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Abstract

Background: Marine microbes are a large and diverse group, which are exposed to a wide variety of pressure,
temperature, salinity, nutrient availability and other environmental conditions. They provide a huge potential source
of novel enzymes with unique properties that may be useful in industry and biotechnology. To explore the
lipolytic genetic resources in the South China Sea, 23 sediment samples were collected in the depth < 100 m
marine areas.

Results: A metagenomic library of South China Sea sediments assemblage in plasmid vector containing about 194
Mb of community DNA was prepared. Screening of a part of the unamplified library resulted in isolation of 15
unique lipolytic clones with the ability to hydrolyze tributyrin. A positive recombinant clone (pNLE1), containing a
novel esterase (Est_p1), was successfully expressed in E. coli and purified. In a series of assays, Est_p1 displayed
maximal activity at pH 8.57, 40°C, with r-Nitrophenyl butyrate (C4) as substrate. Compared to other metagenomic
esterases, Est_p1 played a notable role in specificity for substrate C4 (kcat/Km value 11,500 S-1m M-1) and showed no
inhibited by phenylmethylsulfonyl fluoride, suggested that the substrate binding pocket was suitable for substrate
C4 and the serine active-site residue was buried at the bottom of substrate binding pocket which sheltered by a
lid structure.

Conclusions: Esterase, which specificity towards short chain fatty acids, especially butanoic acid, is commercially
available as potent flavoring tools. According the outstanding activity and specificity for substrate C4, Est_p1 has
potential application in flavor industries requiring hydrolysis of short chain esters.
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Background
Marine microbes are a large and diverse group, and are
exposed to a wide variety of pressure, temperature, sali-
nity, nutrient availability, and other environmental con-
ditions [1-3]. They provide a huge potential source of
novel enzymes with unique properties that may be use-
ful in industry and biotechnology.
Lipolytic enzymes are ubiquitous in nature, and

microbial lipolytic enzymes are commercially significant
[4,5]. In a classification scheme based on substrate

preference, lipolytic enzymes are divided into lipases
(EC 3.1.1.3) that hydrolyze long-chain acylglycerols ≥ 10
carbon chain), and esterases (EC 3.1.1.1) that hydrolyze
short-chain acylglycerols ≤ 10 carbon chain). Both
groups of biocatalysts have characteristics making them
useful in a wide variety of industrial, pharmaceutical,
biochemical, and biotechnological applications; e.g., they
have high chemo-, region- and stereo-selectivity, stability
in organic solvents, usually do not require cofactors, and
do not catalyze side reactions [6,7].
Lipolytic enzymes are serine hydrolases that share

structural and functional characteristics such as an a/b
hydrolase fold. Their catalytic mechanism involves a cat-
alytic triad, or cofactor-independent activity [6]. Based
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on comparisons of amino acid sequences and biological
properties, prokaryote-derived lipolytic enzymes have
been classified into eight families, termed true lipases
(family I), the enzymes display a Gly-Asp-Ser-(Leu)
[GDS(L)] motif containing the active-site Ser (GDSL,
family II), family III, hormone-sensitive lipases (HSL,
family IV), and families V~VIII [4].
A culture-independent approach, termed “metage-

nomics” [8,9], allows screening for novel lipolytic
enzymes, with industrial potential, from diverse environ-
ments [10]. For example, genes encoding lipolytic
enzymes have been isolated from metagenomic libraries
constructed from environmental samples including for-
est soils [11,12]; pond, lake, and river water [13-15] and
hot spring and marine sediments [16,17]. With only a
few exceptions, characteristics of the novel enzymes
found so far are not very appropriate for industrial
applications. Thus, further metagenomics-based search
for novel lipolytic enzymes from different sources, and
with greater industrial applicability, is an important task.
The offshore marine environment of the northern

South China Sea, near the southern China continental
shelf and Hainan Island (Additional file 1, Table S1),
contains nutrient-rich waters with concentrations of
organic compounds and diversity of marine microbes
greater than those of most other regions of the open
ocean. We collected sediment samples from this area,
and performed functional screening for novel lipolytic
enzymes using a metagenomic library.

Results and discussion
High efficient screening for lipolytic enzymes
Marine sediment samples from the South China Sea were
collected from 23 sampling sites, depth < 100 m (Additional
file 1, Table S1). A metagenomic library was constructed
using ~2.1 μg of sediment DNA, and contained ~118,000 >
90%) recombinant colonies. Using 1217 recombinant plas-
mids, the library DNA insert size was estimated as 1.0 ~ 8.5
kb. The metagenomic library represented ~194 Mb of
microbial community DNA of the marine sediment. A por-
tion of the unamplified library (~60,000 colonies) was
screened from screening plates. After 72 hr incubation at
37°C, 15 colonies were selected on the basis of stable hydro-
lysis zone and the lipolytic-positive plasmids were
sequenced (Additional file 1, Table S2). The putative
esterases, b-lactamases, phospholipases and patatin-like
esterase were isolated from 49 identified genes.
It looks that pUC18 was useful vector for constructing

small-insert metagenomic libraries, because of its high
cloning and throughput screening efficiencies toward
small-size target genes [18]. The pUC shotgun metage-
nomic library displayed the ability to rapidly assess large
numbers of clones, avoiding the need for another sub-
cloning library to obtain functional target genes.

A novel lipolytic enzyme Est_p1
One clone showed strong lipolytic activity, and was
designated as pNLE1 (EU628679). pNLE1 had an insert
of 3650 bp, with 53.76% G+C content and four ORFs.
Based on complete domain of a/b hydrolase fold-1
(PF00561) related to esterase/lipase superfamily, the
ORF that encoded a 296 amino acids protein was identi-
fied as a putative lipase/esterase gene (designated as
est_p1).
This encoded protein showed 81% amino acids iden-

tity with a lipolytic enzyme (ACF67850) from uncul-
tured bacteria [19]. Most of the other close matches also
came from uncultured bacteria of environmental sam-
ples obtained from deep-sea sediment in the South
China Sea [19], or from soil of the Gwangneung forest
in Korea [20]. None of these lipolytic enzymes were pre-
viously characterized. The closest match, aside from
environmental samples, was an a/b hydrolase fold pro-
tein (YP_001310323) from Clostridium beijerinckii
NCIMB 8052, also unpublished, showing 53% amino
acids identity.
A putative ribosome binding site (RBS), GAGG, was

detected upstream of the start codon at -12 to -9 region
[21]. A strong promoter signal was found in the 2872-
2827 bp range of pNLE1, located at the up-stream
sequences of nle1_3, which might share the same pro-
moter with Est_p1. SignalP3.0 analysis indicated that
neither the cleavage site nor the N-terminal signal pep-
tide was present in the whole gene [22], suggesting that
Est_p1 may be expressed as a full-length protein, with-
out requirement of flanking sequences or genes [23].

Phylogenetic relationships of Est_p1
Multiple sequence alignment of Est_p1 and lipolytic
proteins revealed the typical catalytic triad of active site
serine (S118) motif G-x-S-x-G, conserved aspartic acid
(D244), and histidine (H272) residue motif in the encoded
protein. Bacterial lipolytic enzymes have been classified
into distinct families on the basis of their amino acid
sequences and biochemical properties [4]. In order to
classify Est_p1, a phylogenetic tree was constructed
using many lipolytic enzymes [24] representing eight dif-
ferent families. The results suggest that Est_p1 belongs
to family V (Figure 1). Multiple sequence alignment of
Est_p1 and family V members, including enzymes from
cold-adapted organisms (Moraxella sp., Psychrobacter
immobilis, 24-31% identity) [25,26], mesophilic bacteria
(Haemophilus influenza, Brevibacterium linens, 23-24%
identity) [27], methylesterase-producing bacteria (Strep-
tomyces purpurascens, 33% identity) [28], solvent-produ-
cing bacteria (Clostridium beijerinckii, 53% identity) [29]
and other uncultured bacteria (81% sequence identity)
[19] showed relationship mainly to four subfamilies of
family V. The alignment results showed three typical
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conserved motifs in Est_p1 and its subfamily. Of these,
the h1 helix motif (Q-L-x-x-W, amino acid 33-37) and
b6-7 stand motif (amino acid 67-89) may construct a
characteristic cap structure in the subfamily (Figure 2).
Members of the Est_p1 subfamily, which come from
organic degradation organisms as above, are more likely

to be related to each other than to other members of
family V, and also show a functional relationship, i.e.,
they specifically hydrolyze short-chain acylglycerols.
Taken together, these findings indicate that Est_p1 is a
new member of family V, belonging to a relatively inde-
pendent subfamily.
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Figure 1 Unrooted neighbor-joining phylogenetic tree of Est_p1 (red triangle) and relatives, based on conserved sequence motifs of
bacterial lipolytic enzymes. Amino acid sequences of other lipolytic enzymes were obtained from published data. Sequence alignment was
performed using ClustalW version 2.0, and the tree was created by MEGA version 4.0. Scale bar at bottom indicates number of amino acid
substitutions per site.
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AAB16939   278 ������������ � �PLAVH PLAAAI AHTRAAT     E      C       V.....

 3 AAC21862   269 ������������ � �HAEKP   IRAIKRF NK     DFV       L  N.......
ZP_05914249   244 ������������ � �HSEQP   ISALQTF SR     KTF       F  D.......

 4 CAA37863   295 ������������ � �MVEAV  TA  YKAF  R  L     KD  ND    .. DG KK...
CAA47949   295 ���� ������� 	 	MVEAL  TA  YKAF  R  L     DE  DN    .. SI EAQR.

β1 β2 β3

β4 η1 α1 β5 β6 β7

α2 β8 α3 η2 β9

α4 α5

η3 η4 β10 α6 β11

α7

Figure 2 Conserved sequence blocks from multiple sequence alignment between Est_p1 and family V members of known 3D
structure. Sequence alignment was performed using ClustalW version 2.0 and ESPript programs. Conserved sequences are indicated by box,
and similar sequences are indicated by colored background. The catalytic triads are identical (red triangle). The alpha helix, beta sheet, random
coil and beta turn are identical to a, b, h and T, respectively.
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3D model of Est_p1
A model of Est_p1 was built using SWISS-MODEL
Severs. Est_p1 displayed highest sequence homology
with aclacinomycin methylesterase (accession code
1q0z) [28], with a modeled residue range from 4 to 293
amino acid (Figure 3A), and identity of 32%. Structu-
rally, Est_p1 consisted of two domains. The core
domain, which includes the catalytic triad (residues 4-
58, 93-147, 222-293), contained 5 a-helices (a1-3, 6,7)

and 7 b-sheets (b3-5, 8-11). The second domain con-
sisted of 2 a-helices (a4, 5; residues 148-221) and 2 b-
sheets (b6, 7; residues 59-92), which formed a cap struc-
ture over the a/b catalytic sheet. A substrate binding
pocket, 17.7 Å long and 12.5 Å wide, was formed inside
the cap structure (Figure 3B).
The catalytic triad, Ser118, Asp244 and His272, were

clustered close together at the bottom of this pocket.
Ser118 was located within a nucleophile “elbow”

Figure 3 3D model of Est_p1. (A) Ribbon diagram of Est_p1 model. The central b-sheets and a-helices in core domains are shown in green
and orange, respectively. The cap structure is shown in yellow. Residues of the catalytic triad (Ser114, Asp244 and His272) are shown in red. (B)
Cavity in the cap structure (shown in red arrow), acting as substrate binding pocket in Est_p1. (C) Topology diagram of Est_p1.
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connecting sheet b8 and helix a3, while Asp244 and
His272 were located on loops between b10-a6 and b11-
a7, respectively (Figure 3C).

Characterization of Est_p1
The full-length est_p1 gene was amplified and cloned
into pET28a with a C-terminal 6× His tag, then purified
by Ni-NTA-agarose chromatography. The target protein
appeared as a single band on SDS-PAGE with molecular
weight ~35.5 kDa (Figure 4).
Optimal pH and pH stability
Optimal pH and pH stability of purified Est_p1 were
determined using C4 as substrate. Est_p1 displayed high-
est activity at pH values between 8 and 10, and optimal
pH is 8.57 (Figure 5A). The apparent pKa was 7.5. The
pH-dependent activity in serine carboxyl ester hydro-
lases is generally assumed to indicate involvement of the
His residue in the catalytic triad [30]. However, no clear
explanation for such mechanism has been established.
The pH stability was tested after incubation of purified

Est_p1 for 90 to 400 min in various buffers at pHs
between 3 and 11. After 90 min incubation, Est_p1 dis-
played > 70% residual activity in the pH range 6 to 8. At
pH 6.33 and 8.57, after 400 min incubation, residual
activity decreased by 13% and 25%, respectively, com-
pared to that at 90 min (Figure 5B). At pH 7.33, after
400 min incubation, residual activity decreased by only
1% compared to that at 90 min. pH stability was there-
fore concluded to be greatest at pH 7.33.

Optimal temperature and thermostability
This determination was made using C4 as a substrate, at
pH 8.57, with temperatures ranging from 0 to 60°C.
Esterase activity increased as temperature increased up
to 40°C, then decreased beyond that level. At tempera-
tures above 55°C, there was essentially no enzyme activ-
ity. The optimal temperature was 40°C (Figure 5C).
From the linear part of the Arrhenius plot between 0

and 40°C, the activation energy for the formation of the
enzyme/substrate complex was found to be 32.63 kJ/
mol, similar to that of Pye3, another esterase of metage-
nomic origin [31]. The optimal temperature of Est_p1
was in the mesophilic range (40°C), like those of most
esterases isolated from marine origins so far [32,33].
The optimal temperature for activity of an enzyme is
usually higher than the optimal temperature for growth
of the organism [19,34].
Thermostability of Est_p1 was determined by analysis

of residual activity at regular intervals following pre-
incubation of purified enzyme for durations up to 2 hr,
at temperatures ranging from 30-50°C. Est_p1 was
stable, with residual activity ~80%, after incubation at 30
or 35°C for 2 hr. At 40°C, the half-life was ~63 min
(Figure 5D). At 45 or 50°C, residual activity dropped
rapidly within 15 min. These findings suggest that
Est_p1 originated from a mesophilic microorganism
[30].
Substrate specificity
Lipolytic enzymes are characterized by the ability to
hydrolyze a wide range of fatty acid esters. The distinc-
tion between lipase and esterase depends on specificity
of aliphatic chain length [35]. To determine the sub-
strate specificity of Est_p1, we tested its effect on var-
ious r-Nitrophenyl esters having acyl chain lengths of
C2, C4, C8, C10, C12, C16, and C18, under assay condi-
tions of pH 8.57 and 40°C. Est_p1 displayed hydrolytic
activity for esters with short to medium chain length
(C2 to C10; maximal for C4), but no detectable activity
for esters with long chain length (C12, C16, C18)
(Table 1). Lipases are defined by preference for sub-
strates with long acyl chains; therefore, these findings
indicate that Est_p1 is an esterase (EC. 3.1.1.1).
The a/b hydrolase fold enzymes are characterized by a

nucleophilic “elbow” with the conserved motif G-x-S-x-
G [36]. An enzyme’s substrate specificity is determined
by a flexible sequence that changes conformation with
the binding pocket, defined by hydrophobic amino acid
residues that line the pocket [28]. In the present study,
the binding pocket surface of Est_p1 was not con-
structed by a large number of hydrophobic residues,
suggesting that the pocket can accommodate only a lim-
ited number of carbon atoms [23].
Both the Km and kcat values of purified Est_p1

decreased as the acyl chain length increased up to C4.

Figure 4 Purification of recombinant Est_p1. (A) Proteins
recovered during various purification steps as described in the text
were separated by SDS-10% polyacrylamide gel electrophoresis, and
stained with Coomassie Brilliant Blue R-250. Lane M, molecular
weight standards; Lane CL, induced cell lysate; Lane FT, flow-
through; Lane EL, 50 mM imidazole elution. (B) Silver staining of
purified Est_p1. Protein size markers are indicated (kilo Daltons, kDa)
at left. Recombinant Est_p1 proteins are indicated by arrow at right.
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Km value indicates the affinity of substrate for enzyme.
C10 had the lowest Km value (0.17 mM), suggested that
C10 structure is closer to the natural substrate of Est_p1.
However, Est_p1 showed a specific preference for C4,
which had the highest kcat/Km value (11,500 S-1mM-1) of
any of the substrates; this value was 21-, 28-, and 14-
fold higher than that of C2, C8, and C10, respectively. C4

is the most appropriate substrate for Est_p1.
In general, there is a negative correlation between Km

and kcat values for a particular enzyme toward different
substrates, i.e., a low Km value for a substrate indicates

positive affinity for the enzyme, associated with higher
catalytic activity and consequently a higher kcat value. In
contrast, Km and kcat values for Est_p1 showed a posi-
tive correlation, and were both higher for the appropri-
ate substrate, C4, than for other substrates tested.
Similar results were found for other metagenomic
esterases with heterologous expression, most of which
were expressed by His tagging on the C- or N-terminus
[31]. Addition of six hydrophilic His residues caused
substrate specificity of the recombinant enzymes to shift
toward more hydrophilic substrates [37].

Table 1 Kinetic parameters for various r-Nitrophenyl esters of Est_p1

Substrate (r-Nitrophenyl ester) Km (mM) Vmax (μmol·min-1·mg-1) kcat (S
-1) kcat/Km (S-1mM-1)

Acetate (C2) 0.585 244 315 543

Butyrate (C4) 0.858 2,260 9,850 11,500

Caprylate (C8) 0.348 109 140 401

Caprate (C10) 0.170 31.6 138 809

Figure 5 Biochemical characterization of Est_p1. (A) Effect of pH on Est_p1 activity. Est_p1 activity was measured at 40°C for 3 min in 50 mM
buffer, at various pH levels. Values are shown as percentage of maximal activity, defined as 100%. Buffers used were sodium citrate (●), MOPS
(○), Tris-HCl (▲), CHES (□), and CAPS (■). (B) Effect of pH on stability of Est_p1. Est_p1 was treated at 0°C for 90 min and 400 min in various
buffers at various pH levels. Residual enzyme activity was measured at 40°C in 50 mM Tris-HCl buffer, pH 8.57. Values are shown as percentage
of original activity (measured in the same buffer and pH, but without incubation at 0°C), defined as 100%. (C) Effect of temperature on Est_p1
activity. Activity was measured at various temperatures as indicated, for 3 min in 50 mM Tris-HCl buffer, pH 8.57. Values are shown as percentage
of maximal activity, defined as 100%. The inset shows the temperature dependence as an Arrhenius plot. (D) Effect of temperature on stability of
Est_p1. The enzyme was incubated in 50 mM Tris-HCl buffer, pH 8.57, at various temperatures, for 120 min, and residual activity was measured at
40°C for 3 min at 15 min intervals. Residual activity was expressed in Panel B.
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The kinetic studies indicated that recombinant Est_p1
had high specificity (kcat/Km value 11,500 S-1mM-1) for
substrate C4. This value is much higher than those
reported for other metagenomic esterases, e.g., those
from sludge samples at a South African mine refinery
(7.65 S-1mM-1) [23], Antarctic desert soil (14.8 S-1mM-1)
[38], tidal flat sediments (18.2 S-1mM-1) [39], marine
environment (26.7 S-1mM-1) [16], hot springs in Tang-
kuban Perahu (2,290 S-1mM-1) [40] and hot springs in
Thailand (4,101.2 S-1mM-1) [17].
Esterase is commonly used in production of enhance-

ment the buttery flavor of the end product. Moreover,
these enzymes which specificity towards short chain
fatty acids, especially butanoic acid, are commercially
available as potent flavoring tools [41]. In view of its
high specificity and hydrolysis activity, Est_p1 has
potential application in flavor industries requiring
hydrolysis or synthesis of short chain esters.
Effects of solvents, detergents, metal ions and EDTA on
Est_p1 activity
The activity of Est_p1 in various solvents and detergents
was examined, as summarized in Table 2. In the case of
solvents and detergents, SDS and PVPP inhibited enzy-
matic activity of Est_p1 at the concentration of 2 mM,
whereas others displayed no significant effect on the
hydrolytic activity of Est_p1.
In the case of metal ions, the higher concentrations

displayed progressively greater inhibitory effect on
Est_p1 activity, roughly in proportion to molecular
weight. On the other hand, EDTA had no significant
influence on Est_p1. The finding indicates that Est_p1
does not require the presence of co-factors, which also
confirmed the Est_p1 has no metal-binding site
structurally.
Lipolytic enzymes belong to the class of serine hydro-

lases, and their activity is generally found to be irreversi-
bly inhibited by PMSF. However in our study, PMSF
had no effect on catalytic activity of Est_p1, which was
also rarely found in other two lipolytic enzymes [24,42].
Our finding suggests that the inhibitory effect of PMSF
was eliminated by a lid structure in carboxylesterases
[43]. The 3D model of Est_p1 (Figure 3) predicts that

the entrance to the binding site is sheltered by b6 and
b7, which act as a lid structure to protect the catalytic
serine residue. Aromatic residues surrounding the serine
(e.g., His, Trp) may play a steric role to prevent modifi-
cation by PMSF.

Conclusions
Based on marine sediment metagenomic library was
successfully constructed, a novel family V esterase gene,
termed est_p1 was cloned and expressed in E. coli. The
recombinant Est_p1 efficiently catalyzed hydrolysis of
substrates with short-chain esters at pH 8.57, 40°C, and
acts as an esterase (EC. 3.1.1.1). It was not sensitive to
PMSF and does not require metal co-factors. The dis-
covery that Est_p1 has high specificity and hydrolysis
activity towards r-Nitrophenyl butyrate (C4), whose
value was 21-, 28-, and 14-fold higher than that of C2,
C8, and C10, demonstrating Est_p1 has potential applica-
tion in flavor industry requiring hydrolysis or synthesis
of short chain esters. Further study on application of the
enzyme for releasing short chain fatty acids from the
low flavor fat-rich matrices in order to enhance its
highly appreciated flavor will be further investigated. In
addition, further studies may provide important data for
future application of the novel metagenomic esterases
for promising biotechnological processes.

Materials and methods
Strains, plasmids, and marine sediment samples
Escherichia coli DH5a and vector pUC18 were used for
library cloning, E. coli BL21 (DE3) and pET-28a (+)
(Novagen) was used for heterologous expression of tar-
get protein.
Marine sediment samples from the South China Sea

were collected from 23 sampling sites, depth < 100 m
(Additional file 1, Table S1) and stored at 4°C until
DNA extraction.

Metagenomic library construction and functional
screening of lipolytic clones
Metagenomic DNA was isolated according to described
previously [44]. After purified DNA by pulsed field gel

Table 2 Effect of organic solvents and cations on activity of Est_p1

Solvent Relative activity (%) Cations Relative activity (%)

0.5 mM 1 mM 2 mM 0.5 mM 1 mM 2 mM

GITC 113 ± 0.8 104 ± 1 93.7 ± 8 Mg2+ 97.6 ± 12 101 ± 0.03 86.7 ± 3

PMSF 104 ± 2 110 ± 3 99.5 ± 8 Ca2+ 96.3 ± 3 86.5 ± 1 55.1 ± 3

PVPP 85.6 ± 3 73.5 ± 3 58.6 ± 3 Mn2+ 78.0 ± 6 85.5 ± 3 63.5 ± 2

SDS 99.5 ± 2 71.5 ± 0.6 30.0 ± 1 Co2+ 82.3 ± 6 79.6 ± 14 12.0 ± 2

Thiourea 105 ± 1 95.6 ± 6 95.3 ± 0 Ni2+ 54.4 ± 5 39.1 ± 7 24.4 ± 4

Urea 102 ± 0.6 105 ± 2 101 ± 2 Zn2+ 24.1 ± 10 24.6 ± 5 24.4 ± 11

EDTA 110 ± 18 113 ± 6 108 ± 5 Cu2+ 19.1 ± 0.1 11.3 ± 2 4.11 ± 1
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electrophoresis (PFGE) (Bio-Rad CHEP Mapper XA,
fixed angle 120, 4.5 V/cm, running time 15 hr, 1-12 sec
switch, 15°C), and the DNA was partially digested with
Sau3AI. The recovered DNA fragments (size 2-9 kb)
were ligated into pUC18 vectors, and then electropo-
rated in E. coli DH5a. Lipolytic clones were detected
based on their ability to hydrolyze tributyrin (1%) sub-
strate, and to produce a clear halo around the colony
after 48 hr incubation at 37°C. All lipolytic clones were
streaked to obtain single colonies, and re-tested for abil-
ity to hydrolyze tributyrin [14].

Bioinformatic analysis
The positive clones were confirmed by plasmid isolation
and restriction enzyme digestion, and the unique plas-
mids were sent to a DNA sequencing facility (Invitro-
gen, Beijing, China) for primer-walking sequencing
approach.
Sequences were screened for vector contamination

and quality trimmed. Assembly and analysis were per-
formed using DNAMAN (version 6.0, Lynnon Corp.,
Canada) and GENETYX (version 8.01, Genetyx Corp.,
Japan) programs, respectively. Open reading frames
(ORFs) in each assembled sequence were identified
using the ORF Finder at the National Centre for Bio-
technology Information (NCBI) website. Amino acid
sequences of each ORF were used to find the best
match, and conserved domains, by protein-protein
BLAST program at the NCBI website. The subfamily
and superfamily of each encoded protein was deter-
mined by searching the Lipase Engineering Database
[45,46]. Signal peptide and transmembrane domain were
predicted using server SignalP and HMMTOP. Promo-
ter prediction was conducted using Neural Network
Promoter Prediction (NNPP) version 2.2. Positional fre-
quency matrices (PFMs) of E. coli promoters were also
used to predict positions of possible promoters [47].
Ribosome binding site (rbs) prediction was conducted
using the PFMs [48]. Multiple sequence alignments
were calculated using ClustalW and exported by
ESPript. Phylogenetic relationships among lipolytic
members in each protein family were analyzed by
MEGA 4.0 [4]. The 3D model of Est_p1 was constructed
by SWISS-MODEL http://swissmodel.expasy.org/ and
presented using UCSF Chimera, version 1.4.1. The size
of banding pocket was measured by the distances of
atoms located at the pocket edge and also calculated by
UCSF Chimera, version 1.4.1.

Expression and purification of Est_p1
Full-length est_p1 gene was amplified from the plasmid
nle1. The forward primer (5’-CATGCCATGGCAAA-
CATTATTGCG-3’) with the restriction enzyme site
NcoI, and the reverse primer (5’-ACGCGTCGACGATA

AAAATTTTTTGGGT-3’) with SalI, were designed to
generate a C-terminal His-tag of the recombinant target
protein. The est_p1 gene was cloned into expression vec-
tor pET-28a (+), and was transformed into E. coli BL21
(DE3) cells. Transformants were grown on LB medium
containing 50 μg ml-1 kanamycin at 37°C. When cells
reached a density in the 0.5-1.0 range at 600 nm, they
were induced for 16 hr with 0.5 mM IPTG at 30°C.
The target protein was purified by Ni-NTA (Qiagen)

affinity chromatography, and protein concentration was
determined using Lowry protein assay method, with
BSA protein as standard. Purity of the protein was con-
firmed by SDS-PAGE, and protein bands were visua-
lized by Coomassie Brilliant Blue R-250 and silver
staining.

Enzyme characterization
Lipase/esterase activity was determined by a spectropho-
tometric method using r-Nitrophenyl (rNP) esters. Cat-
alytic activity of Est_p1 was examined using rNP
butyrate as standard substrate (unless indicated other-
wise) at 40°C for 3 min. The assay mixture contained 1
mM rNP esters, 50 mM Tri-HCl buffer (pH 8.57), and
4% ethanol, in a total volume of 1 ml. Absorbance was
measured at 405 nm. One unit esterase was defined as
the amount of enzyme needed to liberate 1 μmol rNP
in 1 min.
Optimal pH of purified Est_p1 was determined under

standard conditions. Buffers used were 50 mM of
sodium citrate (pH 3.12 - 6.45), MOPS (pH 6.33 - 8.09),
Tris-HCl (pH 6.9 - 8.93), CHES (pH 8.94 - 9.95) and
CAPS (pH 9.73 - 10.88). The pH stability was deter-
mined by incubating the assays at various pH (5.53 to
10.88) for 90 min and 400 min, and the residual activity
was measured.
Optimal temperature was measured under standard

conditions, in the range 0 - 60°C. Thermostability was
determined by incubating the assays at temperatures
ranging from 30 to 50°C for 120 min, and measuring
residual activity.
Substrate range and specific activity were determined

under standard conditions using rNP esters with acyl-
chains of various lengths: rNP acetate (C2), rNP buty-
rate (C4), rNP caprylate (C8), rNP caprate (C10), rNP
laurate (C12), rNP palmitate (C16), rNP stearate (C18).
Initial reaction velocities measured at various substrate
concentrations were fitted to the Lineweaver-Burk trans-
formation of the Michaelis-Menten equation. Kinetic
analyses by curve fitting were performed with the Fit
linear program (OriginLab Corp., USA).
Activity of purified Est_p1 was assayed under standard

conditions in the presence of various potentially inhibi-
tory reagents: divalent metal cation (Mg2+, Ca2+, Mn2+,
Co2+, Ni2+, Cu2+, Zn2+) (0.5, 1 and 2 mM), chelating
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agent (EDTA), inhibitor (PMSF), detergents (SDS, gua-
nidine thiocyanate, thiourea, urea), and polar affinitive
surfactant polyvinylpoly-pyrrolidone (PVPP) (0.5, 1 and
2% w/v).

Nucleotide sequence accession number
The amino acid sequence of Est_p1 is available at the
GenBank database [GenBank: ACF33459].

Additional material

Additional file 1: Table S1 Designation, coordinates and depth of
23 marine sediment samples collected in the South China Sea. The
information of marine sediment sample source. Table S2 Lipolytic
enzymes from metagenomic library and compared to homologous
proteins in GenBank. 15 Lipolytic enzyme genes were cloned from
metagenomic library and their accession numbers in GenBank.
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