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Abstract

Background: Pichia pastoris is a widely-used host for recombinant protein production. Initial screening for both
suitable clones and optimum culture conditions is typically carried out in multi-well plates. This is followed by
up-scaling either to shake-flasks or continuously stirred tank bioreactors. A particular problem in these formats is
foaming, which is commonly prevented by the addition of chemical antifoaming agents. Intriguingly, antifoams are
often added without prior consideration of their effect on the yeast cells, the protein product or the influence on
downstream processes such as protein purification. In this study we characterised, for the first time, the effects of
five commonly-used antifoaming agents on the total amount of recombinant green fluorescent protein (GFP)
secreted from shake-flask cultures of this industrially-relevant yeast.

Results: Addition of defined concentrations of Antifoam A (Sigma), Antifoam C (Sigma), J673A (Struktol), P2000
(Fluka) or SB2121 (Struktol) to shake-flask cultures of P. pastoris increased the total amount of recombinant GFP in
the culture medium (the total yield) and in the case of P2000, SB2121 and J673A almost doubled it. When
normalized to the culture density, the GFP specific yield (ug OD595’1) was only increased for Antifoam A, Antifoam
C and J673A. Whilst none of the antifoams affected the growth rate of the cells, addition of P2000 or SB2121 was
found to increase culture density. There was no correlation between total yield, specific yield or specific growth
rate and the volumetric oxygen mass transfer coefficient (k;a) in the presence of antifoam. Moreover, the antifoams
did not affect the dissolved oxygen concentration of the cultures. A comparison of the amount of GFP retained in
the cell by flow cytometry with that in the culture medium by fluorimetry suggested that addition of Antifoam A,
Antifoam C or J673A increased the specific yield of GFP by increasing the proportion secreted into the medium.

Conclusions: We show that addition of a range of antifoaming agents to shake flask cultures of P. pastoris
increases the total yield of the recombinant protein being produced. This is not only a simple method to increase
the amount of protein in the culture, but our study also provides insight into how antifoams interact with
microbial cell factories. Two mechanisms are apparent: one group of antifoams (Antifoam A, Antifoam C and
J673A) increases the specific yield of GFP by increasing the total amount of protein produced and secreted per
cell, whilst the second (P2000 or SB2121) increases the total yield by increasing the density of the culture.

Background

The laboratory-scale production of recombinant pro-
teins using P. pastoris requires that cells are cultured
either in large shake flasks or in continuously stirred
tank bioreactors. In these vessels, the formation of foam
is an issue that requires intervention. This is in contrast
to the situation in the small vessels typically used in the
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initial stages of protein production experiments where
foaming is minimal [1].

Foaming can lead to reduced yields since bursting
bubbles can damage proteins [2] and can also result in a
loss of sterility if the foam escapes [3]. In bioreactors,
foaming can lead to over-pressure if a foam-out blocks
an exit filter. To prevent the formation of foam,
mechanical foam breakers, ultrasound or, most often,
the addition of chemical antifoaming agents (or “anti-
foams”) [3] are routinely employed.

There is a well-established literature on antifoams [3].
One useful classification categorizes them as either
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hydrophobic solids dispersed in carrier oil, aqueous sus-
pensions/emulsions, liquid single components or solids
[4-6]. Several mechanisms of action for these agents
have been suggested which include bridging-dewetting,
spreading fluid entrainment and bridging-stretching [7].
Many are commercially-available, with 19 being sold by
Sigma-Aldrich alone. While little information is routi-
nely given about their composition, their specific anti-
foam properties have been thoroughly investigated.
These include their effects on foam height with time,
their influence on the volumetric oxygen mass transfer
coefficient (kpa) of the system, their gas hold-up charac-
teristics and their globule size and distribution in rela-
tion to their action upon foams [3,5,7-11]. Such studies
have been performed in various growth media in both
the absence and presence of cultures of prokaryotic and
eukaryotic microbes.

In contrast, literature on the biological effects of anti-
foams on recombinant protein yields from microbial cell
factories is more limited. Additional file 1: Table S1
shows an analysis of representative examples of this
body of work including previous studies on four bacter-
ial hosts and one yeast species. In some cases, the addi-
tives tested are not antifoams sensu stricto. It is also
noteworthy that the yeast, Schizosaccharomyces pombe,
is not widely used in biotechnology applications and
that there have been no prior studies on the biological
effects of antifoam addition to recombinant P. pastoris
cultures. A recent review stated that in the last 15 years,
80% of all recombinant genes reported in the literature
were expressed in either Escherichia coli or P. pastoris
[12]. In this study, we therefore examined five antifoams
that are widely used in controlling the foaming of
recombinant P. pastoris cultures [13-16] in order to ana-
lyze effects over and above that of their de-foaming
action. We looked at polypropylene glycol (PPG) P2000
that is analogous to previously-examined liquid single
components of the PPG-type [11] as well as examples
from other categories such as Antifoam A and Antifoam
C, which are silicone polymers, SB2121, which is a poly-
alkylene glycol, and J673A, which is an alkoxylated fatty
acid ester on a vegetable base and has not previously
been documented in this context: for all antifoams
examined, this was the first report of their effect on the
yield of recombinant GFP secreted from shake-flask cul-
tures of P. pastoris.

Results

We wanted to establish whether antifoams affect recom-
binant protein yield in P. pastoris X33 cultures, and if
so to investigate the underlying mechanisms. To exam-
ine this we chose an experimental system, under the
control of the methanol-inducible AOXI promoter,
comprising GFP secreted from 20 mL cultures in shake
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flasks in the presence of five different antifoams at a
range of concentrations from 0-1% v/v. These concen-
trations are higher than the 0.1% routinely used for
de-foaming purposes. The total amount of GFP in these
20 mL cultures (the total yield) was measured by fluori-
metry 48 h post-induction.

Antifoam addition affects total GFP yield in shake flasks
The total yield of GFP as a function of Antifoam A
addition rose significantly at concentrations of 0.6% and
above (Figure 1A) with no further increases above 1%
(data not shown). A similar but more pronounced trend
was observed for Antifoam C (Figure 1B), which is
unsurprising since Antifoam C is a 30% emulsion of the
same antifoam concentrate as Antifoam A, but with dif-
ferent non-ionic emulsifiers [17]. Figure 1C shows that
addition of 1% J673A almost doubled the total yield of
GFP compared to the control without antifoam, repre-
senting one of the largest effects of the antifoams evalu-
ated. At concentrations above 1%, the total yield of
GFP decreased (data not shown). Addition of P2000
(Figure 1D) also resulted in a significant increase in
total yield at or above 0.6%, while addition of SB2121
(Figure 1E) increased total yield at concentrations above
0.4%. In both cases the largest improvement was
obtained on addition of 1% of the antifoam, again
almost doubling the yield. Overall, the five antifoams
tested all increased the total yield of GFP at concentra-
tions in the range of 0.4-1% v/v. The highest yield was
achieved by adding 1% P2000 (422 pg GEP) followed by
1% SB2121 (396 pg GEP), 1% J673A (394 ug GEP), 0.6%
Antifoam A (373 pg GFP) and 0.8% Antifoam C (348 pg
GEP). All five yields were significantly higher than the
corresponding yields from the 0% control, as shown in
Figure 1.

The effects of antifoam addition are due to changes in
culture density for P2000 and SB2121
To account for any changes in the growth characteris-
tics of the cells on addition of the antifoams, we nor-
malized the total yield to the optical density of the
cultures to obtain the specific yield (ug ODso5 ™). ODsos
was demonstrated to be a reliable measure of cell den-
sity in these experiments by comparing the number of
cells at a given ODsy5 in the absence and presence of a
range of concentrations of the different antifoams used
in our study: there was no statistically significant differ-
ence in cell number between cells harvested at a given
ODsg5 in the absence or presence of all antifoam con-
centrations tested. Typical values were 4.8 x 107 cells/
mL at an ODsg5 of 20.5 in the absence and presence of
0.5% SB2121.

For Antifoam A, Antifoam C and J673A, the specific
yield data were similar in trend to the total yield data
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Figure 1 Antifoam addition increases the total yield of GFP in 20 mL P. pastoris cultures. Bar charts showing the total yield of GFP (ug) at
48 hin 20 mL P. pastoris cultures following addition of Antifoam A (A), Antifoam C (B), J673A (C), P2000 (D) and SB2121 (E) at concentrations
from 0-1%. The error bars show the respective standard deviations. In all cases n = 9. The numbers within each bar are the corresponding
specific yield (ug ODsos™') with the respective standard deviations in parentheses (n = 9). The horizontal line is a visual aid to link the mean
optical density (grey squares) for each concentration of antifoam across the full experimental range; error bars show the respective standard
deviations (n = 9). In each case a one-way ANOVA showed that P < 0.001. Asterisks show the significance of the total yield and specific yield
data for each antifoam concentration compared to the respective 0% antifoam control as determined by a Dunnett's multiple comparison test,
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(Figure 1A-C): addition of these antifoams in the range
0.6-1% v/v caused a significant increase in specific yield
compared to the control cultures with no antifoam. For
cultures containing P2000 or SB2121, however, there was
no statistically significant difference in the specific yield
at each antifoam concentration compared with
the control except for 1% SB2121 where P < 0.05 (Figure
1D-E). This suggested that the enhancements in total
yield due to P2000 or SB2121 addition might be attribu-
table to changed growth characteristics of the cells. The
specific growth rates (i) for cultures containing either 1%
P2000 or 1% SB2121 were 0.17 h™* and 0.18 h™* respec-
tively compared with 0.17 h™" for the control samples (0%
antifoam) indicating that the growth characteristics dur-
ing the log phase were not affected by the presence of the
antifoams. However, we noted an increase in ODgo5 (at
both 24 and 48 h) with increasing antifoam concentration
for both antifoams (Figure 1D-E; 48 h data), which was

less pronounced for Antifoam A, Antifoam C and J673A
(Figure 1A-C). We concluded, therefore, that there was
more than one mechanism of antifoam action: one due
to changed culture density (P2000, SB2121) and a second
due to increased cellular production levels of recombi-
nant GFP (Antifoam A, Antifoam C, J673A).

Antifoam addition does not affect cell viability

We investigated the influence of antifoams on cell viability
by propidium iodide exclusion and flow cytometry. In this
assay, dead cells are stained red [18] and appear in popula-
tion C (Figure 2) while live cells fluoresce green due to
GFP production and appear in population B. The data
shown in Figure 2A suggest that there are no dead
cells present in cultures containing 0% antifoam. Figure 2B
shows that the same result was obtained in the presence of
0.6% Antifoam A. This result was seen for all antifoams
tested.
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Figure 2 Antifoams do not affect cell viability. Viable cells without antifoam (A) and with 0.6% Antifoam A (as a representative example; B)
are shown. Population A, which is not cellular, comprises events that are related to electronic and particulate noise. Population B comprises cells
with enhanced green fluorescence due to the expression of GFP. Population C is where any dead cells (stained red with propidium iodide)
would be observed.
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The foam destruction capacity of an antifoam is related
to its ability to improve GFP yield

We wanted to understand how the five antifoams
increase total yield and hence began by evaluating their
foam destruction properties. Simple methods of deter-
mining the ability of antifoams to reduce foam are the
Bartsch shaking test [19] and the Ross-Miles pouring test
[20]. A Bartsch shaking test was conducted (Figure 3)
and demonstrated that in the absence of an antifoaming
agent, initial foam destruction was quick until a stable
foam was formed. Foam height reduced slowly and in the
15 min testing time did not reach zero (Figure 3A). The
most effective agent for foam reduction was J673A,
where less foam was formed after initial shaking, and
destruction was rapid. Antifoam C had the least activity
of the agents tested. All antifoams were effective at foam
destruction and most foam was destroyed within one
minute (Figure 3B). Although there was no statistical cor-
relation between foam destruction capacity and either
total or specific yield, J673A was the most effective at
foam destruction and one of the best at increasing GFP
yield, whilst Antifoam C was the least effective.

Improved yields cannot be explained by antifoam-
induced changes in GFP fluorescence

In order to determine whether any of the antifoams
affected the fluorescence of GFP, 1% antifoam was incu-
bated in BMMY for 48 h to mimic the experimental set-
up. This was then spiked with a similar concentration of

recombinant GFP standard to that obtained in Figure 1.
There was no significant difference between the fluores-
cence of GFP in the presence and absence of any of the
antifoams suggesting that they did not influence the
sample readings. The fluorescence values of the anti-
foams themselves were also measured at 1% and found
to be minimal, similar to the buffer control readings.

The k,a characteristics of antifoam-containing cultures are
not correlated with improvements in GFP yield

As P2000 and SB2121 affected the density of the cul-
tures, we investigated the possibility that the oxygen
availability in the system was affected by antifoam addi-
tion and that this could explain increased GFP yields.
The k;a was therefore measured in shake flasks in the
presence of 0-1% v/v of these antifoams. Addition of
0.4% or 0.6% Antifoam A caused a large increase in kza
compared to the control (Figure 4A), whereas addition
of the related antifoam, Antifoam C, led to an initial
reduction in k;a, which increased on addition of anti-
foam up to 0.8% and then returned to control levels at
1%. After an initial decrease in kza was caused by J673A
addition up to 0.4%, it remained relatively constant up
to 1%. Addition of P2000 at all concentrations tested
caused relatively minor changes to the k;a. SB2121
addition did not substantially increase the k;a at any of
the concentrations tested. Overall, there was no correla-
tion between k;a and total yield for any of the condi-
tions tested, or with the density of the cultures,
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Figure 3 Antifoams affect foam volume as determined by a Bartsch test. The antifoams used in Figure 1, were tested for their foam
destruction capacity. Foam volume was recorded for 0% v/v antifoam (A) and 0.001% of each antifoam (B) in BMMY medium over a 15 min

Foam volume (mL)

S$B2121
Antifoam A
Antifoam C

suggesting that changes in k;,a may not directly lead to
increased protein yield for these antifoams.

DO in shake flasks is not affected by the presence of
antifoams P2000 and SB2121

In addition to measuring k;a, we looked at the dissolved
oxygen (DO) content of the cultures. The effect of 1%
P2000 or 1% SB2121 addition on DO was assessed in
shake flask cultures with PreSens DO patches and online
monitoring. Figure 5 shows that there was no difference
in DO in the flasks in the presence or absence of anti-
foam: after approximately 12 h for each culture condition
the DO in the flasks became limiting. Since functional
GFP can be expressed by anaerobic bacteria and in media
containing 0.1 ppm dissolved oxygen [21], there was no
concern that this would influence our data. DO
decreased as the cells metabolized the methanol present
in the medium and rose once they had consumed it. DO
remained high until additional methanol was added at
which point the DO immediately decreased and utiliza-
tion continued. Methanol concentrations were confirmed
by gas chromatographic analysis (data not shown). Over-
all, there was no difference in the DO content of cultures
containing antifoam and those without.

Addition of Antifoam A, Antifoam C or J637A affects the
total yield of GFP secreted into the medium

We next investigated whether antifoam addition might
have a physical influence on the cells. We therefore

measured the amount of GFP retained in the cell (by flow
cytometry) and that in the culture medium (by fluorime-
try). Figure 6 shows that addition of Antifoam A, Anti-
foam C and J673A caused a statistically significant
increase (P < 0.01) in the amount of GFP secreted into the
medium compared with the 0% antifoam control. The
amount of protein retained in the cells was also greater
suggesting that antifoam addition enhanced the ability of
the cells to produce recombinant GFP. For P2000 how-
ever, more GFP was retained inside the cells compared
with the 0% antifoam control. This is consistent with the
growth of the cells being affected by P2000 addition rather
than resulting in improved secretion efficiency, and also
suggests that there has been some metabolic change to the
cells compared to the control. Data for SB2121 was similar
to that for P2000. We also noted that addition of antifoam
did not cause any change in the total concentration of all
proteins in the supernatant (measured using a bicinchoni-
nic acid (BCA) assay) for cultures containing antifoams at
representative concentrations of 0%, 0.5% and 1%, except
for 0.5% Antifoam C (P < 0.05) and 1% SB2121 ( P < 0.01).
In the presence of these 2 antifoam concentrations, a
decrease of 13-14% was observed in the total protein con-
centration of the supernatant compared to 0% antifoam-
containing control cultures.

Discussion
Antifoams have previously been suggested to alter the
growth of cells and influence protein yield in bioprocesses
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Figure 4 k a data for the antifoam panel. The antifoams used in Figure 1, were tested to examine how their addition affected kja. Values
were recorded for 0-1% v/v antifoam for Antifoam A (closed circles), Antifoam C (open circles), J673A (crosses), P2000 (closed squares) and
SB2121 (open squares).

[2,11], but their addition to P. pastoris cultures has never
been examined systematically. In this study, addition of
the five antifoams tested increased the total yield of
secreted recombinant GFP produced by 20 mL P. pastoris
cultures. Generally, the total GFP yield secreted into the
culture medium was increased when antifoam was added
at concentrations of at least 0.4% v/v compared with the
0% antifoam control. Addition of 1% J673A to a 20 mL
culture yielded 394 ug GFP compared with 246 pug GFP
when there was no antifoam present. This is notable as
J673A is approved for industrial use.

Antifoams can be split into two categories of fast and
slow antifoams, depending on their mechanism of foam
destruction. Slow antifoams are often oils which destroy
foam over a longer period of time. Fast antifoams, as
examined in this study, are generally mixed agents
which enter the foam film and destroy it by a bridging-
stretching mechanism [7]. It has also been observed that
the most effective agents at destroying foam are those
with the most efficient oil film spreading characteristics
[22]. The least effective de-foaming agents in this study
were Antifoams A and C, which are 30% aqueous emul-
sions of Antifoam A concentrate [17]. Their reduced de-
foaming capability was accompanied by the weakest
ability to increase the yield of protein. In contrast,
J673A addition produced one of the best results, almost
doubling the yield. This antifoam is an alkoxylated fatty
acid ester on a vegetable oil base and it is known that
vegetable oils can alter the structure of foams by
increasing bubble size and reducing the stability of the
foam [23]. While vegetable oils may be metabolized as a

carbon source [23], which might explain why J673A
addition enhanced the yield of GFP, our data show
that J673A did not influence the growth of the cells
(Figure 1C), but rather enhanced the amount secreted
into the medium (Figure 6). J673A was additionally
found to be the most effective de-foamer of the panel of
five antifoams that we assayed (Figure 3).

Antifoams are also known to affect the k;a of a system,
which can be influenced by several factors such as med-
ium viscosity, the presence of organisms and their
by-products. These variables affect both k; (ms™) and
(specific surface area m™) [24,25]. For example, antifoam
addition is known to have an effect [26] by enhancing
bubble coalescence and increasing bubble size which
leads to a reduction in the specific surface area thereby
lowering k;a [3,8,24,25,27]. However, it has also been
previously observed [25,28] that at higher concentrations
of antifoam the k;a rises possibly due to the detrimental
effects of bubble coalescence. Consequently the reduced
specific surface area (a) reaches a limit and bubbles coa-
lesce suppressing surface motility and decreasing surface
tension. This then leads to decreasing bubble size and
kpa rises again. Additionally it is possible that antifoams
accumulate oxygen from rising bubbles, as they have
good oxygen solubility, and then release it to the aqueous
phase. Bubbles bursting at the surface disperse small
drops of antifoam causing more oxygen to be released
[25,28]. In the case of oils which have a greater oxygen
solubility than water, oil droplets may increase oxygen
permeability in the water boundary layer of the gaseous
dispersion [23]. Yagi and colleagues suggested that
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Figure 5 P2000 and SB2121 do not affect DO in shake flasks. Addition of 1% P2000 (A) or 1% SB2121 (B) did not affect the DO in shake
flasks, as determined by DO fluorescent sensors (PreSens) attached to the underside of each flask. The experiments in panels A and B are
biologically independent, which is the origin of the clonal differences and the variations in technical additions.

surfactants can cause rippling or eddying which influ-
ences the kza [26]. They also found that k; was not
greatly affected by antifoams, but that their main effect
was on a [26]. Koide subsequently suggested that the
ability of antifoams to reduce k; is less for bubble swarms
than for a single bubble [29].

We found that in shake flasks, the k;a was higher at
mid-range values and decreased with increasing concen-
tration, but that there was no statistically significant cor-
relation between increased k. a and total yield. It is
therefore possible that the k;a is already sufficient for the
cells to grow and produce protein and is not a limiting
factor, or that a combination of factors is responsible for
the increases in total yield that we observed. This is sup-
ported by the DO shake flask data which suggest there is
no difference between the DO in flasks without antifoam

and those with either P2000 or SB2121 added. Combin-
ing flow cytometry and fluorimetry data showed that the
antifoams can influence the amount of GFP retained
inside the cell as well as the amount secreted into the
medium. Antifoam A, Antifoam C and J673A enhanced
the GFP secreted compared to 0% antifoam suggesting
that the increase in total yield observed could be due to
this secretion effect. This is consistent with an earlier
study which suggested that antifoams can affect cell per-
meability in yeast by perturbing sterol biosynthesis which
then alters the permeability of the membrane [30]. This
is currently under investigation.

Conclusions
We show that when Antifoam A, Antifoam C, J673A,
P2000 or SB2121 are added at concentrations higher
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different data sets, each was normalized to its respective 0% antifoam control, which was consequently set to 1. The values shown are for
determinations at 48 h (n = 3). The significance of the changes in retained (white bars) and/or secreted (black bars) GFP compared to the
respective 0% antifoam control was analyzed by a one-way ANOVA (P < 0.0001) and a Dunnett's multiple comparison test where * = P < 0.05
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than those routinely used for de-foaming purposes, they
all increase the total yield of shake-flask cultures. Two
effects are apparent: one group of antifoams (Antifoam
A, Antifoam C and J673A) increases the specific yield of
GEFP by increasing the total amount of protein produced
and secreted per cell, whilst the second (P2000 or
SB2121) increases the total yield by increasing the den-
sity of the culture. Addition of commonly-used anti-
foaming agents to shake flask cultures of yeast is
therefore an effective way to increase the total yield of
the recombinant protein being produced; any necessary
changes to downstream steps such as protein purifica-
tion are therefore likely to be worthwhile. Furthermore,
this study provides insight into the manner in which
antifoams interact with microbial cell factories: any data
contributing to a fuller understanding of the specific
effects of an antifoam on the growth and yield charac-
teristics of such cultures, in addition to its primary
action as a de-foamer, will be essential in bioprocess
optimisation. These findings should provide an impetus
to increase productivity in shake flask cultures of
P. pastoris.

Methods

Yeast strains and culturing conditions

Pichia pastoris strain X33 transformed with pPICZaA-
GFPuv (designated X33GFPuv) [1] was used in all experi-
mental procedures. Cells were cultured in shake flasks in
medium buffered to pH 6.0 with 1 M potassium phos-
phate buffer and at 30 °C and 220 rpm. BMGY medium
(1% yeast extract, 2% peptone, 100 mM potassium phos-
phate pH 6.0, 1.34% YNB, 4 x 107°% biotin, 1% glycerol

[31]) was used for the initial biomass accumulation stage
before transferring to the induction medium, BMMY (1%
yeast extract, 2% peptone, 100 mM potassium phosphate
pH 6.0, 1.34% YNB, 4 x 10"°% biotin, 0.5% methanol
[31]), to induce production of GFP.

Shake flask cultures

Cells were cultured in 50 mL BMGY in 250 mL baffled
shake flasks to accumulate biomass. 20 mL BMMY was
then inoculated to a final ODsg5 of 1.0 and transferred
to a 100 mL non-baffled shake flasks for antifoam eva-
luations. Each evaluation was done in triplicate, with
each flask containing the desired concentration of anti-
foam (0%, 0.2%, 0.4%, 0.6%, 0.8% or 1.0% (v/v)) with
incubation at 30 °C and 220 rpm. After 24 h, 100% ster-
ile methanol was added to 1% v/v to maintain produc-
tion of GFP [1]. All optical density measurements were
blanked against the relevant antifoam-containing med-
ium. Since the antifoams themselves might influence
ODs595, we analyzed the relationship between ODsg5
readings in the absence and presence of a range of con-
centrations of different antifoams. In all cases the pair
wise relationship was linear (R> was 0.91-0.99).
We further verified that OD5o5 was a reliable measure
of cell density by comparing the number of cells at a
given ODsg5 in the absence and presence of a range of
concentrations of different antifoams. There was no sta-
tistically significant difference in cell number between
cells harvested at a given ODs5y5 in the absence or pre-
sence of any of these antifoam concentrations, suggest-
ing that ODsgs5 is indeed a robust measurement of cell
density.
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Antifoam agents

The antifoams tested in this study were Schill and Sche-
linger’s Struktol SB2121 (a polyalkylene glycol), Schill
and Schelinger’s Struktol J673A (an alkoxylated fatty
acid ester on a vegetable base), Fluka P2000 (a polypro-
pylene glycol), Sigma Antifoam A (a 30% emulsion of
silicone polymer) and Sigma Antifoam C (a 30% emul-
sion of silicone polymer). All antifoams were autoclaved
prior to use and each shake flask experiment was per-
formed in triplicate, with the undiluted antifoam being
added directly to the medium.

Fluorescence measurements

Culture supernatants (100 puL) were assayed at 24 h and
48 h post-induction for GFP fluorescence using a Spec-
tramax Gemini XS plate reader with an excitation wave-
length (Aexe) of 397 nm, and emission wavelength (Aep,)
of 506 nm. Triplicate determinations were performed
for each independent sample. All samples and blanks
were buffered to pH >7.0 using 50 pL 1 M potassium
phosphate pH 7.5. Data were collected at 25 °C. To
determine the concentration of GFP in each of the sam-
ples, a recombinant GFP standard (Vector Laboratories
Ltd) was used to construct a standard curve relating
RFU to protein concentration, as previously described
[1]. All data were analyzed using a one-way ANOVA to
test for a significant difference between any of the
means. In all cases P < 0.001 indicating a high degree of
significance. A Dunnett’s multiple comparison test was
then performed to compare each treatment mean (addi-
tion of various antifoam concentrations) and the control
mean (0% antifoam).

Total protein analysis

The total protein content of culture supernatants (2 pl)
at 48 h post-induction was analyzed by bicinchoninic
acid (BCA) assay. Cultures were examined in the pre-
sence of representative concentrations of 0%, 0.5% and
1% antifoam. 4.9 mL of proprietary BCA solution
(B9643, Sigma) was mixed with 100 pL 4% mM copper
(IT) sulfate solution (C2284, Sigma). 200 pL of this solu-
tion was used to assay each independent supernatant
sample in duplicate using a plate reader (BioTek Instru-
ments) at 570 nm. To determine the concentration of
protein in the samples, a bovine serum albumin stan-
dard (Sigma) was used to plot a standard curve. The
data were analyzed using a one-way ANOVA (P <
0.0001) and a Dunnett’s multiple comparison test.

Bartsch antifoam test

Bartsch tests were conducted following a protocol
adapted from that outlined by Denkov and colleagues
[32]. A 500 mL graduated glass cylinder was filled with
166 mL BMMY medium and in all cases except for the
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control, antifoam was added to 0.01% v/v. The cylinder
was sealed with parafilm and shaken ten times at ambi-
ent temperature. The height of the foam was recorded
using the graduations on the cylinder every 30 s for
15 min. Determinations were performed in quintuplet
for each antifoam. The activity of a given antifoam was
reported as a volume [32], obtained by subtracting the
volume of medium from the total volume (foam plus
medium) in the cylinder.

k,a determination

The influence of each antifoam on the volumetric mass
oxygen transfer coefficient (kza) in 125 mL plastic non-
baffled shake flasks with DO fluorescent sensors
(PreSens; the closest available size to our previous experi-
mental set-up using the same total:working volume ratio
of 5:1) was measured using a dynamic method adapted
from that of Bandyopadhyay and Humphrey [33].
A working volume of 25 mL BMMY was used for each
determination, with each antifoam being added in a step-
wise manner to a final concentration of 0%, 0.2%, 0.4%,
0.6%, 0.8% and finally 1.0% (v/v). Shake flasks were sealed
with foam bungs and incubated at 220 rpm, 30°C. The
medium was saturated with 1.5 L min™' compressed air
and flushed with N,. Determination of the k;a was car-
ried out in triplicate by adding the required volume of
antifoam at 100% DO, flushing with N, until the DO was
0% and then allowing the DO to return to 100%. The
data were logged every second using SFR software (Pre-
Sens). The data logged during the increase in DO from
0% to 100% were used to calculate the k;a with the fol-
lowing formula, where t; and t, are consecutive time
points, ¢ ¢ is the oxygen concentration at time t; and
1. is the oxygen saturation concentration.

km(tz - t1) =1In (CLOO ~ G )

Cl00 — C11,

Dissolved oxygen measurements

Dissolved oxygen was measured in 125 mL non-baffled
shake flasks with DO fluorescent sensors (PreSens)
attached to the underside of each flask. The flasks were
placed on a shake flask reader which excites the dyes in
the sensors and allows the DO data to be logged over
48 h with SFR software (Presens).

Flow cytometry

Shake flask cultures of P. pastoris, as described above,
were used to generate samples for flow cytometry analy-
sis. The antifoams used were Antifoam A at 0.6%, Anti-
foam C at 0.6%, J673A at 0.8%, P2000 at 0.6% and
SB2121 at 0.6% (v/v). Triplicate flasks were used for
each antifoam. 48 h samples were diluted 1:1000 in
phosphate buffered saline to a final concentration of
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10°-107 cells mL™, as determined using a haemocyt-
ometer. Fluorescent measurements were made using a
Beckman Coulter (High Wycombe, UK) flow cytometer
with Aexe = 488 nm from an argon-ion laser at 15 mW.
Diluted samples were additionally stained with 10 pL
propidium iodide (PI; 1 mgmL™ in water). All solutions
were passed through a 0.2 pum filter, immediately prior
to use, to remove particulate contamination. The optical
filters were set up so that PI fluorescence was measured
at 630 nm and GFP fluorescence was measured at 525
nm. The data were analyzed using a one-way ANOVA
(P < 0.0001) and a Dunnett’s multiple comparison test.

Additional material

Additional file 1: Table S1: Summary of the biological effects of
antifoam addition to microbial cell factories.
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