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Abstract

Background: Two sets of overlapping genes, lacLMReu and lacLMAci, encoding heterodimeric B-galactosidases
from Lactobacillus reuteri and Lactobacillus acidophilus, respectively, have previously been cloned and expressed
using the pSIP vector system and Lactobacillus plantarum WCSF1 as host. Despite the high similarity between these
lacLM genes and the use of identical cloning and expression strategies, strains harboring lacLMReu produced about
twenty-fold more B-galactosidase than strains containing lacLMACi.

Results: In this study, the plasmid copy numbers (PCN) of expression vectors pEHIR (lacLMReu) and pEH9A
(lacLMAci) as well as the transcription levels of both lacLM genes were compared using quantitative PCR methods.
Analyses of parallel fermentations of L. plantarum harboring either pEHIR or pEH9A showed that the expression
plasmids were present in similar copy numbers. However, transcript levels of lacLM from L. reuteri (oEHOR) were up
to 18 times higher than those of lacLM from L. acidophilus (pEH9A). As a control, it was shown that the expression
levels of regulatory genes involved in pheromone-induced promoter activation were similar in both strains.

Conclusion: The use of identical expression strategies for highly similar genes led to very different mRNA levels.
The data indicate that this difference is primarily caused by translational effects that are likely to affect both mRNA

success of gene expression efforts in lactobacilli.

synthesis rates and mRNA stability. These translational effects thus seem to be a dominant determinant for the

Background

Lactic acid bacteria (LAB) are important micro-organ-
isms in the food and beverages industry. Over the past
few decades, LAB have been used not only as starter
culture but also as producers of flavoring enzymes, anti-
microbial peptides or metabolites that contribute to the
flavor, texture and safety of food products [1-3]. More-
over, because of their food-grade status and probiotic
characteristics, several LAB, especially lactobacilli, are
considered as safe and effective cell factories for food-
application purposes [2,3]. As a consequence, a variety
of constitutive or inducible gene expression and protein
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targeting systems for LAB hosts have been developed,
including sugar-inducible, thermo-inducible and pH-
dependent expression systems [1,2,4].

Two well-known inducible expression systems for
LAB exploit promoters from bacteriocin operons, the
NIsin-Controlled Expression system (NICE) [5] and the
pheromone-inducible system pSIP [6]. The NICE system
exploits genes and promoters involved in the production
of the antimicrobial peptide (lantibiotic) nisin in Lacto-
coccus lactis and the inducing substance is nisin itself
[5]. Similarly, the pSIP systems were developed based on
promoters and regulatory genes involved in the produc-
tion of the class II bacteriocins sakacin A [7] and saka-
cin P [8,9] in Lactobacillus sakei. In these LAB,
bacteriocin production is regulated by a three-compo-
nent system, consisting of a secreted peptide pheromone
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(IP) which interacts specifically with a cognate mem-
brane-embedded histidine protein kinase (HPK). A
response regulator (RR) encoded in the same operon as
IP and HPK is activated by the HPK, leading to induc-
tion of all the promoters of the bacteriocin operons [8].
The pSIP systems have been used to over-produce sev-
eral enzymes such as f-glucuronidase and aminopepti-
dase N in several Lactobacillus hosts [6,10,11].

B-Galactosidases (lactase, EC 3.2.1.23) are known as
important enzymes in the dairy industry [12-14]. The
ability of B-galactosidases to convert lactose into galac-
tose and glucose is used to prevent the crystallization of
lactose, to improve sweetness, to increase the solubility
of milk products, and to produce lactose-free food pro-
ducts [15]. Another beneficial ability of 3-galactosidases
is the trans-galactosylation reaction which co-occurs
during lactose hydrolysis [12] and results in the forma-
tion of galacto-oligosaccharides (GOS). Similar to
fructo-oligosaccharides (FOS), GOS possess prebiotic
properties [13,14,16,17].

Many B-galactosidases of lactobacilli, including the
enzymes from L. reuteri and L. acidophilus, consist of
two subunits, one large and one small, which are
encoded by two overlapping genes, lacL and lacM,
respectively [13]. In a previous study, we have overex-
pressed the (-galactosidases from L. reuteri 1103 and L.
acidophilus R22 by cloning the lacLM genes into pSIP
vectors [10]. Two of the resulting expression vectors,
pEHOR and pEH9A, are based on pSIP409 and contain
lacLMReu from L. reuteri L103 and lacLMAci from L.
acidophilus R22, respectively [10]. The lacLM genes are
under the control of the strong pheromone-inducible
promoter Pg,,q [6,11,18], to which they are translation-
ally fused, and over-expression of these -galactosidases
in the well-studied food-grade strain Lactobacillus plan-
tarum WCFS1 was successful. However, even though
the amino acid sequences of these B-galactosidases are
highly similar, both SDS-PAGE analyses of cell extracts
and activity measurements showed that the two enzymes
had very different production levels under identical con-
ditions, with lacLMReu being expressed about twenty
times more efficiently than lacLMAci [10].

The observed expression levels are the end product of
transcription, translation and post-translational pro-
cesses, which all may be influenced by a large number
of factors, including the gene dose, which is determined
by the plasmid copy number (PCN), and messenger-
RNA (mRNA) levels. In the present study we have used
RT-qPCR to verify whether the different expression effi-
ciencies of lacLMAci and lacLMReu correlate with dif-
ferences in mRNA levels. Furthermore, we used RT-
PCR to determine the plasmid copy numbers of pEH9A
and pEH9R. Since identical cloning strategies had been
used for highly similar genes, substantial differences
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were not a priori expected. Interestingly, however, large
differences in mRNA levels were found.

Materials and methods

Bacterial strains and media

Lactobacillus plantarum WCES1 [19], harboring pEHIR
or pEH9A containing the overlapping genes (lacLM)
encoding B-galactosidase of Lactobacillus reuteri L103
and Lactobacillus acidophilus R22, were maintained in
MRS (Merck, Darmstadt, Germany) containing 5 pg/ml
erythromycin and 15% glycerol at -70°C.

Fermentations

Strains were activated from frozen stock in 5 ml of MRS
with 5 pg/ml erythromycin at 37°C for 16-18 h. These
cultures were used to inoculate 400 ml MRS medium (40
g/l glucose, 5 ug/ml erythromycin). Cultivations were
done in an HT-Multifors system (Infors HT, Switzerland)
with pH control at pH 6.5, at 37°C. Sodium hydroxide
was used for maintaining the pH. A low agitation speed
(200 rpm) was set to ensure the homogeneity of medium
and other parameters and to ensure continuous contact
between bacterial cells and nutrient. Induction of gene
expression was achieved by adding a 19-amino acid syn-
thetic peptide pheromone, IP673, with a sequence identi-
cal to the sequence of the pheromone as originally
isolated from Lactobacillus sakei LTH673 [20].

Growth of bacteria was monitored via the optical den-
sity at 600 nm (ODgqp). After six hours, when ODggq
had reached around 3.0, IP673 was added to a final con-
centration of 80 ng/ml to induce /acLM gene transcrip-
tion. Samples were collected at intervals for ODggg
measurements, enzyme assays, and DNA and RNA
isolation.

For B-galactosidase measurements, cells from 1 ml of
fermentation broth were pelleted by centrifugation at
13200 rpm for 3 min. Cells were re-suspended in buffer
P [16], then disrupted by sonication (4 x 1 min at 100%
power, interrupted by 1 min breaks and constant cool-
ing on ice, using a Bandelin Sonopuls HD60, Berlin,
Germany). Subsequently, cell debris was removed by
centrifugation at 13200 rpm for 10 min at 4°C. The
obtained crude extract was used for measuring f3-galac-
tosidase activity as well as protein concentration. For
DNA or RNA isolation, cells were pelleted as described,
shock-frozen by liquid nitrogen and stored at -80°C
until further use.

Enzyme assays

B-Galactosidase activity was determined using o-nitro-
phenyl-B-D-galactopyranoside (o0NPQG) as previously
described [13]. Protein concentration was determined
using the method of Bradford [21] with bovine serum
albumin as standard.
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Bacterial DNA isolation and purification for PCN
estimation

A sample (1 ml) of the culture at an ODgy, of 10 was
used for DNA isolation. For cells harvested at lower
values of ODgq, correspondingly higher culture volumes
were collected (e.g., 2 ml of a culture with an ODggg of
5). DNA was isolated and purified using the phenol-
chloroform extraction method as described in literature
[22]. The purified bacterial DNA was stored at -20°C
until use.

RNA isolation and purification

Total RNA was isolated using the peqGOLD Bacterial
kit (Peqlab, Biotechnologie GmbH, Germany) according
to the supplier’s instructions without DNA on-column
digestion. The concentration of total RNA was deter-
mined spectrophotometrically at 260 nm (A,40) (Beck-
man DUB80). RNA integrity was examined by denaturing
agarose gel electrophoresis (2% agarose, 2.2 M formalde-
hyde). DNA contaminations in total RNA samples were
completely removed by digestion with 1 U/ul of DNAse
(PeqLab) in a total volume of 20 ul using DNAse reac-
tion buffer as recommended [23]. After 10 min at 37°C,
30 mM EDTA solution was added to a final concentra-
tion of 3 mM. The mixture was heated at 70°C for 15
min to inactivate DNAse and stored at -70°C. The
absence of residual DNA contamination was confirmed
by normal PCR with 16S primer pair (not shown).

Reverse transcription and real time quantitative PCR
Reverse transcription

RNA was reverse-transcribed using the First Strand
cDNA Synthesis kit (Fermentas, St. Leon-Roth, Ger-
many) with random hexamer priming and 100 units of

Table 1 Oligonucleotide primers used in this study
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reverse transcriptase (RevertAidTM M-MuLV Reverse
Transcriptase, Fermentas). The resulting cDNAs were
stored at - 20°C. For control samples, dimethylpyrocar-
bonate (DEPC) treated water was used to replace reverse
transcriptase.

Oligonucleotide primers

Oligonucleotide primers used in this study are listed in
Table 1. For plasmid copy number estimation, the ery-
thromycin resistance gene ermB and 16SrRNA were
chosen as representatives for plasmid DNA and genomic
DNA, respectively. From the sequences of these genes,
two primer pairs called Ery® and 16S were designed
(Table 1).

For relative mRNA quantification of the three genes
lacLMReu, lacLMAci and sppKR, 3 primer pairs called
LacReu, LacAci and SppKR, respectively, were designed.
The two former primer pairs were designed so that
their characteristics as well as the length of amplicons
were similar. The chromosomalZ6SrRNA gene was used
as reference gene.

RT-PCR reaction using SYBR Green | dye

The thermal cycling system iCycler and mylIQ single
Color Real-Time PCR Detection system (BioRad, Her-
cules, CA) were used for qPCR amplification and detec-
tion. The qPCR reactions (25 pl total volume) were
prepared in duplicates in 96-wells plates (BioRad) that
were sealed with optical adhesive covers (Microseal ‘B’
film, BioRad). Each reaction included an optimized con-
centration for each of forward and reverse primers (see
Table 1), 12.5 pul of Perfecta SYBR Green Super mix of
IQ (Quanta Biosciences), and 2.5 pl of DNA template.
Negative controls (no template control), prepared by
replacing the DNA template with DEPC water, were
included in each run to confirm the absence of DNA

Primer Sequence 5’ - 3" T.? (°C) Concentration® (nM) Product size (bp) Tm product (°C)
16S_f TGATCCTGGCTCAGGACGAA 60 250 81 81
16S_r TGCAAGCACCAATCAATACCA 250
Enf f CCGTGCGTCTGACATCTAT 60 250 108 79
EryR_r TGCTGAATCGAGACTTGAGTG 250

LacReu_f CCA GAT TCC GTG GTA TTA CCT TTIG TG 60 250 154 80
LacReu_r TAC TACT ACG TCA CGC CAT TGA GGA AC 500

LacAci_f TCTAGTTCACTACGAAGGTGTCG 60 500 154 76.5
LacAci_r GTCATGCATGTATTCACACTCC 500

SppKR_f CAAGCCGTTCAAGAAACCGAT 60 250 144 785
SppKR_r AGCGCCTTTCGTTGAATAGCC 500

11n15_f GATGACCCGGAAATTTTTCGCGTCAATCAATTGCCAGC

11n15_r GACGCGAAAAATTTCCGGGTCATC

@ exchanged codons in 11n15_f and 11n15_r are underlined
b optimized annealing temperature as described in the Materials Section
“optimized concentration as described in the Materials Section
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contaminations in the reagents. Before setting up the
experiments described in the Results section, primer
concentrations, annealing temperatures and DNA tem-
plate concentrations were optimized according to proce-
dures and criteria described in [23], and the final
optimized reaction parameters are shown in Table 1.

The qPCR reactions were conducted as follows: initial
denaturation at 95°C for 3 min followed by 50 cycles of
20 s at 95°C, 20 s at 60°C, and 72°C for 10 s. The fluor-
escence signal was collected at the end of each exten-
sion step at 72°C. Afterwards, the temperature was
increased from 55°C to 95°C at a rate of 0.2°C/s to
establish the melting curve.

The threshold cycle values (C;) were automatically
determined by the software Biorad MylQ optical system
Version 2.0.

Calculation of the PCN value

Based on the PCN definition, which is the number of
copies of a plasmid present per chromosome in bacteria
[24,25], the PCN can be calculated by the following

) ECC“
equation [26]: PCN = £, (1), here, E,, C;. and E,, C,,

are the amplification efficiency and the threshold cycle
value of the amplicon representing chromosome and
plasmid, respectively. The equivalence between the
amplification efficiency (E) of plasmid and chromosome
amplicons was confirmed in validation experiments as
recommended [27]. In addition, to compare the PCN
between two recombinants, the relative PCN values
were calculated using the comparative C, method

EHOR
(AACY), in the following equation: zEH% =2744G (2),

where AAC, = AC, of the sample corresponding to
pEHOR - AC, of sample corresponding to pEH9A, and
AC, = average C; value of target (for erythromycin resis-
tance gene) - average C, value of reference gene.
Calculation of the expression ratio

The relative expression level between the two genes (e.g.
A and B) was also estimated as described in equation
(2), where AAC, = AC, corresponding to gene A - AC,
corresponding to gene B and AC, = average C; of target
genes (A or B) - average C, of reference gene (16S
rRNA).

The relative expression level of each gene of interest
compared to the time point before induction (here after
6 h of cultivation) was estimated accordingly, but AAC,
= AC; of genes of interest at different time points - AC;
of genes of interest after 6 h of cultivation. In the pre-
sent work, the genes of interest were lacLMReu, lacL-
Maci and sppKR.

Codon usage and mRNA secondary structure analysis

The codon usage of the lacLM genes was compared to
those of L. plantarum WCES1 using the Graphical
Codon Usage Analyzer (http://gcua.schoedl.de/index.

Page 4 of 10

html). The codon usage table of L. plantarum WCFS1 is
estimated based on 3057 CDS’s (934462 codons) (http://
www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?spe-
cies=220668). mRNA secondary structure for both genes
was analyzed using mfold (http://mobyle.pasteur.fr/cgi-
bin/portal.py?form=mfold) from the transcription start
point (65 nt upstream of ATG) to 150 nt (50 codons).

Expression of a mutated variant of the L. acidophilus
lacLM gene
To exchange the triplets 11 and 15 of the L. acidophilus
lacLM-coding region the overlapping primers 11n15_f
and 11n15_r (Table 1) were used. Site-directed muta-
genesis PCR was performed in 25-pl reaction volume
with Phusion High Fidelity DNA Polymerase (Finn-
zymes, Espoo, Finland) using pEH9A as the template
(annealing temperature of 52°C). The residual template
after amplification was digested by 1 ul Dpnl (20 U)
(Fermentas) for 4 h at 37°C. The reaction products were
purified using the Wizard® SV Gel PCR Clean-Up sys-
tem (Promega, Madison, WI) and transformed into E.
coli NEB5a.. Several randomly picked transformants
appearing after 24 h incubation at 37°C were checked
by sequencing of the isolated plasmids. A plasmid with
verified mutations at triplets 11 and 15 and no addi-
tional changes was selected and named pEH9AI1. To
exclude possible undesired mutations in the (non-
sequenced) plasmid backbone, the 3.3-kb Spel-EcoRI
fragment from pEH9A1 was ligated into a 5.2-kb Spel-
EcoRI-fragment from pEHO9A, resulting in the plasmid
pEH9A2. This plasmid was electroporated into compe-
tent cells of L. plantarum WCFS1. L. plantarum
WCEFES1 harboring pEHIR, pEH9A2 and pEH9A were
cultivated and induced in parallel in a Multifors fermen-
ter as described above. Harvested cells were disrupted
using 1 gram glass beads in a Precellys 24 bead mill
(Peqlab). The cell-free extracts were obtained after a
centrifugation step at 13200 rpm/10 min at 4°C and
used for enzyme assays and protein analysis.
Experiments in this manuscript were conducted in
accordance with the Austrian Gentechnikgesetz (GTG).
No experiments requiring approval by an ethics com-
mission are described in the manuscript.

Results

Fermentations

L. plantarum WCES1 harboring either pEH9R or
pEHO9A (carrying lacLMReu and lacLMAci, respectively,
under the control of the Py,,o promoter) was cultivated
in a pH-controlled fermentor using conditions that had
previously been determined to result in high enzyme
yields (unpublished data). Gene expression was induced
by adding the peptide pheromone IP-673 6 h after the
start of the fermentation (at an ODggo of approximately
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3.0). Results presented in Figure 1 show that growth of
the two strains was nearly identical over the entire fer-
mentation. In contrast, f-galactosidase yields (in terms
of both units per volume of fermentation broth and
units per mg protein) were considerably different. L.
plantarum WCES1 carrying pEH9A showed a maximum
activity around 0.8 U/ml and 2.5 U/mg, whereas with
pEHOR maximum activities reached about 22 U/ml and
62 U/mg (Figure 1). SDS-PAGE experiments confirmed
that these differences are correlated with large differ-
ences in protein production levels, as was observed in
earlier work with these constructs [10]. Previous studies
have shown that the purified -galactosidases from L.
reuteri and L. acidophilus have similar specific activities
[13,16].

Plasmid copy numbers

Plasmid copy numbers (PCN) in cells harboring pEHI9R
or pEH9A were compared after 6 h (point of induction),
8 h, 12 h and 24 h of cultivation. PCN ratios for pEHIR
versus pEH9A varied between 1.39 and 0.79, i.e. close to
one, in all cases (Table 2). Thus, both plasmids had
similar copy numbers throughout the fermentation. The
PCN for pEHOR in L. plantarum WCES1 was deter-
mined to be approximately three to four.

Transcription level of lacLM genes

To study mRNA levels and the effect of induction on the
expression of lacLM genes, the relative expression of
lacLMReu and lacLMAci at several time points (2, 6 and
18 h after induction, i.e. 8, 12 and 24 h after start of the
fermentation) was compared to the expression of these
genes just before induction (6 h after start of the
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Figure 1 Time course for growth of L. plantarum WCFS1
carrying pEH9R or pEH9A. Cultivations were carried out with pH
control at pH 6.5 in 400-ml laboratory fermentors at 37°C using MRS
medium (40 g/l glucose). The graph shows ODgq (solid lines), B-
galactosidase activity (units per milliliter of fermentation broth)
(dashed lines) and specific activity (units per milligram protein)
(dotted lines). Cultures were induced with 80 ng/ml of pheromone
after six hours of growth, i.e. at an ODggo of approximately 3.0.
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fermentation). Table 2 shows strongly increased expres-
sion of the lacLM genes 2 and 6 h after induction. Mes-
senger-RNA levels for [JlacLMReu showed an
approximately 60-fold increase after 8 h (2 h after induc-
tion), whereas mRNA levels for lacLMAci were increased
about 18-fold at the same time point. Subsequently,
mRNA levels decreased and they did so faster for lacL-
MAci than for lacLMReu. After 24 h of cultivation (18 h
after induction) mRNA levels for lacLMReu were still
considerably elevated, whereas mRNA levels for lacL-
MACci were lower than before induction (Table 2).

Transcription levels of sppKR

Addition of peptide pheromone to the growth medium
will induce the expression of sppK and sppR, and this
autoinduction loop will increase the expression of
lacLM. Although not likely, the strength of the expres-
sion of sppKR may vary between the two plasmids.
Therefore, we analyzed mRNA levels for sppKR in the
two strains harboring pEH9R or pEH9A, before and
after induction (Table 2). Expression of sppKR indeed
increased after induction, albeit by not more than
approximately a factor two (Table 2). The ratio between
the sppKR transcript levels in the strains harboring
PEHIR or pEH9A was close to 1 at all tested time
points, showing that the expression levels of sppKR were
essentially identical in both strains. For both fermenta-
tions (pEHIR and pEH9A), the transcript level of sppKR
was compared to that of the reporter genes, lacLM.
Before induction, the mRNA level of sppKR was higher
than the level of lacLM mRNA (approximately five-fold
and 14-fold for pEHIR and pEH9A, respectively). After
induction these ratios decreased to about 0.15 for
pEHOR and 2.0 - 2.4 for pEH9A (Table 3), reflecting the
much higher mRNA levels for lacLMReu after
induction.

Codon usage analysis

The mean difference of codon usage in the lacLM genes
from L. reuteri and L. acidophilus compared to the
codon usage of L. plantarum WCES1 was 16.48% and
23.45% (for lacL) and 18.22% and 25.75% (for lacM),
respectively. The total numbers of “rare codons” (i.e.,
codons used in less than 20% of the cases) and “very
rare codons” (less than 10%) are approximately equal in
the lacLM genes from L. reuteri and L. acidophilus, but
the latter shows a larger number of rare codons in the
first 50 triplets of the L. acidophilus gene (seven, vs.
four in the L. reuteri gene; see Figure 2).

Expression of a mutated L. acidophilus lacLM gene

In order to investigate the influence of the observed dif-
ferences in codon usage on transcription and possibly
translation we constructed a mutated variant of the L.
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Table 2 B-Galactosidase activity and transcript levels
Time Time after pEH9R PCN ratio pEH9R/ pEH9A
(h) induction (h) pEH9A
Activity lacLM sppKR Activity lacLM sppKR
2 expression level expression level 2 expression level expression level
6° 0 1 1.00 + 0.07 1.00 + 0.16 139 + 025 1 1.00 + 0.13 1.00 + 021
8 2 56.1 599 + 156 1.88 £ 0.11 081 £ 007 242 178 £43 249 + 0.04
12 6 135 554 £ 135 167 039 0.79 £ 001 448 119+19 2.00 £ 0.20
24 18 144 164 + 26 - 1.34 +£ 0.06 356 046 £ 0.12

Activity levels and transcript levels of lacLM and sppKR in strains harboring pEH9R or pEH9A are related to the respective values at the induction point (6 h into

the cultivation)

The plasmid copy number (PCN) ratio is the value for the pEH9R-harboring strain divided by the value for the pEH9A-harboring strain

2 Specific activity (U/mg protein)
b Just before induction

acidophilus lacLM gene. Triplets in codon 11 (CCT,
encoding proline) and 15 (AGA, encoding arginine)
(Figure 2A), which are considered very rare in L. plan-
tarum WCESL, were replaced with the corresponding
codons from the L. reuteri gene, which are more com-
mon in L. plantarum WCES1 (CCG and CGC, respec-
tively; Figure 2B). The mutated gene (on the vector
pEH9A2) was expressed in L. plantarum WCES1 under
the same conditions as described for pEH9A and
pEHOR, using bacteria harboring these two plasmids as
control. Resulting -galactosidase activities in the cul-
tures harboring pEH9A2 were indeed higher than in
those harboring pEH9A, but only by roughly 20 - 40%
(Table 4).

Discussion

We have previously shown that lactobacillal lacLM
genes can be overexpressed in Lactobacillus plantarum
WCEFS1 using the inducible pSIP expression system [10].
In this previous work we observed remarkably large dif-
ferences in expression levels of B-galactosidases from
different Lactobacillus strains. In the present study, we
have used optimized conditions (unpublished observa-
tions) in parallel fermentations of L. plantarum WCES1
expressing different lacLM genes. Under conditions of
pH control (pH 6.5) and high sugar content (see Mate-
rials and Methods section), the highest B-galactosidase

Table 3 Ratio of expression levels of sppKR versus lacLM
in L. plantarum WCFS1 carrying pEH9R and L. plantarum
WCFS1 carrying pEH9A

Time (h)  Time after induction (h) pEHOR pEH9A
6° 0 487 £078 1432 £ 296
8 2 0.15 £ 0.01 201 £003
12 6 0.15 £ 003 240 £0.23

Values were obtained by dividing the average transcript number of sppkR
with the average transcript number of lacLM as described in Material and
Methods

@ Just before induction

activities were observed in the late exponential phase,
where expression of lacLMReu yielded 65 U/mg protein
compared to only 2.5 U/mg obtained with lacLMAci.

Plasmid copy numbers may have significant effects on
the synthesis of recombinant proteins encoded by a
plasmid-borne gene [25]. Plasmids pEHIR and pEH9A
were both constructed using an identical pSIP409 back-
bone containing the 256rep replication determinant
derived from the L. plantarum NC7 plasmid p256 [28].
Copy numbers of vectors with this origin of replication
are rather low, and were determined to be approxi-
mately three in L. sakei Lb790 and six in L. plantarum
NCS8, using slot-blot hybridization [11,28]. In agreement
with these reports, RT-PCR quantification yielded a
copy number for pEHOR in L. plantarum WCES1 of 3
to 4. The ratio of the plasmid copy numbers in the
pEHOR- and pEH9A-harboring strains of L. plantarum
WCES1 was close to one during the fermentation,
meaning that the large differences in -galactosidase
production levels are not due to gene dose effects.

The pSIP409 vector system is based on quorum sen-
sing, because induction by the peptide pheromone also
induces transcription of the sppKR operon, via the indu-
cible Pg,,;p promoter [6,29,30]. From earlier studies it is
known that the transcription levels of the two compo-
nents of the regulatory system (histidine kinase and
response regulator) influence the transcription of the
reporter gene [6,29,30]. Studies with reporter genes have
shown that the Pg,,1p promoter differs from e.g. the
Pppo promoter in that it is more leaky, i.e. it displays
more activity under non-inducing conditions [31]. This
is supported by our comparative data on the transcrip-
tion of sppKR and lacLM, showing that before induction
the former operon has higher transcription levels (Table
3). Somewhat surprisingly, transcription of sppKR
increased only approximately two-fold upon induction,
compared to an up to 60-fold increase for the lacLM
genes controlled by Py,,q (in strains harboring pEHIR)
(Table 2). The results of previous studies suggest that
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Table 4 B-Galactosidase activity of L. plantarum WCFS1 harboring pEH9R, pEH9A and pEH9A2?
Volumetric activity (kU/L)

Time (h) WCFSI + pEHOA2 WCFST + pEHOA WCFST + pEHOR Ratio (DEHOA2/pEHOA)
6 023 + 000 017 % 000 245 £ 0.10 143
8 134 + 005 1.09 + 008 120 + 04 123
12 300 + 0.12 240 + 0.19 763 + 4.1 125
24 317 +0.15 269 + 031 101 +6 1.19

Specific activity (U/mg)

Time (h) WCFSI + pEHOA2 WCFST + pEHOA WCFST + pEHOR Ratio (DEHOA2/pEHOA)
6 1.15 + 004 085 + 008 16.1 + 0.1 136
8 283 + 008 260 + 007 390 + 34 1.09
12 318+ 0.10 267 +0.13 953 + 0.2 1.19
24 331 + 041 285+ 033 97.1 + 57 1.16

@ The method used for cell disruption used in this study differed from the method used to produce Fig. 1 (see Materials and Methods). This explains why the
absolute enzyme activity values vary between the two experiments.
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the sppKR transcript is unstable [8]. It is thus conceiva-
ble that transcription of these regulatory genes transi-
ently increased to higher levels immediately after
addition of the IP, and was already decreasing again two
hours later, when the first samples were taken. This
may also explain the discrepancy with the results of
Risgen et al. [31], who found higher apparent degree of
induction using reporter genes. Reporter protein activity
can remain stable even after transcription of the encod-
ing gene has ceased and the corresponding mRNA is
already degraded and no longer detectable. For the pur-
pose of this study, the most important conclusion is
that transcription of sppKR in strains harboring either
pEHOR or pEHO9A is essentially equal, both before and
after induction. Variations in the transcription levels of
sppKR are therefore not responsible for the large differ-
ences in the production levels of the two [3-
galactosidases.

In previous studies of gene regulation in the natural
sakacin P producer [8] transcripts for the operon under
control of the Py, promoter could be detected as early
as 15 minutes after induction, and maximum levels were
reached after 4 hours. Northern blots [8] showed that
transcript levels were close to the maximum 2 to 4
hours after induction. In our study, maximum transcript
levels for lacLM were observed two hours for both
pEHOR and pEH9A (Table 2). The mRNA levels were
slightly lower 6 hours after induction, i.e. at the start of
the stationary phase. The highest activity of f3-galactosi-
dase was observed 6 h after induction (12 h of cultiva-
tion), indicating an accumulation of the enzyme (Figure
1). After 24 h of cultivation, well into the stationary
phase, mRNA of lacLMReu was still detected at an 18-
fold higher level than before induction (Table 2). In
contrast, mRNA levels for lacLMAci were lower than
before induction at this time point, indicating that
lacLMRey mRNA is much more stable than lacLMAci
mRNA in L. plantarum WCFS1.

The present data clearly show that the large differ-
ences in protein production observed for lacLMReu and
lacLMAci correlate with different mRNA levels. It is
unlikely that this is due to differences in the frequency
or efficiency of transcription initiation, since the two
constructs are identical up to their start codons. Inci-
dental mutations in the two promoter sequences causing
different transcriptional efficiency were ruled out by
sequencing (data not shown). Thus, translational effects
on mRNA production or stability must be the main
cause of the large difference in mRNA levels, especially
in light of the observed faster decrease in lacLMAci
mRNA levels, indicating different mRNA stabilities.
Translational effects on mRNA levels are often ascribed
to the impact of translation on mRNA stability, the
main idea being that naked untranslated mRNA is
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prone to degradation by ribonucleases. It should be
noted though that low translation levels will also affect
mRNA synthesis directly, either because longer stretches
of nascent naked mRNA will be prone to premature
Rho-mediated transcription termination [32,33] or
because a lack of ribosomes promotes “back-tracking” of
the RNA polymerase complex and thus delays transcrip-
tion, as recently shown by Proshkin et al. [34].

One potential cause of variation in the amount of
ribosomes on an emerging mRNA concerns variation in
translation initiation frequencies due to variation in the
sequence and accessibility of the ribosome-binding site
(Shine-Dalgarno-sequence) [35,36]. For example,
mRNAs with stable secondary structures near the trans-
lational start can hinder ribosome access to the transla-
tional initiation region (TIR) (= the ribosome binding
site, the start codon and adjacent up- and downstream
regions) [37,38]. Analyses using the mfold web server
[39] showed only small differences between the two pre-
dicted mRNA structures in this region (not shown), but
we cannot exclude that these differences play a role.

Another potential cause for slow translation is the
presence of rare codons, in particular in the 5’ region of
the gene [10]. In their recent landmark study on RNA
polymerase backtracking [34], Proshkin et al. showed
that rare codons not only reduce the speed of transla-
tion but also the speed of transcription. Over the entire
length of the genes, the two lacLM genes used in this
study have a similar number of rare codons, but the
number of unfavorable codons among the first 50 tri-
plets is considerably higher in lacLMAci (seven) than in
the better expressed lacLMReu (four). As a first step
towards investigating the role of rare codons, we
replaced two of rare codons the lacLMAci by the corre-
sponding less rare codons occurring in the better
expressed lacLMReu gene. These exchanges included
the very rare AGA for arginine in the 15™ triplet (fre-
quency 4%) which was replaced by CGC (frequency
21%; note that Arg is a six-fold degenerate amino acid).
The mutations indeed yielded an increase in -galactosi-
dase activity, but the increase was only in the order
25%, and thus far off the approximately 60-fold increase
observed when going from lacLMAci to lacLMReu.
While the small increase appears to corroborate our
codon-related deliberations in principle, our data seem
to indicate that the presence of a few extra rare codons
is not sufficient to explain the lower transcription effi-
ciency and/or stability of the lacLMAci transcript.

Conclusion

The results clearly indicate that the much higher -
galactosidase levels obtained in L. plantarum harboring
lacLM from L. reuteri (on pEHI9R) as compared to L.
plantarum harboring lacLM from L. acidophilus (on
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pEHO9A) are caused by higher mRNA levels in the for-
mer strain. This is remarkable, since the two operons
are expressed using identical transcription and transla-
tion machineries and start sequences. This shows the
importance of translational effects on mRNA levels. Our
data so far indicate that these translational effects are
caused by subtle sequence variations at the level of
(probably several) rare codons or by minor variations in
the secondary structure of the TIR, each of which would
affect both mRNA synthesis rates and mRNA stability.
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