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subtilis cells overproducing either secreted
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Abstract

Background: Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its
capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe) status, its
genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins
still faces limitations.

Results: This study aimed at the identification of bottlenecks in secretory protein production by analyzing the
response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and
heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of
B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli), membrane proteins (LmrA of L. lactis
and XylP of Lactobacillus pentosus) and lipoproteins (MntA and YcdH of B. subtilis). Responses specific for proteins
with a common localization as well as more general stress responses were observed. The latter include
upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes). Specific responses
include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and
htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins
overproduction; and ykrL (encoding an HtpX homologue) specifically under membrane proteins overproduction.

Conclusions: The results give better insights into B. subtilis responses to protein overproduction stress and provide
potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.
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Introduction
The Gram-positive bacterium B. subtilis is widely used
in large scale production of endogenous and heterol-
ogous proteins used in food- and other industries. It is
particularly favored as a production host since it has
the capacity of secreting proteins to high levels into
the medium enabling easy isolation and purification, it
can be grown in large fermentations and is considered
as a GRAS (Generally Recognized As Safe) organism
by the US Food and Drug Administration. In addition,
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reproduction in any medium, provided the or
B. subtilis is still the most studied Gram-positive or-
ganism in fundamental research and is therefore a
good model organism in the search for bottlenecks in
protein overproduction. There are several cellular
mechanisms that can hamper secretion of heterologous
proteins on particular stages of the B. subtilis secretion
pathway. At early stages of protein secretion, like syn-
thesis of secretory pre-proteins, pre-protein interac-
tions with cellular chaperones and binding to the
translocase, the limitations may potentially result from,
e.g., low transcription levels, inefficient translation,
presence of intracellular proteases, deficiency in cha-
perones, poor targeting to the translocase, etc. [1]. The
second stage of the protein secretion, i.e. translocation
across the membrane via the Sec- or Tat- [2] translo-
case, may be confined by secretion machinery jamming
[1]. At the late stages, which include removal of the
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signal peptide, release from the translocase, folding
and passing the cell wall, deficiency in signal pepti-
dases, foldases, chaperones and presence of extracellu-
lar proteases resulting in incorrect folding of proteins
and protein’s instability may also set limits to the se-
cretion efficiency [1,3]. The focus on identification and
later manipulation of factors involved in protein secre-
tion have led to the improvement of B. subtilis as a
production host, for example by deletion of extracellu-
lar and/or intracellular proteases [4-6], use of strong
or inducible promoters [7-9], overproduction of cha-
perones [10,11] or signal peptidases [12,13], modifica-
tion of the cell wall [14,15], protein modification
[16,17] and deletion of stress responsive systems [18].
Next to overproduction of proteins secreted into the

medium, the overproduction of membrane proteins in
B. subtilis is of a particular interest [19]. Membrane
proteins are potential drug targets as they are exposed
to and accessible from the extracytoplasmic environ-
ment, and therefore interesting for the pharmaceutical
industry. Rational drug design, however, requires a
three-dimensional structure, usually obtained from pro-
tein crystals, which can only be obtained when sufficient
amounts of membrane protein of high quality are avail-
able [19].
In this work, a comparative transcriptomics approach

was followed to study cellular responses to secretory
proteins overproduction at the transcriptional level, in
order to reveal so far unidentified possible production
bottlenecks and thus potential targets for productive
host engineering. Endogenous and heterologous proteins
with different subcellular localization, i.e. secreted pro-
teins, membrane proteins and lipoproteins were over-
produced in B. subtilis. At least two proteins of each
localization were chosen, in order to be able to discrim-
inate between effects specific for one protein and effects
common to one localization class. Transcriptomes were
analyzed using DNA microarrays and subsequent use of
appropriate bioinformatics tools. General responses as
well as responses specific to proteins with a particular
localization were identified.
Table 1 Proteins overproduced in B. subtilis NZ8900 host usin

Protein Function

XylP Xyloside transporter

LmrA (inactive mutant) ABC-transporter

MntA Manganese binding

YcdH Zinc binding

XynA Xylanase

NprE Neutral protease

Usp45 Unknown

TEM-1 β-lactamase β-lactamase
Results and discussion
Transcriptome analysis of lipoprotein, membrane protein
or secreted protein overproduction stress
B. subtilis remains a powerful host for the (industrial)
production of secreted or membrane proteins but ex-
pression of heterologous proteins in particular has met
limitations. These may occur at different levels of the
production and secretion pathway. Here, the response of
B. subtilis on the transcriptional level to overproduction
of secretory proteins of endogenous or heterologous ori-
gin and with different subcellular localization, i.e. mem-
brane proteins, lipoproteins and secreted proteins, was
determined by transcriptome analysis.
Eight genes encoding heterologous and endogenous

proteins (Table 1) with different subcellular localization
were cloned using the SURE system overexpression vec-
tor pNZ8902 or pNZ8901 [7]: lmrA of L. lactis, encod-
ing the membrane embedded putative multidrug
transporter LmrA [20]; xylP of Lb. pentosus encoding a
membrane embedded xyloside transporter XylP [21],
mntA and ycdH of B. subtilis encoding the manganese
binding lipoprotein MntA [22] and the putative zinc
binding lipoprotein YcdH [23], respectively; bla of E. coli
encoding the periplasm located TEM-1 β-lactamase
(Bla) [24]; usp45 of L. lactis, encoding the cell wall-
associated Usp45 [25]; and nprE and xynA of B. subtilis,
encoding the secreted neutral protease NprE [26] and
the secreted xylanase XynA [27], respectively. The genes
were fused to C-terminal 6His-tag encoding sequences.
B. subtilis NZ8900 harboring these constructs or the
empty vector pNZ8902 or pNZ8901 were grown to mid-
exponential phase and expression was induced with sub-
tilin. Samples were taken 30 min after induction for
microarray analyses and after two hours for testing pro-
tein production. SDS-PAGE analysis of whole-cell, mem-
brane, cytoplasm and medium fractions together with
His-tag immunodetection demonstrated that XylP,
LmrA, MntA, YcdH, TEM-1 β-lactamase and Usp45
were overproduced to levels varying from high for
LmrA, YcdH and Usp45 to hardly visible on a Coomassie
stained gel but well detectable using immunodetection
g SURE system

Organism Subcellular localization

Lb. pentosus Membrane

L. lactis Membrane

B. subtilis Lipoprotein

B. subtilis Lipoprotein

B. subtilis Secreted

B. subtilis Secreted

L. lactis Secreted

E. coli Secreted



Figure 1 Overproduction of different secretory proteins in B. subtilis. (a) Whole cell extracts, (b) medium fractions, (c) membrane fractions,
(d) cytoplasmic fractions. Left panels show SDS-PAGE gels; right panels (b, c and d) show immunodetection of the 6his-tagged proteins using
Penta-His HRP conjugate antibodies (Qiagen). Asterisks indicate protein bands corresponding to the overproduced proteins. Calculated molecular
masses of proteins, with and without signal peptide, in kDa: XynA, 32.3 (preprotein), 20.4 (matured); NprE, 56.5 (preprotein), 53.9 (matured); Bla
(TEM-1 β-lactamase), 32.3 (preprotein), 29.7 (matured); Usp45, 48.2 (preprotein), 45.5 (matured); MntA, 33.4 (preprotein), 32.4 (matured); YcdH, 36.5
(preprotein), 34.3 (matured); LmrA, 66.2; XylP, 55.3.
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(XylP) (Figure 1). Distinct localization patterns were
observed for each class of protein (Figure 1). XynA and
NprE were efficiently produced and secreted into the
medium (Figure 1b), whereas Usp45 and TEM-1 β-
lactamase were detected mainly in whole cell fractions
(Figure 1a, left panel). Since the latter two were not or
hardly detectable in the cytoplasmic and membrane frac-
tions (Figure 1c and d), it is likely that they accumulated
in the cell wall or membrane-cell wall interface. In accord-
ance, TEM-1 β-lactamase expressed in B. subtilis was pre-
viously shown to accumulate in the membrane-cell wall
interface due to inefficient passage through the cell
wall [28]. Usp45 shows homology with proteins involved
in cell wall metabolism, e.g., peptidoglycan hydrolases of
Streptococcus mutans, Streptococcus oralis, Lactococcus
lactis subsp. lactis [29-31], which may explain localization
in or at the cell wall. Overexpression of usp45 did not
inhibit growth, whereas overexpression of bla resulted
in growth inhibition as well as cell lysis, possibly due
to interference with cell wall metabolism.
LmrA and XylP were exclusively found in the mem-

brane fraction (Figure 1c, left and right panel). Similarly,
the lipoproteins MntA and YcdH were present mainly in
the membrane fraction, but immunodetection also indi-
cated their presence at a low level in the medium
(Figure 1b, right panel) and cytoplasmic fraction
(Figure 1d, right panel). Immunodetection using His-tag
antibodies proved to be of limited use in comparing
levels of the different proteins, since they were detected
with very different efficiencies (compare Figure 1b, left
and right panel). Especially TEM-1 β-lactamase and
Usp45 were hardly detectable in general.
The mRNA levels of each overproducing strain were

compared with those of the control strain using DNA
microarrays. Fold-changes in the expression level of
genes that were at least 2.5 times up- or downregulated
in response to overproduction of both proteins of the
same subcellular localization, or to overproduction of at
least 4 proteins with other destinations, are summarized
in Table 2. Expression ratios of all the B. subtilis genes
from eight microarray experiments are placed in Table
S1 (Additional file 1). The complete microarray data is
available at GEO repository (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE34505) under accession
number GSE34505.

General effects
Overproduction of all secreted proteins, except NprE,
caused upregulation of class I heat-shock genes coding
for molecular chaperons groES and groEL (Table 2).
Overproduction of the same proteins, except for XynA
and MntA, resulted in activation of class III heat-shock
genes, which code for components of protease com-
plexes (ClpXP, ClpEP, etc.) [32,33] (Table 2), and other
genes regulated by CtsR, a stress and heat-shock re-
sponse regulator [32]. This intracellular stress response
may be caused by a high protein production rate in
combination with a limited capacity in protein secretion
or membrane insertion, and/or, in case of the heterol-
ogous proteins, a lower compatibility of the secretion
signal with the host secretion machinery. However, accu-
mulation of the proteins was not observed (Figure 1d).
This suggests that, although the proteins were appar-
ently secreted with good efficiency, their presence at
lower levels were enough to induce the general cytoplas-
mic stress response. Increased expression of chaperones
like GroES/EL and Clp proteases can protect the cell
from toxic accumulation of mis- or unfolded protein
[34,35]. However, high expression and activity of pro-
teases may also set a limit for production of heterol-
ogous proteins in B. subtilis on large scale.
The nfrA-ywcH operon, encoding a nitro/flavin reduc-

tase and a monooxygenase, respectively [36], was upre-
gulated in 5 of the 8 cases (Table 2). NfrA is believed to
be involved in a response to stress-induced protein dam-
age and its corresponding gene is induced upon a wide
range of stresses [37]. Therefore the coproduction of
NfrA can be considered in the improvement of protein
overproduction.
Another observed effect in case of most overproduced

proteins was strong induction of the yhaSTU operon. It
codes for a K+ efflux system and has been shown to be
induced by alkaline pH, which has been suggested to be
a secondary effect of compromised membrane function
and bioenergetic integrity of the cell [38,39], and salt
stress [40].
The genes trxA and trxB were upregulated in the ma-

jority of the cases, without a bias towards a particular
localization of the overproduced protein. trxA and trxB
are members of Spx regulon involved in thiol-specific
oxidative stress and they code for thioredoxin and thior-
edoxin reductase, respectively [41]. These genes are
thought to be required for keeping proteins in a reduced
state which, once secreted, form disulfide bonds during
folding [41]. However, there was no correlation between
the presence of (putative) disulfide bonds in an over-
produced protein and induction of trxA or trxB (only
TEM-1 β-lactamase, YcdH and XylP possess putative
disulfide bonds, out of which overproduction of only
YcdH resulted in trxB induction). Therefore, upregula-
tion of trxA and trxB is most likely induced by thiol
stress as a result of secondary effects of overproduc-
tion of secretory proteins, such as a compromised
membrane function.
An effect that was observed in case of all overex-

pressed proteins was strong downregulation of the
sdpABC operon (sporulating delay protein operon)
involved in production and secretion of the killing factor
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Table 2 Genes with significantly altered expression as a result of endogenous and heterologous proteins
overproduction in B. subtilis cellsa,b

Gene Description Overproduced proteins

Membrane proteins Lipoproteins Secreted proteins

XylP LmrA MntA YcdH XynA NprE Usp45 Bla

UPREGULATED

Cell envelope stress response

cssR two-component response regulator (class V) 0.96 1.06 6.82 1.38 5.97 1.08 2.90 1.85

cssS two-component sensor histidine kinase (class V) 0.95 1.11 3.10 1.54 2.67 0.99 2.37 1.66

htrB similar to HtrA-like serine protease (class V) 0.67 1.03 1.70 7.37 10.86 1.12 0.44 7.52

htrA Quality control serine protease
(heat-shock protein) (class V)

0.76 1.17 3.17 5.18 14.88 0.78 46.70 7.23

sigM RNA polymerase ECF-type sigma factor 1.17 0.94 3.01 2.51 0.62 1.49 1.67 1.21

liaI (yvqI) permease 2.38 1.07 1.31 2.55 1.59 2.03 8.96 23.44

liaH (yvqH) modulator of liaIHGFSR (yvqIHGFEC) operon expression 2.32 1.08 1.19 3.40 1.47 2.51 9.43 29.75

liaG (yvqG) hypothetical protein 1.48 1.06 2.27 2.67 0.82 2.65 4.55 13.38

liaF (yvqF) integral inner membrane protein 0.89 1.07 2.14 1.94 0.92 2.56 4.16 10.93

liaS (yvqE) two-component sensor histidine kinase [YvqC]
sensing cell wall stress

1.14 NA 2.42 1.93 0.89 NA 5.88 6.61

liaR (yvqC) two-component response regulator [YvqE] responding
to cell wall stress

0.94 1.04 1.91 2.57 0.79 1.96 2.19 4.76

ykrL Homolog of HtpX, membrane protease 10.35 3.62 1.66 0.88 2.15 0.90 2.98 1.85

Cell envelope stress response/SigW regulon

sigW RNA polymerase ECF-type sigma factor 4.52 5.50 1.95 1.77 1.62 1.05 1.73 2.44

rsiW (ybbM) sigmaW anti-sigma factor 5.54 4.11 2.43 1.72 2.31 0.84 1.89 2.61

yuaF putative membrane integrity integral inner
membrane protein

6.93 2.65 1.09 0.23 1.41 1.31 2.15 2.36

yuaG similar to flotillin 1 12.21 3.43 0.66 0.75 1.87 1.00 4.52 2.40

yuaI putative acetyl-transferase 15.16 6.62 0.40 0.81 2.80 0.78 5.01 2.70

ydjG putative phage replication protein 7.70 2.85 0.59 1.85 1.93 1.01 3.09 1.46

ydjH hypothetical protein 6.88 3.92 0.60 0.48 1.68 1.09 2.19 1.86

ydjI hypothetical protein 6.78 4.55 0.59 0.75 1.86 0.57 2.84 2.40

yeaA conserved hypothetical protein 5.58 3.28 0.93 0.42 1.41 2.36 1.35 2.10

ydjP similar to chloroperoxydase 7.41 4.67 1.16 0.91 2.55 1.53 4.56 3.00

ydjO unknown 3.81 7.59 1.14 1.08 1.99 1.46 2.97 2.57

sppA signal peptide peptidase 4.25 3.12 0.33 0.26 1.18 0.39 1.70 1.80

yteJ integral inner membrane protein 4.48 4.16 0.31 0.29 1.27 0.34 2.27 1.77

pbpE penicillin-binding protein 4 11.25 8.56 0.95 0.97 2.08 0.49 6.37 2.72

racX amino acid racemase 8.99 8.09 0.78 0.95 2.06 0.45 6.00 2.39

yaaN hypothetical protein 4.03 6.82 1.07 0.43 1.15 2.64 1.51 1.82

yceC putative stress adaptation protein 2.44 3.05 2.06 NA NA 0.54 NA 1.64

yceD putative stress adaptation protein 5.29 7.02 0.81 0.76 2.04 0.92 3.14 1.55

yceE putative stress adaptation protein 4.55 5.36 0.82 0.67 2.08 0.89 3.71 2.34

yceF putative stress adaptation protein 5.30 4.91 0.70 0.78 2.07 0.73 4.27 1.79

yceG hypothetical protein 3.99 3.02 0.79 1.07 1.94 1.04 3.29 1.22

yceH hypothetical protein 3.72 4.09 0.64 0.99 1.99 0.60 3.68 2.15

yjoB ATPase possibly involved in protein degradation 7.16 2.98 1.28 0.65 1.45 0.94 1.74 2.44

yknW permease 2.51 3.06 0.67 0.36 1.12 0.84 1.14 1.46
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Table 2 Genes with significantly altered expression as a result of endogenous and heterologous proteins
overproduction in B. subtilis cellsa,b (Continued)

yknY ABC transporter ATP-binding protein 2.63 2.54 0.49 0.33 1.31 0.57 1.51 1.64

ythQ putative ABC transporter (permease) 10.01 5.75 0.80 NA 2.21 NA 3.21 3.19

yqfB hypothetical protein 6.37 6.24 1.12 0.56 1.66 0.39 3.10 2.93

yvlA hypothetical protein 4.11 3.06 1.49 0.59 1.23 1.34 1.39 2.04

yvlB hypothetical protein 6.13 9.56 0.99 0.66 1.76 0.91 3.84 2.10

yvlC putative regulator (stress mediated) 3.83 7.71 0.99 0.61 1.61 0.76 2.24 2.05

yvlD putative integral inner membrane protein 4.26 6.66 1.60 0.65 1.22 0.74 2.98 1.87

yxjI unknown 10.12 5.20 0.96 0.55 1.60 1.46 1.38 1.83

Intracellular stress response

hrcA transcriptional repressor of class I heat-shock genes 11.08 2.23 1.89 12.62 0.96 1.30 2.33 2.12

groES class I heat-shock protein (chaperonin) 8.37 7.17 0.10 6.85 3.15 1.11 3.68 3.07

groEL class I heat-shock protein (chaperonin) 8.38 4.17 0.35 5.07 2.73 1.14 3.00 2.66

nfrA FMN-containing NADPH-linked nitro/flavin
reductase (class VI)

7.36 3.32 0.47 1.67 10.37 0.98 13.77 1.85

ywcH putative monooxygenase (class VI) 10.29 2.91 1.04 6.03 5.29 0.86 NA 2.46

trxB thioredoxin reductase 4.71 1.59 0.88 2.98 3.97 0.72 3.56 1.36

trxA thioredoxin 2.29 1.94 0.86 1.68 3.08 1.13 3.11 1.31

ctsR transcriptional regulator of class III stress genes 0.71 0.55 1.39 NA NA NA NA NA

mcsA modulator of CtsR repression 10.38 3.47 0.87 5.12 1.72 1.57 4.63 3.11

mcsB modulator of CtsR repression 6.92 4.11 0.83 5.09 2.46 1.09 2.68 2.63

clpC class III stress response-related ATPase 5.65 3.24 0.65 4.63 2.03 0.80 3.28 2.80

radA DNA repair protein 2.79 1.97 0.75 3.86 1.82 1.26 3.14 2.19

clpE Class III, ATP-dependent Clp protease-like 74.08 1.89 0.98 4.54 0.77 1.24 5.95 4.79

Membrane bioenergetics

fdhD required for formate dehydrogenase activity 2.89 1.26 2.99 4.65 1.93 1.65 1.67 0.94

cydB cytochrome bd ubiquinol oxidase (subunit II) 0.75 2.28 1.39 0.51 2.93 4.50 0.74 0.64

Miscellaneous

kinD TCS sensor histidine kinase; initiation of sporulation 1.35 1.20 3.18 2.76 1.49 1.81 1.05 1.05

yabT putative serine/threonine-protein kinase 2.19 1.14 NA 1.56 2.55 2.65 1.26 1.04

yceK putative transcriptional regulator (ArsR family) 2.58 2.54 0.81 1.35 1.07 1.06 2.10 1.92

yjbI putative thiol management oxidoreductase component 3.93 0.99 1.45 2.95 3.23 1.33 3.61 1.46

yloC unknown 1.65 1.09 3.56 3.51 1.47 1.36 1.57 1.05

yndN fosfomycin resistance protein FosB 6.66 13.17 0.94 0.32 1.60 0.56 3.49 3.04

yrkA putative membrane associated protein 3.20 3.75 1.51 0.96 1.48 0.97 1.13 1.30

yvdT uncharacterized transcriptional regulator
(TetR/AcrR family)

2.94 3.28 1.82 2.19 1.37 1.80 2.26 1.92

yvdS similar to molecular chaperone, putative
membrane protein

7.12 2.12 1.20 1.14 1.08 1.26 3.43 1.96

yvdR similar to molecular chaperone, putative membrane protein 6.32 2.66 2.46 1.39 1.01 1.36 3.99 1.81

Transport/binding proteins

cydC ABC membrane transporter ATP-binding protein 3.22 3.76 0.87 0.32 2.92 2.36 2.25 1.12

yhaT K+/H+ antiporter for K + efflux 15.45 3.48 2.16 2.91 2.47 1.22 4.80 2.54

yhaU K+/H+ antiporter for K + efflux 15.49 2.19 2.38 1.84 2.56 1.00 5.14 1.97

Unknown

ydiN unknown 4.44 2.76 0.22 5.11 1.75 1.75 2.41 3.51

yomP hypothetical protein 3.57 3.21 0.92 3.33 0.89 2.60 1.40 0.82
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Table 2 Genes with significantly altered expression as a result of endogenous and heterologous proteins
overproduction in B. subtilis cellsa,b (Continued)

yomT hypothetical protein 2.92 2.60 0.83 2.90 0.72 2.47 1.24 0.85

yceI putative transporter 2.92 3.55 1.49 0.80 1.75 0.69 2.89 2.26

yhaS K+/H+ antiporter for K + efflux 9.48 2.13 2.08 1.76 2.42 0.96 3.41 1.94

yomV hypothetical protein 3.59 3.37 1.05 3.92 0.73 2.55 1.43 0.88

yomW hypothetical protein 3.19 3.38 0.97 4.57 0.65 2.79 1.31 0.78

yomY hypothetical protein 3.66 2.53 1.09 3.64 0.77 2.60 1.66 0.82

yonB hypothetical protein 3.22 2.92 0.96 2.61 1.01 2.26 1.24 0.79

yonC hypothetical protein 2.92 2.64 0.83 2.84 0.96 2.41 1.43 0.84

yvkN hypothetical protein 3.21 2.69 0.89 0.61 1.83 1.07 1.88 1.69

ywmB hypothetical protein 1.32 1.18 3.00 2.67 1.30 2.43 0.55 1.16

DOWN REGULATED

Starvation response

sdpA (yvaW) export of killing factor SdpC 15.28 2.78 4.29 3.96 3.54 1.54 14.19 4.35

sdpB (yvaX) exporter of killing factor SdpC 19.87 4.06 3.26 5.34 3.96 1.49 13.85 4.00

sdpC (yvaY) killing factor SdpC 8.12 2.75 2.45 12.90 11.51 1.21 26.62 5.56

Cell envelope stress/SigW regulon

sppA signal peptide peptidase 0.24 0.32 3.03 3.89 0.85 2.56 0.59 0.56

yteJ putative integral inner membrane protein 0.22 0.24 3.18 3.51 0.79 2.93 0.44 0.56

Transport/binding proteins and lipoproteins

gltT proton/sodium-glutamate symport protein 3.36 3.12 2.52 1.63 0.82 1.96 8.35 1.20

pbuX xanthine permease 3.32 2.74 0.45 1.76 1.47 1.50 4.45 1.61

yhaQ Na+−effluxABCtransporterATP-bindingprotein 2.07 1.55 3.73 4.51 2.19 2.10 1.65 1.32

yoaG putative permease 0.13 0.67 3.13 3.68 1.20 1.15 0.66 0.53

Membrane bioenergetics

ctaB cytochrome caa3 oxydase assembly factor 1.18 1.63 0.66 1.16 1.34 1.15 3.48 1.17

ctaC cytochrome caa3 oxidase subunit II 4.37 1.13 4.74 2.68 1.08 1.91 5.52 1.20

ctaD cytochrome caa3 oxidase subunit I 3.71 1.37 3.58 3.14 NA 1.81 3.33 1.27

ctaE cytochrome caa3 oxidase subunit III 3.57 1.44 2.40 3.02 1.90 2.08 4.21 1.10

ctaF cytochrome caa3 oxidase subunit IV 4.33 1.91 2.05 3.86 2.68 2.32 4.24 1.41

ctaG cytochrome aa3 assembly factor 4.61 NA 2.40 1.83 NA 1.19 2.67 NA

Miscellaneous

bdbB bacteriophage SPbeta thiol-disulfide oxidoreductase 3.59 2.79 6.00 2.57 3.05 1.16 14.00 2.00

wapA cell wall-associated protein precursor 2.88 1.07 1.15 8.19 2.50 0.91 6.38 1.15

yxxG hypothetical protein 4.04 0.99 1.22 8.68 4.20 0.87 5.25 1.08

wprA cell wall-associated protease 2.45 1.05 4.87 4.19 2.27 1.85 9.13 1.27

Unknown

yisL hypothetical protein 2.00 1.13 2.58 4.59 1.41 1.96 0.73 1.11

yokE hypothetical protein 1.56 1.76 7.19 2.84 2.74 1.50 4.35 1.28

ytxG hypothetical protein 1.80 0.76 2.98 2.56 0.83 1.00 0.48 0.93

yukE hypothetical protein 1.37 1.56 3.25 2.67 0.92 2.04 1.60 1.02

yxbC hypothetical protein 3.55 0.69 3.22 5.71 0.72 1.30 2.06 1.11
a Significant changes (p value < 0.01, fold > 2.5) are shown in bold.
b Endogenous proteins: MntA, YcdH, XynA, NprE; heterologous proteins: XylP (Lb. pentosus), LmrA and Usp45 (L. lactis), Bla (TEM-1 β-lactamase, E. coli).
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SdpC (Table 2). It plays a role in programmed cell death
(PCD), a mechanism of sporulation delay by killing non-
sporulating siblings and feeding on the dead cells under
conditions of nutrient limitation [42,43]. This effect may
be related to nutrient limitation which was shown to
induce the sporulation process in a subpopulation of a
B. subtilis culture with concomitant activation of the
sdpABC and sdpRI immunity operons [43].
Another general effect, but less pronounced than for

sdpABC, was downregulation of the ctaCDEF genes
coding for cytochrome c oxidase caa3 [44].
Overproduction of none of the proteins caused upre-

gulation of genes coding for components of the secre-
tion (Sec) machinery, like secA, secDF, ffh, etc., which are
responsible for translocation of unfolded pre-proteins
across or insertion into the membrane (for review see
[2]). Apparently, increasing its protein secretion capacity
is not a strategy of the cell to deal with an accumulation
of secretory proteins. This may indicate either that the
SecYEG channel does not form a bottleneck in secretion
in the experiments performed here, or that expression of
the genes encoding the SecYEG components is simply
not upregulated by (the consequences of ) an artificially
imposed overproduction of secretory proteins. The latter
suggests that SecYEG should not necessarily be excluded
as a potential target for production strain improvement.
In agreement, overexpression of prsA, encoding the
extracellular foldase PrsA, was shown to increase the se-
cretion of an α-amylase fourfold [10], while prsA was
not upregulated in any of the tested cases here. This
however does not detract from the value of the data as a
source of new potential targets for strain improvement.
For some of these genes, induced by overexpression of
many of the tested secretory proteins, it was indeed
shown previously that either their deletion or overex-
pression improved specific protein production yields,
e.g., sigW and cssRS [18] and genes encoding intracel-
lular chaperones [5].

Proteins with extracytosolic destination induce the CssRS
mediated secretion stress response
Overproduction of the secreted protein XynA of B. sub-
tilis, the cell wall-associated proteins Usp45 of L. lactis
and TEM-1 β-lactamase of E. coli, as well as lipoproteins
MntA and YcdH of B. subtilis resulted in significant
upregulation of the secretion stress genes htrA, htrB and
cssRS (Table 2). CssR and CssS encode a response regu-
lator and its cognate, membrane embedded sensor, re-
spectively, and control the expression of htrA and htrB
[45,46]. These encode membrane-anchored HtrA and
HtrB proteins, which have their active site on the trans
side of the membrane and are thought to have proteo-
lytic as well as chaperone activity for removal of mis-
folded protein or for assisting in folding of newly
secreted proteins, respectively [47]. The CssRS two com-
ponent system is activated by accumulation of mis- or
unfolded secreted protein at the membrane - cell wall
interface, as a result of, e.g., overexpression of these pro-
teins or heat stress [48,49]. In this study, overproduction
of the membrane proteins LmrA and XylP did not sig-
nificantly induce htrA or htrB. This is in agreement with
previous results from an analysis of the activation of the
htrA promoter in response to overproduction of secretory
proteins, including MntA, XynA, TEM-1 β-lactamase,
Usp45 and LmrA, showing that the stress signal is sensed
on the outside of the cell and not from within the mem-
brane [48]. Surprisingly, NprE overproduction did not in-
duce the CssRS response. Possibly, NprE can be produced
and secreted to high levels without accumulation of mis-
folded protein.

Usp45 and TEM-1 β-lactamase specifically induce the
LiaRS-dependent response
The two proteins which were detected mainly in the
whole cell fractions, but not in the membrane and
cytoplasmic fractions, Usp45 and TEM-1-β-lactamase
(Figure 1), specifically induced the liaIHGFSR (yvqIHG-
FEC) operon (Table 2), a cell envelope stress operon
which is under control of the LiaRS (YvqCE) two-
component system [50-53]. The fact that LiaRS is
strongly induced by cell wall-active antibiotics [54],
suggests that Usp45 and TEM1-β-lactamase had accu-
mulated in or at the cell wall, as noted earlier, and
thereby interfered with cell wall metabolism. Since the
other secretory proteins did not, or to a much lesser
extent, induce LiaRS (Table 2), it appears that the sig-
nal which is sensed by the sensor LiaS originates from
cell wall metabolism related processes, rather than for
example cell membrane integrity.

Membrane protein overproduction induces a SigW
response and ykrL expression
The overproduction of the membrane proteins LmrA
and XylP and to a lesser extent the cell wall-associated
proteins Usp45 and TEM-1 β-lactamase caused signifi-
cant upregulation of sigW and many genes belonging to
the SigW regulon (Table 2). The SigW regulon has been
shown to be induced by a variety of cell envelope stres-
ses like treatment with detergents (Triton X-100), anti-
biotics (vancomycin, penicillin) [51], alkaline stress [55]
or membrane protein overproduction [18]. Activation of
SigW depends on proteolytic degradation of the anti-
SigmaW factor RsiW by a multipass membrane protease,
PrsW and, subsequently, other proteases [56,57], but
the exact signal triggering this cascade is not known.
The induction by membrane protein overexpression
suggests that the stress signal is sensed from within
the membrane.
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Next to the SigW response, an unknown gene, ykrL,
was significantly upregulated under LmrA and XylP
overproduction (Table 2). YkrL shows high homology to
the E. coli HtpX, a membrane embedded metallopro-
tease, which has been implied in membrane protein
quality control [58]. The upregulation of ykrL suggests a
similar role in B. subtilis. It would be of interest to test
the effect of different levels of YkrL on the level and
quality of overproduced membrane proteins. Expression
of htpX in E. coli is regulated by the CpxRA two compo-
nent system that regulates a number of genes involved
in cell envelope stress, including degP (or htrA), encod-
ing a close homologue of B. subtilis HtrA and HtrB [59].
Here, no correlation between expression of the CssRS
targets and ykrL was observed, suggesting that ykrL ex-
pression does not depend on CssRS and is regulated dif-
ferently from htpX in E. coli.
In E. coli, the membrane located ATP-dependent

metalloprotease FtsH is involved in the membrane pro-
tein stress response [60]. A similar role of B. subtilis
FtsH, sharing 47% identity with E. coli FtsH, was sug-
gested before [19]. However, ftsH was not significantly
upregulated in response to overproduction of membrane
proteins or to any of the other secretory proteins. Previ-
ous results revealing the sporulation control proteins
SpoVM and Spo0E as substrates of FtsH [61,62] may
therefore be examples of a more specific role of FtsH in
B. subtilis, rather than a general protein quality control
system.
An operon of unknown function, yvdTSR, encoding a

putative transcriptional regulator and two membrane
proteins with homology to small multidrug resistance
(SMR) proteins, was also specifically upregulated, but its
role in membrane stress is unclear.
Like in case of the other secretory proteins, overpro-

duction of LmrA and XylP led to induction of the class I
heat shock protein genes groES, groEL and class III heat
shock protein genes, e.g., clpE, clpC, which suggests that
some fraction of overproduced membrane proteins is
targeted by chaperones or proteases for degradation in
the cytoplasm before translocation through the Sec ma-
chinery and insertion into the membrane. Alternatively,
a protein that is incorrectly inserted into the membrane
may be subject to Clp-mediated proteolysis, although it
is not known whether membrane embedded proteins are
accessible to Clp complexes.

Other extracytoplasmic function (ECF) sigma factors
Next to the SigW response, induced by overproduction
of the LmrA, XylP, Usp45 and TEM-1 β-lactamase,
upregulation of SigM and SigY RNA polymerase ECF
(extracytoplasmic function)-type sigma factors, was
observed in some cases (Table 2). SigM has been shown
to be involved in a response to salt, low pH, ethanol,
heat and oxidative stress and cell wall synthesis inhibit-
ing antibiotics [63,64]. In this study, sigM was upregu-
lated under conditions of overproduction of the
lipoproteins MntA and YcdH. However, known SigM
targets [65] were not upregulated. Expression of SigY
and some of the SigY target genes [66] was induced
upon XylP and Usp45 overproduction.

Conclusions
This comparative study revealed differential responses of
B. subtilis to stress caused by overproduction of
secretory proteins with different subcellular localization.
New insights in (specificity of ) stress responses, in par-
ticular at the membrane and cell wall level were
obtained. The data reveal possible bottlenecks in the
protein production process, which can be targeted in the
future development of the improved production strains.

Methods
Bacterial strains and growth conditions
Bacterial strains and plasmids used in this study are
listed in Table 3. L. lactis NZ9000 [67] was used as inter-
mediate cloning hosts for pNZ8901 and pNZ8902 based
vectors. B. subtilis strains were grown in TY medium
[68] at 37°C with vigorous shaking. TY medium was
supplemented with kanamycin (5 μg/ml), erythromycin
(0.5 μg/ml) or chloramphenicol (5 μg/ml) when needed.
L. lactis strains were transformed by electroporation as
described before [69] using a Bio-Rad gene pulser (Bio-
Rad Laboratories, Richmond, California). B. subtilis
strains were transformed as described before [70].

Plasmid and strain construction
Molecular techniques were carried out as described be-
fore [71]. All primers used in this study are listed in
Table 4. To construct overexpression vectors, the genes
nprE, bla, ycdH and xylP were amplified using primers
nprE-fw and nprE-rv, bla_F and bla_R, ycdH-Fw and
ycdH-rv, xylP-fw and xylP-rv, respectively. Template
DNA for amplification of nprE and ycdH was B. subtilis
chromosomal DNA. The bla gene was amplified from
pUC18 plasmid DNA [72] and xylP from chromosomal
DNA of Lb. pentosus. The PCR products of bla and xylP
were digested with PagI and XbaI and ligated to
pNZ8902, which was digested with NcoI and XbaI,
resulting in pNZ-bla and pNZ-xylP. The nprE PCR
product was digested with NcoI and XbaI and ligated to
pNZ8901 digested with the same enzymes, resulting in
pNZ-nprE. The ycdH PCR product was digested with
BstEII and XbaI and ligated to pNZ8902 digested with
the same enzymes, yielding pNZ-ycdH. Restriction
enzymes were obtained from Fermentas. The sequences
of all constructs were confirmed by DNA sequence ana-
lysis (ServiceXS, Leiden, The Netherlands).



Table 3 List of strains and plasmids used in this study

Strain/plasmid Description Reference

L. lactis

NZ9000 MG1363 derivative, pepN::nisRK [67]

B. subtilis

NZ8900 168, amyE::spaRK, KanR,
SURE expression system host

[7]

Plasmids

pNZ8901 SURE expression vector, PspaSpn, CmR [7]

pNZ8902 SURE expression vector, PspaSpn, EmR [7]

pNZ-xynA pNZ8902 carrying xynA of B. subtilis [48]

pNZ-usp45 pNZ8902 carrying usp45 of L. lactis MG1363 [48]

pNZ-mntA pNZ8902 carrying mntA of B. subtilis [48]

pNZ-lmrA pNZ8902 carrying lmrA of L. lactis MG1363 [48]

pNZ-nprE pNZ8901 carrying nprE of B. subtilis This work

pNZ-bla pNZ8902 carrying bla of E. coli, This work

pNZ-ycdH pNZ8902 carrying ycdH of B. subtilis This work

pNZ-xylP pNZ8902 carrying xylP of Lb. pentosus This work
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DNA microarray analysis
The overexpressed endogenous proteins were XynA,
NprE, MntA and YcdH (Table 1). The overexpressed
heterologous proteins were TEM-1 β-lactamase from E.
coli, Usp45 and LmrA (inactive mutant) from L. lactis
and XylP from Lb. pentosus (Table 1). For the overpro-
duction of the proteins, the SURE overexpression sys-
tem was used [7]. The transcription profile of the
control B. subtilis strain NZ8900 with empty pNZ8902
vector was compared to an isogenic target strain carry-
ing one of the overexpression constructs: pNZ-xynA,
pNZ-bla, pNZ-usp45, pNZ-mntA, pNZ-ycdH, pNZ-
lmrA or pNZ-xylP. The target strain containing pNZ-
nprE was compared to NZ8900 carrying empty
pNZ8901. In total, eight independent microarray experi-
ments were conducted.
Strains harbouring overexpression constructs or the

empty vectors pNZ8901 or pNZ8902 were grown
Table 4 Oligonucleotides used in this study

Oligo name Target Sequencea (5’- 3’)a

nprE-fw nprE CGCAAACCATGGGTTTAGGTAAGAAATTGTCTG

nprE-rv nprE GCGAAATCTAGATTAATGGTGATGGTGATGGT

bla_F bla AAACCCTCATGAGTATTCAACATTTCCGTGTCG

bla_R bla ATACGCTCTAGATTAATGGTGATGGTGATGGTG

ycdH-fw ycdH GCGAAAGGTGACCGATATGTTTAAAAAATGGA

ycdH-rv ycdH GCGAAATCTAGATTAATGGTGATGGTGATGGT

xylP-fw xylP CGCATATCATGAGCGTTAGTATGCAGC

xylP-rv xylP GCGAAATCTAGATTAATGGTGATGGTGATGGT
a Restriction enzyme sites are underlined.
overnight in 10 ml TY broth supplemented with appro-
priate antibiotics and diluted the next day in 50 ml of
fresh medium to an OD600 of 0.05. At an OD600 of 0.6,
0.1% (vol/vol) subtilin-containing supernatant of B. sub-
tilis strain ATCC 6633 [73] was added to the growth
medium to induce gene expression. After 30 min, 10
OD units of each culture were collected for RNA isola-
tion. All the microarray experiments were performed in
three biological replicates essentially as described before
[74]. Total RNA was isolated using a High Pure RNA
isolation Kit (Roche Applied Science). RNA quantity and
quality were tested with a Nano Drop ND-1000 spectro-
photometer (NanoDrop Technologies) and an Agilent
Bioanalyzer 2100 (Agilent Technologies Netherlands
BV), respectively. Amino allyl-modified cDNA was
synthesized using the Superscript III Reverse Transcript-
ase Kit (Invitrogen), purified with the CyScribe GFX
purification kit (Amersham Biosciences) and labeled with
Cy3- or Cy5-monoreactive dye (Amersham Biosciences).
Labeled cDNA was purified with the CyScribe GFX puri-
fication kit (Amersham Biosciences). Labeled cDNA con-
centration and dye incorporation were assessed with a
Nano Drop ND-1000 spectrophotometer. The labeled
cDNA was hybridized to oligonucleotide microarrays in
Ambion Slidehyb #1 buffer (Ambion Europe Ltd) at 48°C
for 18–20 hours. Next, microarray slides were washed for
5 min in 2 × SSC (300 mM NaCl, 30 mM sodium citrate)
with 0.5% SDS, twice for 5 min in 1 × SSC with 0.25%
SDS and for 5 min in 1 × SSC with 0.1% SDS, and dried
by centrifugation. The slides were scanned with a GeneTac
LS V confocal laser scanner (Genomic Solutions Ltd).
ArrayPro 4.5 software (Media Cybernetics Inc., Silver
Spring, Md., USA) was used to determine intensities
of each spot on the microarrays using a local corners
background correction method. Resulting expression
levels were processed and normalized using the Low-
ess method with Micro-Prep [75]. The ln-transformed
ratios of the expression levels were subject to a t-test
using Cyber-T tool [76] resulting in expression ratios
and Cyber-T (Bayesian) p values.
Restriction enzyme site

TTGC NcoI

GCAATCCAACAGCATTCCAGGC XbaI

PagI

CCAATGCTTAATCAGTG XbaI

GCGG BstEII

GTGATTTAACCAATAGTGAATCTTTCAGGGC XbaI

PagI

GCTTTTGATCGTCAGCAA XbaI
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SDS-PAGE and Western blotting
In order to determine the subcellular localization of over-
produced proteins XylP, LmrA, MntA, YcdH, XynA,
NprE, Usp45 and TEM-1-β-lactamase (Bla) in B. subtilis,
fractionation experiments were performed essentially as
described before [18]. Cells were grown in TY medium.
At the OD600 of 0.6, protein production was induced by
adding 0.1% subtilin containing supernatant of B. subtilis
strain, ATCC 6633 [7,73] and cultures were further incu-
bated. After two hours, cells were collected by centrifuga-
tion (4,000 × g, 4°C, 10 min), resuspended in protoplast
buffer (PBS pH 7.2, 20 mM MgCl2, 20% sucrose, 2 mg/ml
lysozyme, and Complete protease inhibitors Roche) and
incubated 30 minutes at 37°C. Protoplasts were collected
by centrifugation (4,000 × g, 4°C, 10 min), resuspended in
lysis buffer (50 mM Tris–HCl, pH 8, 2.5 mM EDTA) and
disrupted by sonication (Sonics Vibra Cell, Beun De
Ronde). Unbroken protoplasts and cellular debris were
removed by centrifugation (4,000 × g, 4°C, 10 min). Super-
natant was ultracentrifuged (200,000 × g, 4°C, 30 min).
The supernatant fraction containing cytosolic proteins
was collected and an aliquot was used to prepare SDS-
PAGE samples. The pellet was resuspended in
solubilization buffer (20 mM Tris–HCl, pH 8.0, 10% gly-
cerol, 50 mM NaCl, 1% Triton-X-100) overnight on a
rotor at 4°C. Nonsolubilized membranes were removed by
ultracentrifugation (100,000 × g, 4°C, 15 min). Super-
natant with solubilized membrane proteins was collected
and used for SDS-PAGE sample preparation.
The whole cell extracts were prepared as fallows. 1 OD

unit of a culture was collected by centrifugation, resus-
pended in 150 μl of buffer containing 10 mM Tris–HCl pH
8.1, 20% sucrose, 10 mM EDTA, 50 mM NaCl and 2 mg/ml
lysozyme, and incubated at 37°C for 30 min. An equal vol-
ume of 2x SDS-PAGE sample buffer (100 mM Tris–HCl
pH 6.8, 4% SDS, 1% DTT, 20% glycerol, 0.05% bromophe-
nol blue) was added and the samples were boiled for 5 min.
The extracellular proteins present in the medium were

precipitated by adding 200 μl of ice-cold 100% TCA to
1.8 ml of medium and incubation on ice for 1 hour. The
mixture was centrifuged and the pellet was then washed
with acetone, dried by air and resuspended in 100 μl 1x
SDS-PAGE sample buffer. Proteins from the whole cell
extracts and the cell and medium fractions were sepa-
rated on SDS-PAGE gels and transferred to a PVDF
membrane. The immunodetection of His-tagged pro-
teins was performed using the Penta-His HRP Conjugate
Kit (Qiagen) and ECL detection reagents (Amersham).
Additional file
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overproduction of different classes of proteins.
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