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Abstract

Understanding the properties of a system as emerging from the interaction of well described parts is the most
important goal of Systems Biology. Although in the practice of Lactic Acid Bacteria (LAB) physiology we most often
think of the parts as the proteins and metabolites, a wider interpretation of what a part is can be useful. For
example, different strains or species can be the parts of a community, or we could study only the chemical
reactions as the parts of metabolism (and forgetting about the enzymes that catalyze them), as is done in flux
balance analysis. As long as we have some understanding of the properties of these parts, we can investigate
whether their interaction leads to novel or unanticipated behaviour of the system that they constitute.
There has been a tendency in the Systems Biology community to think that the collection and integration of data
should continue ad infinitum, or that we will otherwise not be able to understand the systems that we study in
their details. However, it may sometimes be useful to take a step back and consider whether the knowledge that
we already have may not explain the system behaviour that we find so intriguing. Reasoning about systems can
be difficult, and may require the application of mathematical techniques. The reward is sometimes the realization
of unexpected conclusions, or in the worst case, that we still do not know enough details of the parts, or of the
interactions between them.
We will discuss a number of cases, with a focus on LAB-related work, where a typical systems approach has
brought new knowledge or perspective, often counterintuitive, and clashing with conclusions from simpler
approaches. Also novel types of testable hypotheses may be generated by the systems approach, which we will
illustrate. Finally we will give an outlook on the fields of research where the systems approach may point the way
for the near future.

Review
Introduction
Systems biology is a relatively new field of science that
employs, in an iterative fashion, a combination of quan-
titative data, mathematical modeling and theory to come
to a “systems-level” understanding. We interpret this as
an understanding how the behaviour of the system, be it
the frequency of a microorganism in a microbial com-
munity, or the flux through a metabolic pathway,
depends on the properties of the components of the

system, and the interactions between the components. It
is therefore not the opposite of reductionism: in its bot-
tom-up manifestation, systems biology uses the reduc-
tionist’s data (properties of the components), and builds
a picture of the predicted collective behaviour if the
interactions are included. In its top-down manifestation,
systems biology aims at component and interaction
identification from large data (omics) sets, where it has
strong connections with (and may even be indistinguish-
able from) bioinformatics.
Systems biology has penetrated mainstream biology

considerably [1]. Also in the field of lactic acid bacteria
research, the systems biology approaches has quite a tra-
dition. In this review, we want to illustrate what systems
biology has brought the LAB field, through a number of
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selected cases. This review has a stronger -but not
exclusive- focus on the bottom-up approach, and on
microbial physiology, in particular metabolism. We will
start with genome-scale metabolic models and their
approaches, which may be considered a compromise
between bottom-up and top-down systems biology.
Then, after identifying specific limitations in these type
of models, we will focus on kinetic models of LAB phy-
siology, to discuss the “effective cause” (the how) and
the “final cause” (the why) of regulation of metabolism
in LAB. Finally, we will scale up and consider cells as
components in a community of cells and discuss meta-
bolic regulation strategies within the framework of
population dynamics. We will end with some perspec-
tive of what we believe are some of the dominant future
developments in the systems biology field, relevant for
LAB research.

Genome-scale metabolic models
Today’s interest in systems biology is largely fuelled by
high-throughput techniques that generate large amounts
of data. There is a general consensus that functional
genomics has enormous potential in the life sciences, in
particular in biotechnology and medicine. How to use
these technologies most efficiently, either for fundamen-
tal understanding, biomarker discovery or concrete bio-
tech applications, is an area of active research. It is clear
that the volume and complexity of the data are becom-
ing too large to cope with by biologists alone, especially
when the latter are poorly trained in advanced mathe-
matics and computation (which is unfortunately still lar-
gely the case). So there is an understandable need from
the biologist’s perspective for help in mining, interpret-
ing and using the datasets that they collect. Such activ-
ities require modelling of one form or the other [2].
Biostatistics and bioinformatics offer help in the analy-

sis of genome-scale data sets, but they often rely on
purely mathematical and statistical analysis [3]. Although
extremely useful, it ignores what is often referred to as
“legacy data”, i.e. the large body of biological knowledge
that is often scattered in literature and therefore poorly
accessible. Moreover, many of the techniques were not
designed to incorporate a priori knowledge, even if it is
available [3]. “Bottom-up” systems biologists, on the
other hand, construct detailed mechanistic models that
aim at a fundamental understanding of systems beha-
viour [1] (see also the section on control of primary
metabolism of LAB).
Using genome-scale reconstructions, and their corre-

sponding models, may be considered as a “middle-out”
approach, since they combine -omics data with more
traditional modelling strategies. All aspects of genome-
scale metabolic models have been extensively reviewed
in recent years [4-10]. In this section we will describe

some of its application to metabolic networks of
LAB. These applications can be divided into three main
application areas: (i) advanced bioinformatics and data
analysis; (ii) quantitative analysis and prediction of
fermentation; and (iii) exploration and discovery of
metabolic potential.
Advanced bioinformatics and data analysis
A genome-scale metabolic model, or metabolic recon-
struction, is nothing more and nothing less than a manu-
ally curated inventory of all gene-protein-metabolic
reaction associations of an organism [5,11]. It is based on
a combination of bioinformatic inference of gene func-
tion, experimental evidence in the form of biochemical
studies and physiology (e.g. auxotrophies for amino acids
or vitamins [12]), and literature searches. For information
on how to make such models, we refer to some reviews
on this topic [4,5,11]. Quite a few genome-scale meta-
bolic models for LAB are available [13-15]. Once the
often complex and many-to-many gene-protein-reaction
relationships are mapped out, these same relationships
can be used for integration of data sets that refer to these
network constituents. In general, a genome-scale meta-
bolic reconstruction provides what Palsson called a “con-
text-for-content” [16], and such pathway analysis has
been used in numerous studies, ranging from metabolic
interpretation of fitness screens or knockouts [17-19],
functional association studies [20], and studies on the
evolution of genomes [21] and metabolic networks
[22,23]. A relatively simple example in LAB research was
the use of metabolic maps to plot microarray data. This
analysis was used by Stevens et al [24] to identify CO2 as
a potential cause for growth retardation in aerated
cultures of L. plantarum. A more formal and statistical
method, with exactly this aim, was developed by J. Niel-
sen’s group, called reporter metabolite analysis [25].
Quantitative analysis and prediction of fermentation
Genome-scale metabolic models are stoichiometric models,
and hence can be used to analyse (and sometimes predict)
fluxes in metabolic networks, an area often referred to as
metabolic flux analysis (MFA, see for an excellent review
on different modelling techniques in metabolic engineering
[26]). In that field, focus has mostly been on estimating the
internal fluxes from external fluxes (consumption and pro-
duction rates), and 13C-label incorporation in metabolic
pools [27]. Models were developed specifically for precise
flux estimations [28,29], but genome-scale metabolic mod-
els turn out to have many more degrees of freedom than
the traditional stoichiometric models used for flux analysis
(think in the order of one hundred degrees of freedom, see
e.g. [15]). This is primarily caused by lumping and simplifi-
cations in the latter case: when the model is constructed
based on the genome, many additional catabolic pathways
and sugar uptake pathways are included that would be irre-
levant for dedicated MFA models.
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When uptake and production data are available, an
extremely useful approach is to set these data as flux
constraints in the model, and then perform Flux Balance
Analysis (FBA). FBA requires an objective (biomass pro-
duction rate, or ATP production rate) that is optimized
[9]. The optimisation algorithm, called linear program-
ming, will search for flux distributions that will maxi-
mize the objective function. Importantly, the solution
space, i.e. the space of all feasible (not necessarily opti-
mal) flux distributions, is bounded in this case by the
measured uptake and production rates. Hence, the algo-
rithm will find optima at such boundaries. An interest-
ing measure produced by the linear programming
algorithm is the so-called reduced cost: it quantifies how
much the objective would increase (or decrease in case
of a minimization problem) if the boundary was allowed
to be stretched a little [30]. If this reduced cost is non-
zero for a measured uptake flux, this indicates that the
uptake of this compound potentially limits the objective
function [15].
There is one technical detail that is important how-

ever: although FBA is guaranteed to find the global opti-
mal value for the objective function, there could
potentially be many different flux distributions that pro-
vide that value. Thus, FBA solutions are not unique
[31]. One should therefore test which reactions have a
unique value in the optimum, and which ones are still
free to vary. This can be tested with flux variability ana-
lysis (FVA), which minimizes and maximizes each flux
in the network in the optimum [32]. FVA on models of
LAB constrained by experimental data actually result in
FBA solutions that are quite unique, and most variability
is only minor and not affecting the reduced cost analy-
sis. This is only the case if the network is energy-limited
and ATP production and consumption by biomass for-
mation are strictly coupled; releasing this constraint
result in much more flexibility, e.g. in futile cycles [15].
Our colleagues found the same for E. coli models (Brug-
geman, Kelk, Olivier and Stougie, unpublished results),
so this is not specific for LAB.
In two studies in L. plantarum, interesting new biologi-

cal discoveries were made applying reduced cost analysis.
In a study by us, it was found that the catabolism of
branched chain and aromatic amino acids contributed to
ATP production [15]. Detailed analysis showed that the
catabolism of these amino acids constitute a transhydro-
genase activity that could replace the conventional
NADPH production by the oxidative part of the pentose
phosphate pathway. Under anaerobic conditions, this is
beneficial as it removes excess NADH and converts it in
NADPH required for fatty acid biosynthesis. This transhy-
drogenase activity, hidden in the metabolic network, was
also found in Streptococcus thermophilus, which lacks the
oxidative steps of the PPP, and in this organism’s amino

acid catabolism could be a major source for NADPH [14],
although there is also a NADP-dependent GAPDH
enzyme present that could fulfil this role. In S. pyogenes
(and many more streptococci), a similar situation appears
present (Levering, unpublished results).
In the second case, reduced costs analysis was used to

understand enigmatic production of amino acids at “zero
growth” in L. plantarum [33]. In this study, retentostat
cultivation was used to grow L. plantarum at progressively
lower growth rates, and increasingly more amino acids
were secreted (such as aspartate and arginine). Interest-
ingly, other amino acids, notably aromatic and branched
chain amino acids, were taken up in excess. Microarray
data showed upregulation of plant-specific gene clusters
[34]. Since the catabolic products of branched-chain and
aromatic amino acids are identical or similar to known
plant-hormones, these data suggest that L. plantarum
behaves as if in a plant-like environment [33]. Reduced
costs showed that under these conditions, amino acids
were secreted as an alternative means to export the excess
nitrogen arising from branched-chain and aromatic amino
acid catabolism.
Exploration and discovery of metabolic potential
Thus, genome-scale models can be used to analyse com-
plex uptake and production data to get insight in limita-
tions of fermentations and growth, with applications in
growth medium optimisation. Moreover, as they constitute
a comprehensive inventory of the metabolic potential of
an organism, genome-scale metabolic models, in contrast
to traditional MFA models, can lead to new pathway dis-
coveries, as illustrated above with the transhydrogenase
example. One more example of this is a putative transke-
tolase cycle in L. plantarum, which could result in an
aerobic “combustion” of glucose to CO2 and H2O, with a
stunning 6 moles of ATP per mole of glucose as the result
[35]. Although this cycle appears not to be operative, it is
an interesting “hidden” pathway that may be worth explor-
ing further.
Another option is to use genome-scale models for what-

if scenarios, which would be very useful for metabolic
engineering and synthetic biology. New pathways can be
introduced in silico, and tested whether all co-factors can
be made in the right proportions; the maximal theoretical
yield can be computed, which by-products will be formed,
and so forth [36]. Conversely, gene deletions and/or com-
binations thereof can be scanned to find scenario’s that
would increase the flux towards the product of interest
[37-39]. Although this approach has been demonstrated to
work in E coli, notably by the group of S. Y. Lee [40,41],
not many examples are found for LAB. This is likely to be
caused by the still relatively poor penetration of systems
biology in this traditional field, and because of its associa-
tion with food, which obviously hampers metabolic engi-
neering and synthetic biology approaches. We found one
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example where FBA was used to model protein over-
expression in L. lactis [42].
Limitations of genome-scale models
Finally, we would like to remind the reader of the fact
that genome-scale metabolic models are stoichiometric
models that lack any kinetic detail. Hence, only ratios of
fluxes can be computed, i.e. only questions such as
“how much comes out if I put in so much?” can be
addressed. These are yields, and stoichiometric models
can only predict yields, or in the case of FBA optimal
yields. In the section on optimality, we will revisit this
point and argue that organisms, and LAB in particular,
very often are not selected for yield or efficiency, but for
rate. Therefore all predictions with genome-scale meta-
bolic models will have to be weighted against this
potential confounder (see [43] for examples). The sce-
narios should be viewed as hypotheses in guiding the
next experiments, and in that sense the models are very
useful, despite their limitations.

How is primary metabolism in LAB controlled (regulated?)
Mechanistic explanations of metabolic behaviour and
how this is manipulated by the organism itself, or can
be manipulated through metabolic engineering, are at
the heart of much of the research on LAB. A number of
mathematical modelling approaches have been used in
LAB research to integrate experimental data from
detailed biochemical studies on transport process [44]
and enzyme kinetics (see, e.g. [45,46]), supplemented
with flux and metabolites measurements, such as in-vivo
NMR [47,48]. The genomics approach to LAB physiol-
ogy has been accompanied in recent years by the use of
genome-scale metabolic network models [15], as dis-
cussed above. Here, we want to discuss several attempts
to model LAB metabolism dynamically, with the use of
kinetic (differential-equation based) models, of which
several have been published. The focus will be on the
assumptions and limitations of these models, and to
what extent they have helped to understand the wealth
of physiological data, or to generate hyptheses.
Not surprisingly, kinetic modelling efforts in L. lactis

have been almost exclusively focused on glycolysis (see
Figure 1 for main features of the pathway relevant for
the discussion). There have been two main approaches
to model glycolysis in L. lactis. The first flavour are
variants of the “Hoefnagel” model [52-54], constructed
in the “in silico-cell” spirit, which means that all para-
meters in the model are based on enzyme kinetics
obtained in vitro [55]. The parameterised rate equa-
tions for all the enzymes are then put together to com-
pute the behaviour of the whole pathway, in terms of
metabolite levels and fluxes. No fitting is involved;
data and model predictions are being compared to
identify mainly structural anomalies in the model. The

second approach is based on fitting time-series data of
metabolites, almost exclusively in vivo NMR data from
the group of H. Santos [56,57]. In the latter approach,
no biochemically realistic rate equations are used, but
approximated kinetics (in the power-law format) with
less parameters and mathematical attributes that make
them easier to handle, notably by the fact that the dif-
ferential equations have analytical solutions [58].
Recently, a third approach was presented and com-
pared to the power-law modelling: this approach,
based on so-called dynamic budget theory, is working
at a much higher abstraction level [59]. The study
bears similarities to the economic perspective of cell
growth presented by us [60], but it has less biochem-
ical detail than the two main approaches discussed
here, and therefore does not help in explaining
mechanisms, or identifying potential targets for meta-
bolic engineering.
Both approaches have their pros and cons. The Hoef-

nagel approach is closer to biochemistry and biological
intuition, but suffers from insufficient kinetic data (e.g.
many enzyme kinetics were included from other organ-
isms than L. lactis), and the potential in vivo – in vitro
differences that are unavoidable and difficult to address.
Moreover, the enzyme kinetics are usually taken from
databases such as Brenda or Sabio-RK [61], in which the
assay conditions for each enzymes is likely to be different.
This touches upon an important standardisation and
documentation issue that we will discuss at the end of
this section. These limitations to in vitro kinetics result
in parameter values that are rather uncertain, yet no
comprehensive (global) sensitivity analysis has been pre-
sented as far as we know that addresses which para-
meters in the model have a large effect on the dynamics
and control of glycolysis. Given these limitations, the cor-
respondence between the models and experimental data
are surprisingly good, and they form a solid basis for
further refinement of the models, and of understanding
the biochemical basis of primary metabolism in L. lactis.
The data-fitting, or inverse-engineering, approach as

practiced in particular by Voit and colleagues [56,57],
has a thermodynamic underpinning [56,58] but has the
disadvantage that there is no clear mapping to biochem-
istry. The simplifications allow for an analytical solution
of the ordinary differential equations that make up most
kinetic models. This is potentially a great advantage to
obtain deeper insight into how a particular design or set
of parameters affect pathway behaviour. A recent exam-
ple in L. lactis exploits this using a similar approach,
not with power-law kinetics but with linlog kinetics
which also renders analytical solutions to the set of
mass balance equations [62].
The main finding, as far as we are aware, resulting

from the inverse-engineering analysis is the importance
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of the feed-forward activation of F16bP on PK. This
feed-forward loop is allegedly required for the rapid
increase in PEP upon glucose exhaustion [57]. Since
PEP is the substrate for the PTS system that takes up
glucose, the increase in PEP has been rationalized as a

strategy to ensure prompt uptake of glucose once avail-
able again. In fact, Hoefnagel et al already made a simi-
lar observation in their in-silicon cell model [53]. They
also proposed that F16bP activation, but also inorganic
phosphate (Pi) effects on PK and regulation of PFK by

Figure 1 Primary metabolism of L. lactis with major players discussed in the main text. Indication of the (positive) regulatory feedback and
feedforward loops that involve F16bP in dashed orange line. In red are the enzymes of the las-operon. In green boxes the PTS system and
GAPDH, respectively. G6P and PEP pool indicate pools of intermediates that are considered in rapid equilibrium.
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PEP are important for an increase in PEP and slow
depletion of F16bP.
Backed up by on experimental evidence Hoefnagel [53]

stressed the importance of Pi as a free variable, rather than
an input variable used by Voit [57]. However, he did not
mention what we think is the most important conse-
quence of considering Pi as a free variable: it renders the
total pool of phosphate in the cell as a conserved pool.
This is caused by what is called moiety conservation [63]:
since there is no net transport of phosphate in the models
(glucose comes in, and acids go out), and cells cannot
make phosphate de novo (unless –unexpectedly- they
would be capable of nuclear reactions), the total amount
of phosphate contained in all metabolites such as PEP,
F16bP, ATP and Pi, cannot change (other moiety conser-
vations are for example the total pool of Coenzyme A, or
the sum of NADH and NAD). Note that these moiety con-
servations may be artefacts of models since we ignore
potential sources an sinks, such as polyphosphate, but
these fluxes are likely slow compared to the high glycolytic
flux. Hence, if the kinetics in the model are such that
F16bP drops because of glucose exhaustion, the associated
phosphates have to go to some other pools, notably PEP
and Pi. So the question really is what the most important
kinetic parameters are that cause the change in distribu-
tion of phosphate over the glycolytic pools, ATP and Pi.
This has not been fully addressed yet, and thus the claim
that the feed-forward activation of PK by F16bP is relevant
in this respect, is in our opinion still pending.
It should be noted moreover, that the F16bP feed-for-

ward loop on PK is by no means unique for L. lactis.
Most if not all glycolytic pathways exhibit this (over 30
cases in the Brenda database), notably organisms that do
not have a PTS glucose uptake system, and hence, do
not rely on high PEP levels to “start-up” glycolysis upon
glucose re-addition. So, one may wonder about the
functional interpretation of the feed-forward activation
in other organisms. One hypothesis we have is linked to
the kinetics and thermodynamics of GAPDH: this
enzyme operates near equilibrium and is very sensitive
to mass action [64]. High F16bP levels likely indicate
high flux (as in E coli [65]) and hence signal that a high
(er) activity of GAPDH is required. The feed-forward
loop on PK should help in pulling at the metabolites in
lower glycolysis, hence reducing the products of
GAPDH. The latter scenario fits with the inhibitor study
of GAPDH [66], showing that the activity of GAPDH
exerts high control on the glycolytic flux. We would like
to note that this result is actually not in conflict with
the study from P.R. Jensen’s group in which they
showed that varying the expression of GAPDH did not
affect the glycolytic flux [67]: these studies do not
strictly measure the metabolic control coefficient, as
explained in the optimality section.

Apart from the feed-forward loop, there is another
important regulatory loop in the glycolytic system in
L. lactis that has not received the attention we think it
deserves: the negative feedback of F16bP (and Pi) on the
PTS system. Within the PTS system in gram positives,
the HPr protein has a dual role: when phosphorylated at
the His-15 residue, it allows phosphate group-transfer
within the chain of phosphorylation events that lead to
uptake and phosphorylation of glucose. When phos-
phorylated at the Ser-46 residue, however, HPr acts as a
signalling intermediate in glucose repression, activating
CcpA [68]. The latter state of HPr is promoted by
F16bP and is not available in the transport process, thus
constituting a F16bP-mediated negative feedback on glu-
cose uptake [69]. Studies in yeast, and a comparative
analysis of glycolytic designs, strongly suggest that this
feedback is essential for robustness against sudden
changes in glucose availability [69]. This feedback
should also be relevant in evaluating the potential effects
of PEP on the PTS system and restarting glycolysis:
modelling efforts [54] looking at the effect of pH sug-
gested that this effect of PEP could explain the negative
effect of low pH on glycolytic flux, but this was assessed
without taking the potentially counteracting effect of
F16bP into account (as F16bP was also lower at the
lower pH, but not taking into account [54]).
Finally, one of the more complex behaviours in L. lactis

glycolysis that is screaming for a mechanistic explanation
–still- is the (often gradual) “switch” between homolactic
and mixed acid fermentation, i.e. the fact that L. lactis
exhibits mixed acid fermentation (acetate, ethanol and
formate as major products) at low dilution rates in the
chemostat, and homolactic fermentation at high dilution
rates (see [70] for a clear example). The “final cause” of
this switch will be discussed in the next optimality sec-
tion, but the mechanism of the switch (“efficient cause”)
has also been widely debated in the literature, as reviewed
earlier [48]. Taking a systems perspective, there are two
points to make.
One, it is essential to be precise and make a distinction

between control and regulation, as this has confused the
literature quite a bit. Within Metabolic Control Analysis,
control means the ability of an enzyme activity to change
a flux or concentration; regulation is the way in which
the flux or concentration is actually altered [refs]. For
example, in L. plantarum ATP demand has some control
on flux [72]: this means that with increasing the ATP
demand rate, the glycolytic flux increases. How this
change is brought about, is the realm of regulation: it
depends on how the regulatory network “plays the con-
trol knobs in metabolism”. So if one states that “the
NADH/NAD ratio determines the switch”, one probably
means that reactions that affect the NADH/NAD ratio
have control over the lactate to acetate flux ratio, via the
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NADH/NAD ratio. We feel the latter statement is much
more precise and gives rise to less confusion, and better
design of experiments to prove or disprove this. We feel
that systems biology and its concomitant precise theore-
tical definitions have a lot to offer in this respect.
Second, the switch is most likely the result of a number

of feedbacks and allosteric regulatory interactions that
take place simultaneously, and so a model is warranted
that can quantify the contributions of the different
mechanisms. This impact is not unlikely to change with
conditions, and so the question “what causes the switch?”
is most likely the wrong question to ask. We are develop-
ing a kinetic model that takes in vitro kinetics as the
basis, and uses experimental time-series data to update
or fit parameters. Subsequently, global parameter sensi-
tivity analysis should be applied to assess their impact in
the light of their uncertainty, and to assess which para-
meters affect flux, and the switch. We think that this is
the best approach to tackle this important physiological
observation.

Optimality as an explanation of regulation
The distinction made between different types of explana-
tory causes by Aristotle is still applicable in biology. In
particular, it is important to distinguish the efficient and
final causes (causa efficiens and causa finalis) in modern
molecular biology. Efficient causes are, for example, the
molecular details of passive or active regulatory mechan-
isms that lead to a certain behaviour. The apparent final
cause, or function of such regulatory mechanisms is the
efficient survival and replication of organisms in which
they act. Darwin already noticed that this final cause, as he
also calls it, is programmed by the mechanism of natural
selection [73]. Therefore, when details of regulatory
mechanisms have been revealed by molecular biological
research, the scientific quest is not finished. There is still
the relevant question whether this mechanism effectively
serves survival and replication. And by “effective” we mean
in a manner that is near to optimal given the tools that the
organism has at its disposal, since the second consequence
of natural selection is that the fitness of the organism to
serve survival and replication will be improved until some
kind of maximal use of available resources is reached. The
answer to this question is often not so easy to give,
because of the complicated interactions of components
within the organism and between the organism and its
environment, as well as the obscurity of how exactly fit-
ness, or success in replication and survival is determined
in the often dynamic biotic and abiotic environment. Sys-
tems biology can play a role in understanding the relation
between the efficient and final causes, as we will try to
illustrate. The sort of models used in such research is typi-
cally not of the (once hailed) comprehensive “in silico cell”

type [55], but much more basic and easier to understand,
though often yielding surprising results.
We may expect that optimal use of available resources is

easiest to understand for organisms that replicate in rela-
tively simple environments, of constant and homogeneous
nature and with competitors of their own kin only. The
microbiologist immediately thinks of a pure culture in the
chemostat or propagated by serial transfer in a constant
medium. It has been shown that it is possible to under-
stand aspects of central metabolism in organisms selected
under such conditions from the perspective of optimal use
of resources. A nice example was given by Ibarra et al.
[74] where it was shown that during serial transfer E. coli
adapts through mutations to growth on glycerol, and that
the mutants converged to a metabolic profile that could
be predicted from optimality principles using FBA. In this
case optimality of fitness was assumed to correspond to a
maximal biomass synthesis rate at a limited glycerol
uptake rate. Hence, it seemed that FBA was able to explain
central metabolic profiles using assumptions about the
final cause of metabolic regulation under the given condi-
tion, i.e. production of biomass. However, in the same
paper it was shown that FBA failed to predict the meta-
bolic profile of E. coli growing on glucose, in particular
the production of acetate at high glucose concentrations.
Similarly, FBA analysis on a genome scale model of
L. plantarum predicted a mixed acid fermentation profile
under all circumstances, instead of the experimentally
observed lactate production [15]. Interestingly, also for
L. plantarum adaptation to glycerol appeared predictable
by FBA . The failure of FBA to predict adaptation under
glucose conditions suggests that FBA perhaps lacks essen-
tial elements that are important for explaining optimal
growth on abundant, energy-rich carbon sources. In fact,
any energetically inefficient use of substrate, sometimes
referred to as “overflow metabolism”, is predicted not to
occur at any time by FBA, unless ad hoc capacity con-
straints on certain metabolic paths are imposed. This type
of metabolism is, however, so abundantly observed in
microorganisms [70,75-78] that it is hard to believe that it
doesn’t result from fitness maximization.
Concentrating on LAB here, we see that a prominent

feature of lactic acid bacteria is that they produce
mainly lactic acid from sugars. In a number of cases like
in L. lactis, mixed acid fermentation is observed at low
substrate availability or during growth on sugars that
lead to a low growth rate [70,75]. However, other spe-
cies like L. plantarum display mixed acid fermentation
only at extremely low substrate availability [15]. All this,
despite the fact that mixed acid fermentation yields one
additional ATP per glucose molecule. To the question
why LAB produce lactic acid under certain conditions
and mixed acids under other, there are answers in the
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literature stating that it is the NADH/NAD, ATP/ADP,
or fructose-bisphosphate and triose phosphate concen-
trations or their ratio to free phosphate, as well as publi-
cations stating that it is the level of PFL or LDH that
determines the choice [70,75,79-82]. But whatever the
mechanism is by which the choice between efficient and
inefficient metabolism is made, the question remains
why lactic acid bacteria choose an energetically ineffi-
cient pathway anyway.
It seems as though the use of a mixed acid branch of

fermentation has more disadvantages than an additional
ATP could make up for. It is not immediately clear
what these disadvantages could be. There are several
hypotheses around to explain why LAB produce lactic
acid despite having an energetically more efficient path-
way at their disposal. One hypothesis states that this is a
kind of chemical warfare, where other organisms com-
peting for the same resources are inhibited in growth by
high lactate concentrations. A similar hypothesis has
been proposed to explain the production of alcohol by
yeast [83]. The end products, alcohol or lactate, are pro-
duced as a collective effort by the population. The indi-
viduals pay for this warfare by the virtual loss of ATP
that could have been gained in the mixed acid branch,
in case of LAB, or in oxidative phosphorylation in case
of yeast. The problem with this hypothesis is that one
would expect that in pure cultures “cheater” mutants
would arise that exclusively use the energy-efficient
pathways. The implicit assumption in the warfare
hypotheses is namely that such mutants would have a
higher fitness than the wild type, because they use their
substrate more efficiently. They would therefore take
advantage of the warfare carried out by others without
investing in it. When the need for chemical warfare dis-
appears, as in single-species laboratory populations, the
energy-efficient cheater mutants should even completely
take over the population. However, there are no indica-
tions that such metabolic deserters exist in laboratory
microbial populations.
Some time ago we published a hypothesis in which we

proposed that several global characteristics of microorgan-
isms, like overflow metabolism, might be the result of
maximization of the growth rate [60]. For the hypothesis
we assumed that the proper allocation of cellular resources
determines the growth rate. The outcome of calculations
on a self-replicator model showed that sometimes coun-
terintuitive effects arise. The basic idea behind the model
was that pathways generating additional ATP are generally
longer, or they need more enzymes. So, in case of LAB,
although additional ATP is gained from mixed acid fer-
mentation, in comparison to homolactic fermentation at
least five additional enzymes are needed to generate that
ATP. Whether such an investment pays off depends on
the environmental conditions, in particular on the

substrate concentration, or more precisely the investment
made to accumulate the substrate. The prediction of this
model is that at high substrate concentrations faster
growth is achievable with metabolically less efficient path-
ways. Furthermore, a clear shift in allocation of protein to
the different branches is predicted, meaning that shift in
use of the pathways should be accompanied by a shift in
expression of the corresponding genes, because the invest-
ment in proteins of these pathways imposes a cost on fit-
ness (see the discussion below under “Signatures of
optimality”). Similar effects are predicted by models in the
FBA framework when a crowding constraint is imposed
on the total amount of enzymes [84]. Indeed there are
observations that such shifts are accompanied by shifts in
gene expression, for example in E. coli, S. cerevisiae and B.
subtilis [77,78,85-87]. In chemostat experiments with L.
lactis different observations were made. In L. lactis ML3
the specific activity of LDH increased with increasing
growth rates and substrate concentrations, but the authors
mentioned noticeable differences between strains in shift
behaviour [70]. More recent experiments on L. lactis
IL1403 where proteomics was used to measure relative
protein concentrations in cells grown at different dilution
rates showed that the level of LDH is relatively constant,
but that protein ratios in the mixed acid branch decreased
with increasing growth rate and substrate concentration
[88,89]. Hence, although we cannot explain the constant
activity of LDH (the fact that LDH is in the las-operon in
L. lactis [90] does not help much, as it is not in the very
homolactic L. plantarum [91]), there are indications that
the trade-off between investment in proteins of the mixed
acid pathway and the benefit of additional ATP generation
could play a role in determining the metabolic shift.
Signatures of optimality
Several publications can be found in the literature that
show evidence of optimality of expression levels of pro-
teins in microorganisms. For example, Dekel and Alon
have shown in an evolutionary experiment that the level
of b-galactosidase protein in E. coli quickly adapts to lac-
tose concentrations in the medium. When cultures are
serially transferred on media containing a fixed lactose
concentration, mutants appear with an adapted expres-
sion of the lacZ gene [92]. An optimally tuned expression
level is a compromise between the cost of expressing the
b-galactosidase protein, which increases with increasing
protein level, and the benefit of its activity which
increases with increasing lactose concentrations. Dekel
and Alon deduced cost and benefit of b-galactosidase
levels at different lactose concentrations directly in terms
of effects on growth rate. In the experimental setup used
the growth rate was an important fitness component.
The selection on maximal growth rates at the given lac-
tose concentration and the trade-off between the cost
and benefit on growth rate gave rise to selection of
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mutants with an increasing expression level of lacZ at
higher lactose concentrations in the medium. Stabiliza-
tion of expression levels occurred after 300-500 genera-
tions. This example showed that selection pressure on
optimal expression of one protein, amounting to perhaps
3% of the total protein can be very strong (10000 tetra-
mers per cell, 116 KDa per subunit, and a cell growing at
a doubling time of 40 min. contains 235 fg of protein,
Bionumbers 102019 and 104879 [93]).
A series of experiments from the group of P.R. Jensen

at the Technical University of Denmark, show a signa-
ture of optimal expression levels in L. lactis and E. coli
wild types. For example, when the growth rate of E. coli
is measured at various expression levels of the proton-
ATPase gene, the maximal growth rate is observed
exactly at the wild-type level [94]. Other papers from
this laboratory describe a similar property for other gly-
colytic enzymes in L. lactis, like LDH, PFK, PK, PGM,
PGE, GAPDH, as well as the activity of the entire las
operon [95-97,67]. For all corresponding genes it was
found that maximal growth rate or glycolytic rates were
observed at the wild type expression level. Interpreting
these results in the framework of metabolic control ana-
lysis, the authors concluded that these enzymes have no
control on the growth rate or on the glycolytic rate, or
technically that the flux control coefficients of the
enzymes on these processes equals zero. This is surpris-
ing, because in the metabolic control analysis framework
the summation theorem for control coefficients says that
the sum of control coefficients must be 1. Or in other
words, the control must lie in another enzyme, or be
distributed over multiple enzymes. However, from an
optimization perspective it is easy to understand the
results, specifically with respect to the lack of control on
growth rate, when growth rate is an entity that deter-
mines fitness to a large degree and has been optimized
in evolution. The optimal expression of an enzyme, cor-
responds exactly to the level at which it should have no
control over growth rate. This seems to be in conflict
with the summation theorem [98], but it is not if we
accept that it may be impossible to measure true flux
control coefficients in actively regulating systems (see
“In the optimal state apparent in vivo flux control coeffi-
cients equal 0”). The control coefficient of an enzyme is
defined as the ratio of relative changes in a flux over
relative change in that enzyme, without changes happen-
ing in the other enzymes. The latter condition can not
be guaranteed in living systems, as they may adapt the
amounts of other enzymes in response to experimentally
induced changes in a target enzyme.
In the optimal state apparent in vivo flux control
coefficients equal 0
The flux control coefficient of an enzyme on a pathway
flux is defined as the relative effect of the concentration

of the enzyme on the metabolic flux through the path-
way. To state this in mathematical terms; suppose we
have a pathway with N different enzymes Ei, where i is
an index for the different enzymes running from 1 to
N. The metabolic flux J through the pathway depends
on the concentrations ei of the enzymes Ei, i.e. it is a
function of those concentrations. Then the flux control
coefficient of Ei is defined as [99]:

C
e

J

J

ei
J i

i

= ∂
∂

If we want to experimentally measure the control
coefficient of one of the enzymes on the flux in the
pathway, then we could vary the concentration of that
enzyme, and measure the resulting changes in the flux.
To measure the control coefficient of that enzyme, no
changes in the concentrations in the other enzymes are
allowed to occur (this is what the partial differentiation
∂J / ∂ei indicates). This is an important condition which
is likely not to hold in living systems, as will be dis-
cussed below (and illustrated in Figure 2).
The basic problem in optimization is to distribute a lim-

ited resource over a number of components so that some
function of the components is optimized. In the case of
metabolic pathways, the limited resource could be the
total amount of protein present in the enzymes. Then add-
ing a little bit of one enzyme would automatically be com-
pensated for by the system by deducing the same total
amount of protein from one or more other enzymes. In
case of living organisms such limitations could result from
the limited space inside cells [84], or the limitation by the
total capacity of ribosomes or, assuming that the amount
of ribosomes can be adapted, a limitation by multiple phy-
sical constraints on the complete self-replicating machin-
ery, which is basically the system of all components in a
cell [60]. It is now clear that control coefficients can not
be determined in such a cell from observations of the
amount of the manipulated enzyme only. When experi-
mentally manipulating the concentration of an enzyme,
the cell will automatically compensate this perturbation by
changing the concentrations of other enzymes. If we
assume that around the enzyme level in the wild type the
regulation of enzyme concentrations is optimal, such that
the maximal flux is obtained, then any small changes in
one enzyme will be compensated exactly by changes in
one or more of the other enzymes, leading to apparent
control coefficients equal to zero (as also demonstrated in
Fig 2).
A simple example can be deduced from a theoretical

result by Klipp and Heinrich in [100] where the total
amount of protein in a linear pathway was taken as the
limiting resource. The authors showed that if that
resource is used optimally to attain maximal flux
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through the pathway, then the flux control coefficients
equal the fractional enzyme concentrations, i.e.
C e ei

J
i tot= where etot is the total amount of protein.

Rewriting this equation using the definition of Ci
J , we

have in the optimal state, i.e when J = Jmax:

∂
∂

=J

e

J

ei tot

max

If the organism is optimally regulating its resource dis-
tribution in this state, then any change δek in the
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Figure 2 Illustration of the difference between measuring flux in systems without and with regulatory constraints. The flux in a pathway with two
irreversible Michaelis-Menten enzymes was calculated. The amount of the first enzyme e1 was varied either independently of e2, as it should be to
measure its control coefficient, or in a system in which the total amount of enzyme e1 + e2 is constrained. In the latter system an optimal
distribution of the enzymes is observed at e1 = 0.4. In the neighborhood of that optimum e1 has no apparent control on the flux (nor does e2). Rate
equations and parameter values used: v1 = k1e1(S / KS)/(1 + (S / KS) + (X / KSKIX))v2 = k2e2X / (KX + X) k1 = 2, k2 = 1, KS = 1, KIX = 5, KX = 2, and S = 5.
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concentration ek of an enzyme Ek will be compensated
for by a total change –δek in the other enzyme concen-
trations so that d ei =∑ 0 and etot remains unchanged.
Hence, the net change in flux δJ resulting from an engi-
neered change δek and induced changes in the other
enzymes is by first order approximation

d d dJ
J

e
e

J

e
e

i
i

tot
i

i

N

i

N

= ∂
∂

= =
==
∑∑ max

11

0

So, although the individual flux control coefficients
may not be zero, the effect of optimal regulation, by
compensating cost effects of manipulation of a particu-
lar enzyme leads to a vanishing net effect δJ on the flux
J. In other words, as a consequence of innate optimal
regulation of enzyme expression, the true control coeffi-
cients can not be experimentally assessed if only J and
ek are measured in the experiment. The apparent con-

trol coefficient
e

J

J

e
k

k

d
d

will equal zero, even if the true

control coefficients differ from zero (Fig 2).
Although this effect is expected to hold only for a flux

that is evolutionarily optimized, which in case of growth
is the biomass synthesis rate, any flux closely linked to
biomass synthesis, like ATP production, or the glycolytic
flux, can be expected to behave similarly. So, the seminal
work of P.R. Jensen’s group should not be viewed as a
failure to figure out where control of glycolysis is located,
but as important evidence that L. lactis glycolysis has
indeed been optimised with respect to enzyme levels.
One may conclude that attempts to increase the glycoly-
tic flux, or acidification rate (a combination of flux and
growth rate) in L. lactis is doomed to fail. The economic
perspective to cellular growth strategies, including con-
ceptual models and theory sketched above, allow the test
of scenarios in which still more resources may be allo-
cated to glycolysis. These activities could be strengthened
by strain diversity studies, in which differences in acidifi-
cation rates are screened and mapped to molecular
mechanisms. Alternatively, one may have to conclude
that L. lactis has indeed hit the physical boundaries of its
biological apparatus, which may be somewhat disappoint-
ing, but useful to know. These boundaries are neverthe-
less likely to be dependent on the environmental
conditions, especially if these are dynamic in nutrient
composition and competing species. Thus what is opti-
mal in one state is probably sup-optimal in another, and
this is still rather uncharted territory in microbial systems
biology. In particular, many methods in systems biology,
such as FBA, work only for monocultures under constant
environments, and there is an urgent need to move to
more complex (eco)systems. One theoretical framework
that deals with such conditions is evolutionary game the-
ory, which will be illustrated for LAB in the next session.

Evolutionary game theory of cooperating proteolytic
lactococci and other games
Lactococcus lactis is one of the dominant bacterial spe-
cies in many dairy starter cultures [101,102]. Strains of
dairy origin have usually several amino acid auxotro-
phies [103,104] and are therefore dependent on utilizing
amino acids present in the growth medium. Bovine milk
contains roughly 3% protein, which is mainly present in
various forms of casein. The different types of caseins
are approximately 200 amino acids in length and have
to be cleaved into peptides before they can be taken up
and utilized. Lactococci have a sophisticated machinery
consisting of an extracellular protease and peptide trans-
port and degradation systems, which allow them to uti-
lize milk protein [105]. The presence of the protease is
essential for rapid growth in milk. While lactococcal
genomes encode several peptidases and peptide trans-
port systems [106-108], the cell wall anchored protease
is usually encoded as a single copy on a plasmid
[109-113]. In 1931 Harriman and Hammer [114] first
described that starter lactococci that initially grew
rapidly in milk lost this ability upon prolonged propaga-
tion. They ascribed their observations to the loss of pro-
teolytic activity, but it was not until the 1970s that it
was discovered that the protease was encoded on a plas-
mid that was lost occasionally, giving rise to protease-
negative mutants. During prolonged propagation these
mutants invade the protease positive population [115].
The fact that the proteolytic trait was highly unstable,
while the presence of the protease leads to significantly
increased growth rates and biomass yields, seemed
counterintuitive, and several studies tried to address this
paradoxical behaviour [116,117].
Given these observations, an obvious question is how

such a proteolytic trait can evolve and be stably main-
tained. Altruistic behaviour on the expression of an
extracellular protease has been suggested, based on the
observation that protease expression in Bacillus subtilis
is heterogeneous within a clonal population [118]. Such
altruism could play a role in the stabilization of the pro-
tease, but it cannot explain its evolution. Only when
other system properties, like spatial structure, cell densi-
ties and substrate/product diffusion were considered, a
model could be developed that explained the observed
behaviour (Figure 3) [119]. The model is based on two
assumptions. The first assumption is that the expression
of the protease imposes a burden on the fitness and
growth rate of Prt+ relative to Prt- cells. The second
assumption is that in milk a Prt+ cell can take up a frac-
tion of the extracellular degradation products before
they diffuse away. If this is the case in a mixed culture
of Prt+ and Prt- cells, the burden of protease expression
can be compensated by the ability to capture more pep-
tides. This ability increases with decreasing total cell
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densities and with a decreasing fraction of Prt+ cells in
the culture (lower left corner in Fig. 3b). At high cell
densities and/or high fractions of Prt+ cells the peptide
concentration in the medium will be sufficient to sup-
port high growth rates of cheating Prt- strains, allowing
them to invade a Prt+ culture (top right corner in Fig.
3b). The validity of this model was confirmed indirectly
by propagation experiments of mixed cultures in milk.
In a more direct approach the authors showed peptide
cross-feeding in a mixed culture through a series of
experiments in which bacterial luciferase was coupled to
promoter sequences that respond to intracellular amino
acid/peptide levels. By varying the Prt+: Prt- ratio in
mixed cultures and placing the reporter construct in
either the Prt+ or Prt- strains it was established that at
low frequencies of Prt+ strains in the culture there is a
significant difference in intracellular amino acid/peptide
availability between the two variant strains, whereas at
high frequencies of Prt+ strains no difference could be
detected.
Similar concepts are likely to be applicable to other

extracellular substrate degrading enzymes. A well-
described example is the expression of the sucrose
degrading invertase in yeast [120]. Game theoretical
approaches showed that with an increasing burden of
expressing public goods, population dynamics represent

respectively a mutual beneficial relationship, a snowdrift
game in which the co-existence of co-operators and
cheaters is possible or a prisoners dilemma which leads
to the extinction of the co-operators [120,121].
Lactic acid bacteria are relatively well studied with

respect to their ability to produce bacteriocins [122,123]
and the influence of bacteriocins on bacterial population
dynamics has been studied in great detail over the past
decades [124-126]. Bacteriocin producing cells and their
sensitive as well as resistant derivatives form three inter-
acting strains whose dynamics can also be described by
the hand game rock-paper-scissors. In such a game the
bacteriocin producer beats the sensitive strain, which
beats the resistant strain which beats the producer
strain. Mathematical simulations as well as experimental
work demonstrated such rock-paper-sccissors dynamics
[127] and subsequently it was demonstrated that such
dynamics also occur in co-caged mice that were inocu-
lated with either of the three variant strains [128]. In a
recent study two E. coli strains, each producing a differ-
ent type of colicin targeting the opponent, were allowed
to compete with each other in various environments.
The authors found that bacteriocin production at low
levels induce bacteriocin production of the opponent,
and through this mechanism the strains could defend
local niches and co-exist [129]. Analogously to the
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Figure 3 Peptide cross-feeding between Prt+ and Prt- strains in a mixed culture of both variants. The extra cellular protease of Prt+ strains
cleaves casein into peptides that diffuse away from the cell and can be utilized by invading Prt- cheating cells (Panel a). Modelling the dynamics
between the two variant strains shows that at low cell densities and low Prt+ frequencies the fractional gain after one propagation step is high
for Prt+ cells. If cultures are grown (inoculated) at high cell desities and high frequencies of Prt- cells the fractional gain of Prt+ cells is negative
indicating that they are outcompeted by Prt- cells (Panel b). Reproduced from Bachmann et. al. 2010 with permission from the publisher.
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proposition that bacteriocins rather increase than
decrease biodiversity [27,29] it was also proposed that
phage-predation promotes diversity [130]. Given this
result and the importance of bacteriophages in the dairy
industry, their influence on population dynamics and
culture stability might have to be reconsidered. One of
the future challenges, the description and understanding
of bacterial interactions in e.g. multistrain starter cul-
tures, will certainly need to be assisted, and in the ideal
case guided, by predictions of mathematical models that
should generate testable hypotheses.

Conclusions and outlook
In this review we have described how systems biology
approaches have contributed to the field of microbial
physiology, in particular of lactic acid bacteria. Models
and theory have been used to provide concise and pre-
cise overviews of current knowledge, and to generalise
observations into a framework that can provide deeper
understanding. Models can also provide explanations of
non-intuitive observations, simply because the human
mind cannot track many interdependencies, especially if
they are highly nonlinear. Systems biology is largely
quantitative physiology, and it has become, and will
become even stronger in the future, an important
approach in biology in general, and LAB microbiology
in particular.
In this light, and as promised, a remark on the issue

of standardization. Systems biology has clearly pointed
at the inefficient and fragmented use of resources within
the life sciences. Each lab now uses its own medium,
assay buffer conditions and notation of data and model
components. Hence data cannot be pooled easily for
modelling purposes, or not at all, even if the same ques-
tion was addressed in the same strain. If we want to
become precise and quantitative in biology, this will
have to change. For example, we have found substantial
physiological differences between Lactococcus lactis
MG1363 strains used in Dutch laboratories in Gronin-
gen, Amsterdam or Ede (NIZO), likely caused by accu-
mulative adaptations to different cultivation histories.
For a number of systems biology projects in The Neth-
erlands, we have therefore developed standards for cryo-
preservation, chemically defined medium and assay
buffer (and assays) for all glycolytic enzymes, which has
been adopted by the Dutch researchers active in systems
biology of L. lactis. Although we obviously hope that
these standards will be accepted by the community, it is
more important that we agree on some standards: the
advantages should be obvious. It will also allow better
disentanglement of effects caused by external condition
and for example genetic diversity.
So what are the further challenges in microbial sys-

tems biology? Obviously, we are far away from capturing

the complexity of true living cells with current models.
Functional genomics tools become more and more
quantitative, and provide valuable, comprehensive data
sets on relevant processes in the cell. A number of stu-
dies from the groups in Toulouse have demonstrated
that beautifully for L. lactis, in particular the recent
study in which protein and mRNA stability were mod-
elled based on transcriptome and proteome data
[89,131]. Additional layers of complexity, from the RNA
world or from posttranslational modifications, are yet to
be disclosed, but the techniques are developing rapidly
to do so in a quantitative fashion as well.
Apart from additional components and interactions, we

also see a clear trend towards single-cell technologies. At
this level, we observe that noise and heterogeneity are
crucial factors to be included in our understanding of
phenotype [132]. Such stochastic effects, caused by low
copy numbers of crucial components (there is only one
DNA molecule, or perhaps two [133]!), can drive phe-
nomena of extreme interest in biology but also industrial
(food) applications, such as transcriptional burst, cellular
decision making into e.g. competence or sporulation in
Bacillus subtilis [132], bet-hedging strategies, and hetero-
geneity in survival of stresses. Technologies will rapidly
improve that will allow us to quantify more and more
properties on a single cell level using microfluidics, quan-
titative imaging or flow cytometry. These developments
will require a different mindset, and concomitant model-
ling tools that take the stochastic nature of cellular pro-
cesses into account.
Finally, we need to bridge the gap between cellular pro-

cesses and population dynamics in communities. Sequen-
cing of such populations and communities has become
affordable, giving rise to the field of metagenomics, and
early steps into the direction of metatranscriptomics and
metametabolomics. Obviously, for LAB and their applica-
tions, these developments are extremely relevant. We
have discussed how game theoretical approaches can
help in understanding general principles and forces at
play in populations, giving rise to often non-intuitive
phenotype dynamics. At a more molecular level, we have
only begun to scratch the surface of compounds involved
in the interactions, technologies to measure community
fluxes [134], and modelling approaches to accommodate
such community dynamics understanding. To illustrate:
the well-established tools for genome-scale metabolic
modelling only work for homogeneous monocultures.
How would one describe the objective of a community?
There are only a very few examples in literature that
address this issue [135-137]. We are pioneering these
type of questions, and the use of genome-scale metabolic
models (which are closest to the metagenomic data), in
LAB through the yoghurt consortium of Lactobacillus
bulgaricus and Streptococcus thermophilus. We expect
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major efforts and breakthroughs in the direction of link-
ing microbial physiology with population dynamic mod-
elling and ecological theories.
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