue (R250). To correlate molecu-
lar masses of protein bands of interest, a molecular
weight standard was used (PageRuler unstained, Fermentas,
Burlington, Canada).

Flow cytometer analysis

E. coli BL21(DE3) pAT-LipBc cells were grown and ex-
pression of lipase fusion protein was induced as de-
scribed above by adding IPTG to a final concentration
of 1 mM and incubating the cells for another hour at
30°C under shaking (200 rpm). Cells were harvested by
centrifugation (2400 g, 2 min, 4°C, Mikro200R, Hettich,
Tuttlingen, Germany) and washed twice with filter steril-
ized (0.2 pm pore size, ethylethersulfone membrane)
phosphate buffered saline (PBS, pH 7.4) before suspending
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to a final ODs75 of 0.25/mL for further experiments.
100 ul of these cells were again centrifuged and resus-
pended in 500 puL PBS (pH 7.4) containing 3% bovine
serum albumin (BSA, filter sterilized) and incubated for
10 min at room temperature. After centrifuging the cells
for 60 sec with 17,000 g (Mikro200R, Hettich, Tuttlingen,
Germany), the obtained cell pellet was suspended with
100 pL of rabbit anti lipase antibody (diluted 1:50 in PBS
(pH 7.4) + 3% BSA, filter sterilized) and incubated for an-
other 30 min at room temperature. Subsequently cells
were washed twice with 500 pL of PBS (pH 7.4) + 3% BSA.
Cell pellets were resuspended in 100 pL of secondary anti-
body solution (goat-anti-rabbit, Dylight'™ 633, Thermo
Scientific, diluted 1:25 in PBS (pH 7.4) +3% BSA) and in-
cubated for 30 min in the dark at room temperature. After
washing twice in 500 pL of PBS (pH 7.4) the cell pellet
was finally suspended in 1.5 mL of PBS (pH 7.4, filter ster-
ilized to avoid external particles). The samples were ana-
lyzed using a flow cytometer (Cyflow Space, Partec,
Miinster, Germany) at an excitation wavelength of 647 nm.

Lipase activity assay

Photometrical Assays to determine lipolytic activity of
the lipase-whole cell biocatalyst were performed accord-
ing to a modified protocol by Winkler and Stuckmann
[39] with p-nitrophenylpalmitate (p-NPP) as substrate.
For this purpose cells were routinely cultivated in LB
medium until an optical density at 578 nm (OD®”®) of
1.0 was reached. Induction of protein expression was
started by adding IPTG at a final concentration of 1 mM
and incubating the cells another hour at 30°C and
200 rpm. Cells were then harvested by centrifugation
and washed twice in potassium phosphate buffer,
25 mM, pH 7.4, and stored in the same buffer at 4°C in
an ODs;g =10 until used for assays. In case of mixing
different types of cells, they were used in a 1:1 ratio at
ODs5;5 =10 and incubated at 20°C on a rocking platform
to avoid sedimentation For activity assays a stock solu-
tion of the substrate p-NPP was prepared in ethanol to a
final concentration of 7.9 mM) and finally diluted in po-
tassium phosphate buffer, 25 mM, pH 7.4 under con-
stant stirring to a working concentration of 0.29 mM.
This working solution was prepared freshly, kept at 25°C
for one hour before its application and was not used
when a visible turbidity or a yellow coloring occurred.
Activity measurement was started by adding 180 pl of this
working solution to 20 pl of cells with an ODs;g = 10. This
yielded a final substrate concentration of 0.26 mM and a
final ODs;g =1 of the cells in the assay. The lipolytic pro-
duction of yellow colored nitrophenylate at 25°C was mea-
sured at 405 nm in a 96 well plate using a microplate
reader (Mithras LB940, Berthold, Bad Wildbach, Germany).
The linear increase in absorption was used to calculate the
enzymatic activity according to the law of Lambert and
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Beer (gnitrophenol = 17,000 L mol™ em™, d=0,52 cm path
length correction for the layer thickness of 200 pL assay
volume in one well). One unit was defined as the amount
of enzyme which caused the release of 1 pmol of p-NPP
per minute [12]. For measuring the lipolytic activity of
outer membrane protein preparation we proceeded simi-
larly, with the exception, that the 20 pl which were added
to the 180 pl assay buffer with the substrate were derived
from an amount of cells corresponding to an ODsyg = 2.
For these activity measurements, absorption values at
405 nm obtained with outer membrane preparations in po-
tassium phosphate buffer without the addition of p-NPP
were used for blank correction.

Laundry tests with lipase-whole cell biocatalyst/ E. coli
BL21(DE3) pAT-LipBc

The capability of lipase was tested on five different, stan-
dardized, lipase sensitive staining. The staining con-
tained either Biskin® (Peter Kolln KGaA, Elmshorn,
Germany), Butaris® (DFF Dairy Fine Food GmbH,
Ratzeburg, Germany) or butter oil or a mixture of
soot and mineral oil (C01, Center for Test Materials,
Vlaardingen, The Netherlands) and a mixture of cutaneous
sebum and pigment (20D, wtk Testgewebe GmbH, Krefeld,
Germany) respectively. Tested lipases were a) a standard
lipase preparation which is already used for washing pur-
poses, b) soluble lipase from B. cepacia, c) the herein de-
scribed lipase-whole cell biocatalyst and d) a membrane
preparation thereof. To allow comparability, all lipases
were applied in the same amounts, related to enzymatic ac-
tivity. The washing process was carried out in a Linitest
Plus (Atlas, Rock Hill, SC, USA), which represents the
minituarized form of a standard machine washing process.
The washing solution was prepared with 3.53 g of an en-
zyme free liquid detergent similar to a european premium
detergent in water (16 °dH) buffered with 50 mM sodium
phosphate pH 7.0. The washing process took place in a
total volume of 170 mL at 40°C and 45 rpm for 60 mi-
nutes. To simulate the mechanism of a standard washing
process, 10 steel balls were added and filled up with test
cloth to a total amount of 14.3 g textile weight. Subse-
quently the test cloth was rinsed three times with deion-
ized water and dried at room temperature in the dark.
Color measurement of the staining was then carried out
with a Minolta colorimeter (Konica-Minolta, Miinchen-
Neuperlach, Germany), calibrated against producer’s
standards, applying CIE L*a*b*, D65/10°/SCI settings.
Each staining was measured three times and the average
L* value was determined.
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