Villar-Piqué et al. Microbial Cell Factories 2012, 11:55
http://www.microbialcellfactories.com/content/11/1/55

MICROBIAL CELL
FACTORIES

TECHNICAL NOTES Open Access

Using bacterial inclusion bodies to screen for
amyloid aggregation inhibitors

Anna Villar-Piqué'?", Alba Espargaré®’, Raimon Sabaté”?, Natalia SdeGroot** and Salvador Ventura'*"

Abstract

Background: The amyloid-$3 peptide (AB42) is the main component of the inter-neuronal amyloid plaques
characteristic of Alzheimer's disease (AD). The mechanism by which AB42 and other amyloid peptides assemble
into insoluble neurotoxic deposits is still not completely understood and multiple factors have been reported to
trigger their formation. In particular, the presence of endogenous metal ions has been linked to the pathogenesis
of AD and other neurodegenerative disorders.

Results: Here we describe a rapid and high-throughput screening method to identify molecules able to modulate
amyloid aggregation. The approach exploits the inclusion bodies (IBs) formed by A342 when expressed in bacteria.
We have shown previously that these aggregates retain amyloid structural and functional properties. In the present
work, we demonstrate that their in vitro refolding is selectively sensitive to the presence of aggregation-promoting
metal ions, allowing the detection of inhibitors of metal-promoted amyloid aggregation with potential therapeutic

interest.

synthetic peptides.

Conclusions: Because IBs can be produced at high levels and easily purified, the method overcomes one of the
main limitations in screens to detect amyloid modulators: the use of expensive and usually highly insoluble
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Background
In the last few years, protein aggregation has emerged from
a neglected area of protein chemistry as a transcendental
issue in biological and medical sciences, mainly because
the deposition of proteins into insoluble amyloid fibrils is
being found behind an increasing number of human dis-
eases such as Alzheimer’s disease (AD) or type II diabetes
[1-4]. Therefore, there is an increasing interest in develop-
ing methods to identify molecules that trigger the aggrega-
tion of these proteins inside the organism as well as to
discover chemical compounds that can interfere with these
pathways, having thus therapeutic potential [5-7].

The pathological hallmark of AD is brain deposition of
amyloid plaques composed predominantly by the Ap42
peptide isoform [8-10]. The origin of these insoluble
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extracellular neurotoxic deposits is still not completely
clear, and multiple factors such as pH, peptide concentra-
tion, oxidative stress and metal ions have been reported to
trigger their formation [11,12]. Here we present a fast,
cost-effective high-throughput approach to study condi-
tions and molecules that affect AP42 aggregation. The
assay is based on the use of the inclusion bodies (IBs)
formed by an AB42-GFP fusion protein in bacteria. IBs for-
mation has long been regarded as an unspecific process
relaying on the establishment of hydrophobic contacts
[13,14]. However, there are now strong evidences demon-
strating that bacterial IBs formation shares a number of
common features with the formation of the highly ordered
and pathogenic amyloid fibrils linked to human diseases
[15-18]. Therefore, IBs have become an attractive model
to study protein aggregation and their consequences in
simple but biologically relevant environments [19-21]. IBs
are formed inside the cell when the folding of proteins into
native conformations is competed by a faster establishment
of anomalous intermolecular interactions that leads to the
formation of insoluble aggregates [22]. In the present work,
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we exploit this kinetic competition in vitro to screen for
compounds that can modulate protein aggregation. As a
proof of principle, we demonstrate the ability of the ap-
proach to detect the effect of metal ions on AP42 aggrega-
tion as well as to identify compounds that block this
metal-induced reaction.

Results and Discussion

Refolding AB42-GFP IBs is sequence specific

We have previously shown that the IBs formed by AB42
display amyloid-like properties whether the peptide is
expressed alone [23] or fused to fluorescent proteins
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[16,24]. We have constructed a set of 20 different Ap42—
GFP variants, which differ only in a single residue in the
peptide’s central hydrophobic region [25]. All these pro-
teins are expressed at similar levels in E. coli and form in-
soluble IBs [25]. Nevertheless, the fraction of active GFP
in those aggregates is significantly different (Figure 1). The
IBs fluorescence correlates with the aggregation propen-
sity of the specific Ap42 mutant [26]. This correlation is
the result of a kinetic competition between the folding of
the GFP domain and the aggregation of the fusion protein,
which is driven by the AB42 moiety. Therefore, the slower
the fusion protein aggregates, the higher the IB fluorescence
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Figure 1 Fluorescence recovery after denaturation. (A) Purified IBs were incubated in PBS in the absence (native) and presence of 8 M Gu-HCl or
10 M urea for 4 h and diluted 100-fold in PBS. (B) Purified untagged GFP (left) and IBs (right) were incubated in PBS in the absence (native) and
presence of 8 M Gu-HCl or 10 M urea for 4 h and diluted 100-fold in PBS. In all cases, after incubation for 16 h fluorescence was recorded at 510 nm.
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emission is and vice versa. In this way, IBs fluorescence
reports on intracellular aggregation kinetics [22,26,27].

We wondered if the kinetic competition between GFP
folding and AP42 aggregation can be reproduced
in vitro. To this aim we used the IBs formed by the
wild-type peptide fusion (AP42wt-GFP) and the F19D
mutant (AB42F19D-GFP), which display the highest and
lowest aggregation propensities in our library, respect-
ively [22]. Purified IBs were denatured to remove the
polypeptide contacts supporting the aggregate structure.
This provides unfolded and isolated species for the sub-
sequent in vitro refolding step and guarantees that all
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inter- or intra-molecular contacts are established de
novo as it happens after protein synthesis in the cell. IBs
were chemically denatured using two chaotropic agents,
10 M urea and 8 M Gu-HCl. Each unfolded Ap42-GFP
fusion was diluted in refolding buffer and the amount of
recovered active GFP monitored using fluorescence
spectroscopy (see Methods). The same conditions were
used to unfold and refold equimolar concentrations of
native untagged GFP. As it can be seen in Figure 1A, in-
dependently of the IBs peptide variant, the level of
recovered GFP activity was higher when Gu-HCI was
used as denaturant. This is in contrast with the results
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Figure 2 Fluorescence recovery in the presence of metallic ions. (A) AB42wt-GFP IBs were denatured in 8 M Gu-HCl for 4 h and diluted 100-
fold in PBS (control) or in PBS containing different metallic ions at 25 uM final concentration. (B) Purified untagged GFP and IBs were incubated
in PBS in the absence (native) and presence of 8 M Gu-HCl for 4 h and diluted 100-fold in PBS containing Cu* and Zn*? at 25 uM final
concentration. In all cases, after incubation for 16 h fluorescence was recorded at 510 nm.
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obtained with untagged GFP, for which denaturation with ~ GFP recovered after refolding was always higher than
urea resulted in higher fluorescence recovery (FigurelB), that in the original IB (Figure 1A). Aggregation usually
suggesting that the used denaturant might affect the aggre-  corresponds to a second or higher order reaction and
gation/refolding pathway. The proportion of fluorescent therefore, aggregation rates are extremely dependent
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Figure 3 Morphology and secondary structure of aggregates. (A) Morphology of purified IBs and aggregates in refolding solutions in the

absence and presence Cu*? and Zn*?. (B) Analysis of the secondary structure of aggregates in refolding solutions in the absence and presence
Cu*™ and Zn*? by FT-IR spectroscopy in the amide | region of the spectra. The spectrum of native GFP is shown as a control.




Villar-Piqué et al. Microbial Cell Factories 2012, 11:55
http://www.microbialcellfactories.com/content/11/1/55

on protein concentrations [28]. Since the protein con-
centrations used during in vitro refolding are much lower
than those existent in vivo, the folding of the GFP domain
can compete more efficiently with the aggregation
process, providing a larger dynamic response than in bac-
teria. However, the refolding efficiency of Ap42-GEP IBs is
about ~10-fold and ~4-fold lower than this of untagged
GEFP after denaturation in urea and Gu-HCI, respectively,
suggesting that, as it happens in vivo, the aggregation of
the AP42 moiety competes the folding of GFP. Import-
antly, the activity recovery from the mutant IBs is higher
than that from IBs formed by the wild-type sequence, sup-
porting a kinetic competition between GFP folding and
AB42 aggregation in vitro. The predicted lower aggrega-
tion rate of the mutant would account for the higher fluor-
escence recovery. By analogy, any agent that would
increase the intrinsic aggregation rate of AP42 will de-
crease the final amount of functional GFP and vice versa,
allowing to screen for promoters or inhibitors of the pro-
tein aggregation process.

Detection of the AB42 aggregation-promoting effect of
ionic metals

Endogenous transition metals can bind amyloid peptides,
like AP42, promoting their aggregation and the formation
of amyloid fibers [29]. We analyzed if this pro-aggregating
effect can be monitored using the above-described ap-
proach. Purified and Gu-HCl denatured AP42wt-GEP IBs
were allowed to refold in PBS in the absence and in the
presence of Ca®*, Cu®*, Fe**, Mg®*, Na*, Ni** and Zn**. A
highly significant decrease of GFP activity was observed in
the presence of the divalent cations Cu**, Ni** and Zn**
(Figure 2A). This result validates the method since there
are strong evidences that zinc and copper enhance amyl-
oid aggregation of AP42 and are a component of the senile
plaques of Alzheimer's disease patients [30]. In the case of
nickel, despite being a metal that lacks physiological rele-
vance, it has also been described to bind AB42 and en-
hance the peptide cytotoxicity, via nanoscale oligomer
formation, with the same potency than Cu*? [29]. Neither
Zn** nor Cu*? quenched the fluorescence of native
untagged GFP (Figure 2B). Moreover, although the pres-
ence of Zn"* and Cu*? reduced untagged GFP fluorescence
recovery, its effect was clearly lower than the one exerted
on the refolding of AB42wz-GFP IBs (Figure 2B), indicating
that in both cases the AB42 peptide is a main player in the
observed metal promoted aggregation. We analyzed the
presence and morphology of aggregates in refolding solu-
tions in the presence and absence of Zn™* and Cu* by
Transmission Electron Microscopy (Figure 3A). In contrast
to intact IBs, which appear as electrodense spherical indi-
vidual entities, all the aggregates in refolding solutions had
an amorphous morphology. Nevertheless, Fourier Trans-
formed Infrared Spectroscopy (FT-IR) analysis of the
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secondary structural features of the aggregated material
shows that, in all the cases, the spectra in the amide I re-
gion is dominated by a band at 1620-1625 cm-1, typically
attributed to the presence of intermolecular [-sheet,
which is accompanied by a minor band at 1690 c¢m-1
corresponding to the splitting of the main B-sheet signal
(Figure 3B). These two bands are considered a hallmark
of the presence of amyloid-like contacts. The spectra of
these aggregates are significantly different from that of na-
tive GFP, in which these signatures are absent (Figure 3B).

We explored if the approach allows visualizing a concen-
tration dependent effect of Zn*> and Cu*> on the aggrega-
tion of the target at cation concentrations in the range of
the physiological levels in human brain [31]. As shown in
Figure 4, the approach is highly sensitive to metal concen-
trations. The titration curves indicate that the impact of
Cu*? on aggregation is somehow higher than that of Zn*2,
Curve fitting to one site binding equation renders apparent
dissociation constants of 0.6 and 1.9 uM for copper and
zing, respectively. These data are in good agreement with
early reports stating that, despite the two cations bind to
equivalent sites in the AP peptide, the dissociation con-
stant for copper (0.4 pM) is lower than that of zinc
(1.2 uM), as measured by fluorescence and H-NMR at pH
7.2 [32]. Interestingly, despite our assay is not intended for
calculating dissociation constants, the ratio between the
copper and zinc binding values is also ~ 3. Overall, the ap-
proach provides a fast qualitative assessment of metals
effect on protein aggregation.

Identification of inhibitors of metal-triggered Ap42
aggregation

The identification of small molecules able to interfere
protein aggregation is one of the approaches towards
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Figure 4 Effect of metallic ion concentrations on fluorescence
recovery. AB42wt-GFP IBs were denatured in 8 M Gu-HCl for 4 h
and the relative GFP fluorescence recovery upon refolding in the
presence of increasing concentrations of Cu*? and Zn*? was
monitored at 510 nm.
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Table 1 Chemical structure of the small chemical compounds used in the present study

Compound Formula

N
~
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cl Azure C

c2 Basic blue 41
c3 Meclocycline sulfosalicylate
c4 Hemin
c5 o-Vanillin O _H
OH
OCH34
(«9) Quercetin
c7 Congo Red NH NHp
OO0
0:?:0 0:$:0
ONa ONa
c8 Thioflavin T CHa
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Table 1 Chemical structure of the small chemical compounds used in the present study (Continued)

c9 Apigenin OH O
)
HO o) O
OH
c10 Nordihydroguaiaretic acid HO.
oL
" ®
CH
. OH
OH
c1 Myricetin

therapeutic treatment in amyloid disorders [30,31]. In
principle, the outlined assay could be used to screen
for such compounds. In particular, in the present work
we focused in validating the approach for the identifi-
cation of inhibitors of copper and zinc promoted ag-
gregation. Despite divalent chelating molecules would
work in vitro, we discarded the study of this type of
molecules since in vivo they have shown to sequester
cofactors that are essential for the cell physiology [32].
Instead, as a test case, the IBs refolding assay was per-
formed in the presence of selected concentrations of a
collection of small compounds that have been reported
previously to bind synthetic amyloid AP peptides or to
modulate their aggregation and/or toxicity [33-37] but
have never been assayed before in the presence of metals.
The chemical formulae of the different compounds are
shown in Table 1. Among the twelve tested compounds
only meclocycline sulfosalicylate promoted a significant
change in the final levels of GFP fluorescence in the
presence of cooper (Figure 5A). This compound was also
active in the presence of zinc but the strongest effect in
the presence of this cation was observed for o-Vanillin (2-
Hydroxy-3-methoxybenzaldehyde) (Figure 5B). o-Vanillin
has a cyclic structure that might quench GFP fluores-
cence. Effectively, the presence of 25 uM concentration
of the compound quenched 15 % of the native untagged
GEFP fluorescence (Figure 5C). We monitored the effect
of o-Vanillin on the refolding of Ap42wt-GEP IBs in the
absence of metals. The compound did not exhibit any
positive effect on GFP recovery by itself and again a

17 % decrease in final fluorescence, mostly attributable
to quenching, was observed. Overall, these data indicate
that the presence of the compound reduces the metal-
promoted aggregation effect by more than 15 fold,
allowing to recover about 95% of the GFP-fluorescence
observed in the absence of zinc and presence of o-Vanillin
(Figure 5D). Interestingly, the o-Vanillin effect seems to
be specific for zinc, with a negligibly effect for copper.
This result is in agreement with previous data indicating
that zinc and copper AP42 induced aggregation pathways
differ in the nature of their intermediate species and sug-
gest that the natural product o-Vanillin targets specifically
zinc promoted misfolding intermediates, which are char-
acterized by a larger exposition of hydrophobic residues
relative to those promoted by copper [38].

Although, to our knowledge, no in vivo effects of
o-Vanillin on AP42 promoted neuronal toxicity have
been reported so far (work in progress). A closely
related compound differing only in a CH, group, 2-
Hydroxy-3-ethoxybenzaldehyde, completely blocked
the neurotoxicity of the peptide to rat hippocampal
neurons in culture [39], indicating that despite the
simplicity of our assay, it may identify physiologically
relevant hit compounds.

To obtain further insights on the effects of copper,
zinc and o-Vanillin on AB42 aggregation, we monitored
the kinetics of GFP refolding after IBs denaturation in
the presence and absence of these molecules by follow-
ing the changes in fluorescence emission (Figure 5E). In
PBS, GFP fluorescence was recovered following a
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double exponential curve with a rate constant of
0.90+0.02 s and a half-life of 46.21 min for the fast re-
action phase. The presence of both copper and zinc
abrogated completely the fluorescence recovery already
at the beginning of the refolding reaction, likely indicat-
ing that they promote a very fast aggregation of the fu-
sion protein that totally competes the GFP domain
folding reaction. The presence of o-Vanillin has a negligible
effect on copper containing solutions. In contrast, this mol-
ecule allows recovery of 70 % of the fluorescence at the
end of the reaction in the presence of zinc. The rate con-
stants and half-life for the fast phase were very close to
those exhibited in the absence of metals, with values of
0.87+0.03 s and 48.29 min, respectively. This indicates
that this compound acts interfering with zinc promoted
AP42 aggregation without affecting GFP folding. Inter-
estingly, the GFP fluorescence recovery reaction is com-
pleted after 3.5 h, being thus a faster assay than those
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relying on the aggregation of synthetic peptides, which
usually require at least overnight incubation [40]. We
used the metallochromic Zincon reagent [41] to quantify
the free levels of Zn** and Cu®" in the absence and
presence of o-Vanillin using spectrophotometry. No dif-
ferences in free ion metal levels were observed (data not
shown) suggesting that the compound does not act as a
chelator but rather affects the refolding/aggregation kin-
etics of misfolded GFP fusions.

Conclusions

Based in our previous knowledge on the amyloid-like
nature of the IBs formed by AP peptides [16,23] and
the in vivo correlation between the aggregation rates
and the total IBs activity [22,26], we describe here a
straightforward approach to identify compounds that
modulate AP aggregation using bacterial IBs. The
method is implemented using 96 well plates and the
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reaction takes less than four hours, making it suitable aggregating species, and can provide an unbiased method
for high-throughput screening (Figure 6). Because most  for the discovery of hit compounds. IBs can be produced
amyloid proteins and peptides form IBs when expressed and purified in large amounts, making the method cost-
in bacteria [17], the approach may have, in principle, a  effective, especially when compared with the use of syn-
broad applicability in the search for aggregation modula-  thetic peptides. Despite its simplicity, the approach
tors in conformational disorders. The assay does not re-  allows to distinguish between aggregation pathways and
quire a detailed understanding of the structure of the to identify inhibitors with therapeutic potential.
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Figure 6 Outline of the screening method to identify molecules able to modulate amyloid aggregation. The method is based on the
kinetic competition between the aggregation promoted by the AB42 moiety and the folding of the GFP domain after denaturation and refolding
of AB42wt-GFP IBs. Molecules that accelerate the aggregation reaction result in low fluorescence recovery and vice versa.




Villar-Piqué et al. Microbial Cell Factories 2012, 11:55
http://www.microbialcellfactories.com/content/11/1/55

Methods

Production and purification of inclusion bodies
Escherichia coli BL21DE3 competent cells were trans-
formed with pET28 vectors (Novagen, Inc., Madison, W1,
USA) encoding the sequences for AB42wt-GFP fusion and
the mutant AP42F19D-GEFP, as previously described
[25].

10 mL of bacterial cultures were grown at 37°C
and 250 rpm in LB medium containing 50 pg/mL of
kanamycin. At an ODgg of 0.5, 1 mM of isopropyl-
B-D-1-thiogalactopyranoside (IPTG) was added to in-
duce recombinant protein expression.

After 4 hours, cells were harvested by centrifugation
and pellets were re-suspended in lysis buffer (100 mM
NaCl, 1 mM EDTA and 50 mM Tris pH 8) to purify intra-
cellular inclusion bodies (IBs), as previously described
[41]. Briefly, protease inhibitor PMSF and lysozyme were
added at the final concentrations of 15 mM and
300 pg/mL, respectively. After incubating at 37°C for
30 min, detergent NP-40 was added at 1 % and cells
were incubated at 4°C for 50 min under mild agitation.
To remove nucleic acids, cells were treated with DNase
and RNase at 15 pg/mL at 37°C for 30 min. IBs were
collected by centrifugation at 12,000xg for 10 min and
washed with lysis buffer containing 0.5 % Triton X-100.
Finally, they were washed three times with PBS to re-
move remaining detergent.

In vitro refolding assay

15 pL of purified IBs at OD34 = 10 were centrifuged for
10 min at 12000xg. To denature the aggregates, the pel-
lets were re-suspended in 10 pL of 8 M Gu-HCl or 10 M
urea and incubated at room temperature for 4 h. For the
refolding process, denatured aggregates were dissolved in
990 pL of refolding buffer. These buffers were based on
PBS, previously treated with Chelex 100 chelating resin
from Sigma-Aldrich (St. Louis, MO, USA), and the fol-
lowing salts and compounds according to the different
refolding assays: CaCl,, FeCl;, MgCl,, NaCl, NiCl,,
ZnCl,, CuCl,, apigenin, azure C, basic blue 41, congo
red, curcumin, hemin chloride, meclocycline sulfosa-
licylate, myricetin, nordihydroguaiaretic acid, o-Vanillin
(2-hydroxy-3-methoxybenzaldehyde), thioflavin -T and
quercetin, all obtained from Sigma-Aldrich (St. Louis,
MO, USA). Equimolar concentrations of purified untagged
GFP were used in control experiments. GFP fluorescence
of the solutions containing refolded IBs or untagged GFP
were measured in a 96 well plate in a Victor 3 Plate Reader
(Perkin-Elmer, Inc., Waltham, MA, USA) using excitation
and emission wavelength filters of 405 nm and 510 nm, re-
spectively or in a Jasco FP-8200 spectrofluorometer using
excitation and emission wavelengths of 480 nm and
510 nm, respectively. Measurements were performed in
triplicate. For kinetic experiments, the refolding step was
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followed using the same parameters and reading the fluores-
cence emission every 2 min for 16 h. In order to
homogenize the samples, these were briefly shacked (for
5 s) before each determination.

Transmission electronic microscopy

IBs or aggregates containing solutions were placed on car-
bon-coated copper grids, and left to stand for five minutes.
The grids were washed with distilled water and stained
with 2 % (w/v) uranyl acetate for another two minutes be-
fore analysis using a HitachiH-7000 transmission electron
microscope (Hitachi, Tokyo, Japan) operating at accelerat-
ing voltage of 75 kV.

Secondary structure determination

Aggregates present in refolding solutions were precipi-
tated by centrifugation at 12.000 xg (g en cursiva i sense
espais) for 30 min, resuspended in Milli-Q water and ana-
lyzed, together with purified untagged GFP, by FT-IR spec-
troscopy using a Bruker Tensor 27 FT-IR Spectrometer
(Bruker Optics Inc) with a Golden Gate MKII ATR
accessory. Each spectrum consists of 16 independent
scans, measured at a spectral resolution of 2 cm™! within
the 1700-1500 cm™ range. All spectral data were acquired
and normalized using the OPUS MIR Tensor 27 software.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements

This work was supported by grants BFU2010-14901 from Ministerio de
Ciencia e Innovacion (Spain) and 2009-SGR 760 from AGAUR (Generalitat de
Catalunya). RS is recipient of a contract from the Ramén y Cajal Programme
from Ministerio de Ciencia e Innovacion. NSG s recipient of a FEBS long-
term fellowship. SV has been granted an ICREA ACADEMIA award (ICREA).

Author details

'Departament de Bioquimica i Biologia Molecular, Facultat de Biociéncies,
Universitat Autdbnoma de Barcelona, E-08193, Bellaterra, Spain. 2Institut de
Biotecnologia i de Biomedicina, Universitat Autonoma de Barcelona, E-08193,
Bellaterra, Spain. *Present address: Departament de Fisicoquimica, Facultat de
Farmacia, Universitat de Barcelona, Avda. Joan XXIll, 08028, Barcelona, Spain.
“Present address: Medical Research Council Laboratory of Molecular Biology,
Hills Road, Cambridge, CB2 0QH, United Kingdom.

Authors' contributions

SV supervised the project, designed the study and drafted the manuscript.
AVP and AE carried out all experiments and drafted the manuscript. RS and
NSG critically revised and corrected the manuscript. All authors read and
approved the final manuscript.

Received: 21 January 2012 Accepted: 3 May 2012
Published: 3 May 2012

References

1. Chiti F, Dobson CM: Protein misfolding, functional amyloid, and human
disease. Annu Rev Biochem 2006, 75:333-366.

2. Fernandez-Busquets X, de Groot NS, Fernandez D, Ventura S: Recent
structural and computational insights into conformational diseases.
Curr Med Chem 2008, 15(13):1336-1349.

3. Friedman R: Aggregation of amyloids in a cellular context: modelling and
experiment. Biochem J 2011, 438(3):415-426.



Villar-Piqué et al. Microbial Cell Factories 2012, 11:55
http://www.microbialcellfactories.com/content/11/1/55

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Ross CA, Poirier MA: Protein aggregation and neurodegenerative disease.
Nat Med 2004, 10(Suppl):S10-S17.

Lee LL, Ha H, Chang YT, Delisa MP: Discovery of amyloid-beta
aggregation inhibito'rs using an engineered assay for intracellular
protein folding and solubility. Protein Sci 2009, 18(2):277-286.

Morell M, de Groot NS, Vendrell J, Aviles FX, Ventura S: Linking amyloid
protein aggregation and yeast survival. Mol Biosyst 2011, 7(4):1121-1128.
Amijee H, Madine J, Middleton DA, Doig AJ: Inhibitors of protein
aggregation and toxicity. Biochem Soc Trans 2009, 37(Pt 4):692-696.

Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease:
progress and problems on the road to therapeutics. Science 2002, 297
(5580):353-356.

Kuperstein |, Broersen K, Benilova |, Rozenski J, Jonckheere W, Debulpaep M,
Vandersteen A, Segers-Nolten I, Van Der Werf K, Subramaniam V, et al:
Neurotoxicity of Alzheimer's disease Abeta peptides is induced by small
changes in the Abeta42 to Abeta40 ratio. EMBO J 2010, 29(19):3408-3420.
Karran E, Mercken M, De Strooper B: The amyloid cascade hypothesis for
Alzheimer's disease: an appraisal for the development of therapeutics.
Nat Rev Drug Discov 2011, 10(9):698-712.

Bonda DJ, Lee HG, Blair JA, Zhu X, Perry G, Smith MA: Role of metal
dyshomeostasis in Alzheimer's disease. Metallomics 2011, 3(3):267-270.
Jomova K, Vondrakova D, Lawson M, Valko M: Metals, oxidative stress and
neurodegenerative disorders. Mol Cell Biochem 2010, 345(1-2):91-104.

de Groot NS, Espargaro A, Morell M, Ventura S: Studies on bacterial
inclusion bodies. Future Microbiol 2008, 3:423-435.

Ventura S, Villaverde A: Protein quality in bacterial inclusion bodies. Trends
Biotechnol 2006, 24(4):179-185.

Carrio M, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S: Amyloid-
like properties of bacterial inclusion bodies. J Mol Biol 2005,
347(5):1025-1037.

Morell M, Bravo R, Espargaro A, Sisquella X, Aviles FX, Fernandez-Busquets X,
Ventura S: Inclusion bodies: specificity in their aggregation process and
amyloid-like structure. Biochim Biophys Acta 2008, 1783(10):1815-1825.

de Groot NS, Sabate R, Ventura S: Amyloids in bacterial inclusion bodies.
Trends Biochem Sci 2009, 34(8):408-416.

Wang L, Maji SK, Sawaya MR, Eisenberg D, Riek R: Bacterial inclusion
bodies contain amyloid-like structure. PLoS Biol 2008, 6(8):e195.

Sabate R, de Groot NS, Ventura S: Protein folding and aggregation in
bacteria. Cell Mol Life Sci 2010, 67(16):2695-2715.

Garcia-Fruitos E, Sabate R, de Groot NS, Villaverde A, Ventura S: Biological
role of bacterial inclusion bodies: a model for amyloid aggregation.
FEBS J 2011, 278(14):2419-2427.

Lotti M: Bacterial inclusion bodies as active and dynamic protein
ensembles. FEBS J 2011, 278(14):2407.

Villar-Pique A, de Groot NS, Sabate R, Acebron SP, Celaya G, Fernandez-
Busquets X, Muga A, Ventura S: The Effect of Amyloidogenic Peptides on
Bacterial Aging Correlates with Their Intrinsic Aggregation Propensity.

J Mol Biol 2011. doi:http://dx.doi.org/10.1016/jjmb.2011.12.014.

Dasari M, Espargaro A, Sabate R, Lopez Del Amo JM, Fink U, Grelle G, Bieschke
J, Ventura S, Reif B: Bacterial Inclusion Bodies of Alzheimer's Disease beta-
Amyloid Peptides Can Be Employed To Study Native-Like Aggregation
Intermediate States. Chem Bio Chem 2011, 12(3):407-423.

Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM, Aris A, Ventura
S, Villaverde A: Aggregation as bacterial inclusion bodies does not imply
inactivation of enzymes and fluorescent proteins. Microb Cell Fact 2005, 4:27.

de Groot NS, Aviles FX, Vendrell J, Ventura S: Mutagenesis of the central
hydrophobic cluster in Abeta42 Alzheimer's peptide, Side-chain
properties correlate with aggregation propensities. FEBS J 2006,
273(3):658-668.

de Groot NS, Ventura S: Protein activity in bacterial inclusion bodies
correlates with predicted aggregation rates. J Biotechnol 2006,
125(1):110-113.

de Groot NS, Ventura S: Effect of temperature on protein quality in
bacterial inclusion bodies. FEBS Lett 2006, 580:6471-6476.

Kiefhaber T, Rudolph R, Kohler HH, Buchner J: Protein aggregation in vitro
and in vivo: a quantitative model of the kinetic competition between
folding and aggregation. Bio/Technology 1991, 9(9):825-829.

Jin L, Wu WH, Li QY, Zhao YF, Li YM: Copper inducing Abeta42 rather than
Abeta40 nanoscale oligomer formation is the key process for Abeta
neurotoxicity. Nanoscale 2011, 3(11):4746-4751.

Page 11 of 11

30. Zhang X, Smith DL, Meriin AB, Engemann S, Russel DE, Roark M,
Washington SL, Maxwell MM, Marsh JL, Thompson LM, et al: A potent small
molecule inhibits polyglutamine aggregation in Huntington's disease
neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci U
S A 2005, 102(3):892-897.

31, Chen J, Armstrong AH, Koehler AN, Hecht MH: Small molecule microarrays
enable the discovery of compounds that bind the Alzheimer's Abeta
peptide and reduce its cytotoxicity. J Am Chem Soc 2010,
132(47):17015-17022.

32, Hegde ML, Bharathi P, Suram A, Venugopal C, Jagannathan R, Poddar P,
Srinivas P, Sambamurti K, Rao KJ, Scancar J, et al: Challenges associated
with metal chelation therapy in Alzheimer's disease. J Alzheimer's Dis
2009, 17(3):457-468.

33, Necula M, Kayed R, Milton S, Glabe CG: Small molecule inhibitors of
aggregation indicate that amyloid beta oligomerization and fibrillization
pathways are independent and distinct. J Bio/ Chem 2007,
282(14):10311-10324.

34, Necula M, Breydo L, Milton S, Kayed R, van der Veer WE, Tone P, Glabe CG:
Methylene blue inhibits amyloid Abeta oligomerization by promoting
fibrillization. Biochemistry 2007, 46(30):8850-8860.

35. Kim H, Park BS, Lee KG, Choi CY, Jang SS, Kim YH, Lee SE: Effects of
naturally occurring compounds on fibril formation and oxidative stress
of beta-amyloid. J Agric Food Chem 2005, 53(22):8537-8541.

36. Jagota S, Rajadas J: Effect of Phenolic Compounds Against Abeta
Aggregation and Abeta-Induced Toxicity in Transgenic C. elegans.
Neurochem Res 2012, 37(1):40-48.

37. Matsuzaki K, Noguch T, Wakabayashi M, lkeda K, Okada T, Ohashi Y, Hoshino M,
Naiki H: Inhibitors of amyloid beta-protein aggregation mediated by GM1-
containing raft-like membranes. Biochim Biophys Acta 2007, 1768(1):122-130.

38, Chen WT, Liao YH, Yu HM, Cheng IH, Chen YR: Distinct effects of Zn2+,
Cu2+, Fe3+, and Al3+ on amyloid-beta stability, oligomerization, and
aggregation: amyloid-beta destabilization promotes annular protofibril
formation. J Biol Chem 2011, 286(11):9646-9656.

39. De Felice FG, Vieira MN, Saraiva LM, Figueroa-Villar JD, Garcia-Abreu J, Liu R,
Chang L, Klein WL, Ferreira ST: Targeting the neurotoxic species in Alzheimer's
disease: inhibitors of Abeta oligomerization. FASEB J 2004, 18(12):1366-1372.

40. Rodriguez-Rodriguez C, Sanchez De Groot N, Rimola A, Alvarez-Larena A,
Lloveras V, Vidal-Gancedo J, Ventura S, Vendrell J, Sodupe M, Gonzalez-
Duarte P: Design, selection, and characterization of thioflavin-based
intercalation compounds with metal chelating properties for application
in Alzheimer's disease. J Am Chem Soc 2009, 131(4):1436-1451.

41, Hilario E, Romero |, Celis H: Determination of the physicochemical
constants and spectrophotometric characteristics of the metallochromic
Zincon and its potential use in biological systems. J Biochem Biophys
Methods 1990, 21(3):197-207.

doi:10.1186/1475-2859-11-55

Cite this article as: Villar-Piqué et al: Using bacterial inclusion bodies to
screen for amyloid aggregation inhibitors. Microbial Cell Factories 2012
11:55.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central

. J



http://dx.doi.org/10.1016/j.jmb.2011.12.014

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Refolding A&beta;42-GFP IBs is sequence specific

	link_Fig1
	link_Fig2
	link_Fig3
	Detection of the A&beta;42 aggregation-promoting effect of ionic metals
	Identification of inhibitors of metal-triggered A&beta;42 aggregation

	link_Fig4
	link_Tab1
	Conclusions
	link_Fig5
	link_Fig6
	Methods
	Production and purification of inclusion bodies
	In vitro refolding assay
	Transmission electronic microscopy
	Secondary structure determination

	Author details
	AcknowledgementsThis work was supported by grants BFU2010-14901 from Ministerio de Ciencia e Innovaci&oacute;n (Spain) and 2009-SGR 760 from AGAUR (Generalitat de Catalunya). RS is recipient of a contract from the Ram&oacute;n y Cajal Programme from M...
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41

