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Abstract

Background: Diabetic patients experience exaggerated intimal hyperplasia after endovascular procedures. Recently
it has been shown that circulating smooth muscle progenitor cells (SPC) contribute to intimal hyperplasia. We
hypothesized that SPC differentiation would be increased in diabetes and focused on modulation of TGF-b/BMP-6
signaling as potential underlying mechanism.

Methods: We isolated SPC from C57Bl/6 mice with streptozotocin-induced diabetes and controls. SPC
differentiation was evaluated by immunofluorescent staining for aSMA and collagen Type I. SPC mRNA expression
of TGF-b and BMP-6 was quantified using real-time PCR. Intima formation was assessed in cuffed femoral arteries.
Homing of bone marrow derived cells to cuffed arterial segments was evaluated in animals transplanted with bone
marrow from GFP-transgenic mice.

Results: We observed that SPC differentiation was accelerated and numeric outgrowth increased in diabetic
animals (24.6 ± 8.8 vs 8.3 ± 1.9 per HPF after 10 days, p < 0.05). Quantitative real-time PCR showed increased
expression of TGF-b and decreased expression of the BMP-6 in diabetic SPC. SPC were MAC-3 positive, indicative of
monocytic lineage. Intima formation in cuffed arterial segments was increased in diabetic mice (intima/media ratio
0.68 ± 0.15 vs 0.29 ± 0.06, p < 0.05). In GFP-chimeric mice, bone marrow derived cells were observed in the
neointima (4.4 ± 3.3 cells per section) and particularly in the adventitia (43.6 ± 9.3 cells per section). GFP-positive
cells were in part MAC-3 positive, but rarely expressed a-SMA.

Conclusions: In conclusion, in a diabetic mouse model, SPC levels are increased and SPC TGF-b/BMP-6 expression
is modulated. Altered TGF-b/BMP-6 expression is known to regulate smooth muscle cell differentiation and may
facilitate SPC differentiation. This may contribute to exaggerated intimal hyperplasia in diabetes as bone marrow
derived cells home to sites of neointima formation.

Background
Diabetes mellitus greatly increases the risk of cardiovascu-
lar disease (CVD) and adversely affects the outcome after
endovascular procedures. Diabetic patients experience
higher rates of restenosis due to intimal hyperplasia [1,2].
Previously it was thought that accumulation of smooth
muscle cells in the neointima of restenotic lesions was
exclusively due to migration and local proliferation of

medial smooth muscle cells or adventitial fibroblasts.
However, it was recently shown in bone marrow chimeric
animals that smooth muscle cells of bone marrow origin
contribute to postangioplasty restenosis [3]. Consistently,
cells with smooth muscle cell characteristics can be iso-
lated from animal [4,5] and human [6-8] blood. These
smooth muscle progenitor cells (SPC) may display charac-
teristics of other mesenchymal-lineage phenotypes such as
fibroblasts and have also been referred to as circulating
‘fibrocytes’ or ‘myofibroblast progenitor cells’ [8,9]. As
these cells appear to lack the expression of several specia-
lized smooth muscle proteins such as h-caldesmon and
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desmin after incorporation, their potential to adopt a phe-
notype comparable to a mature smooth muscle cell may
be limited to a certain extent [10]. We have shown that in
Type I diabetic patients, the outgrowth of cells with a
smooth muscle/myofibroblast phenotype from cultured
mononuclear cells was increased and that BMP-6 expres-
sion in these cells was down regulated [9]. Our present
study aims to bring further evidence for enhanced SPC
differentiation in diabetic conditions in the better-con-
trolled experimental setting of an inducible diabetic
mouse model. In addition, we evaluated the effect of dia-
betes on TGF-b-expression in cultured SPC, as TGF-b is
known to counteract BMP-6 signaling and enhance inti-
mal hyperplasia. We hypothesized that inducing Type I
diabetes in mice enhances SPC differentiation and
numeric outgrowth with decreased BMP-6 expression and
increased TGF-b expression in diabetic SPC.

Methods
Animals and induction of diabetes
Diabetes was induced in male, eleven week old C57BL/6
mice (Harlan, Horst, the Netherlands) by a single intra-
peritoneal injection with 200 mg/kg streptozotocin
(STZ; Serva, Heidelberg, Germany; n = 11 vs. 9 con-
trols). Insulin-releasing pellets (Linbit, Linshin, Scarbor-
ough, Canada) were placed subcutaneously, providing a
low insulin dose that is below normal physiological
levels and is still associated with marked (more than
twice upper limit of normal) hyperglycemicia, but pre-
vents severe catabolism and spontaneous deaths.
According to the manufacturer’s instructions, 2 insulin-
releasing pellets should be given to correct hyperglyce-
mia in a 20-gram diabetic mouse plus 1 pellet for each
additional 5 grams body weight. Our animals weighed
approximately 25 grams and thus received a third of the
recommended insulin dose. Blood glucose levels in sam-
ples drawn from conscious animals by tailbleeding were
measured using a portable glucose meter (Medisense
Precision Xtra; Abbott Laboratories, Bedford, USA).
HbA1c was determined in EDTA anti-coagulated blood
by HPLC method. All experiments were approved by
the local ethics committee on animal experiments.
To enable tracking of bone marrow derived cells

in vivo, in a separate set of experiments, we transplanted
bone marrow (5 × 106 cells i.v./animal) from GFP-mice
(strain C57Bl/6-Tg(UBC-GFP)30Scha/J obtained from
the Jackson laboratory, Maine, United States) to lethally
irradiated animals (700cGy whole-body g-irradiation
delivered by linear accelerator). Peripheral blood chi-
merism was evaluated using flowcytometry on periph-
eral blood leukocytes after lysing erythrocytes with an
ammonium chloride lysis buffer. Chimeric animals were
required to have at least 90% GFP-positive leukocytes to
be included in the experiments.

Cuff model of intima hyperplasia
Five weeks after onset of diabetes, a non-constrictive
polyethylene cuff (0,4 mm inner diameter, 0,8 mm
outer diameter, length 2 mm, Portex, Kent, UK) was
loosely placed around both femoral arteries. 21 days
after cuff placement, cuffed arterial segments were har-
vested after perfusion with 0.9% saline containing 0.1
mg/ml nitro-glycerine at 120 mm Hg for 5 minutes,
fixed in formaldehyde and embedded in paraffin. Serial
5 μm cross-sections were obtained at 200 μm intervals
over the length of the cuffed femoral artery segment for
histological analysis. 4 equally spaced cross sections of
each arterial segment were stained with Elastin Von
Gieson staining and the intimal and medial cross-
sectional areas were measured using computerized mor-
phometric analysis (Soft Imaging Systems, Münster,
Germany). Neointimal smooth muscle cells were identi-
fied using biotinylated mouse-anti-human-aSMA anti-
body (clone 1A4, Sigma) and streptavidin-peroxidase/
TRITC-Tyramide Signal Amplification (TSA) system
(PerkinElmer, Boston, USA) and counted.
Cryostat sections from neointimal lesions in cuffed

arterial segments (n = 18 cuffed segments from 9 animals)
and control non-cuffed arterial segments from GFP-chi-
meric animals were stained with Cy3-conjugated mouse
monoclonal anti-aSMA antibody (clone 1A4, Sigma) and
DAPI. GFP-positive cells in neointima and adventitia were
identified using direct fluorescencence microscopy and the
average number of incorporating cells per section was
quantified. For detailed evaluation of fluorescence pat-
terns, selected sections were scanned using a confocal
fluorescence microscope. To exclude possible misinterpre-
tation by autofluorescence or fluorescence channel bleed-
through artefacts, GFP-epifluorescence was confirmed by
measuring emission wave length spectrum.

Smooth muscle progenitor cell culture
SPC were obtained by culturing spleen mononuclear cells
on fibronectin-coated dishes in Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 20% heat-
inactivated fetal calf serum to facilitate smooth muscle
cell differentiation. After 4 and 10 days in culture, SPC
were identified by immunofluorescent staining for aSMA
using biotinylated mouse-anti-human aSMA antibody
(Sigma) and streptavidin-peroxidase/TSA system, and
staining for collagen type 1 using a goat-anti-human col-
lagen type 1 polyclonal antibody (Southern Biotechnol-
ogy Associates, Birmingham, USA) and peroxidase
labelled rabbit anti-goat immunoglobulin with the TSA
system. DAPI was used for visualization of cell nuclei.
Double-positive cells for both aSMA and collagen type
1 were counted as SPC and quantified per 200-fold mag-
nification high power field (HPF). Isotype-stained sec-
tions served as controls.
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To verify that spleen mononuclear cell giving rise to
SPC in culture were indeed bone marrow derived cells
and not spleen stroma, we performed a control experi-
ment in which we transplanted bone marrow from GFP-
mice to lethally irradiated animals. After peripheral
blood chimerism was confirmed, two of four animals
received STZ to induce diabetes. Similar to our main
study protocol, after 8 weeks diabetes, spleen mononuc-
lear cells were isolated, analyzed for GFP-expression on
flow cytometry, and placed in SPC-culture. After 7 days
in culture, SPC were detached using trypsin/EDTA and
analyzed for GFP-expression on flow cytometry.

MAC-3 staining
To identify monocyte/macrophages, sections from GFP-
chimeric animals and paraformaldehyde-fixated SPC on
cover slips were stained with rat-anti-mouse MAC-3
antibody (BD Pharmingen, San Diego, USA), which was
visualized using a TRITC-labeled goat-anti-rat secondary
antibody (Serotec, Hilversum, the Netherlands).

Quantitative real-time PCR for phenotypical conformation
of aSMA, collagen-I and calponin expression and
quantification of TGF-b and BMP6 mRNA expression
Expression of aSMA, collagen-I and also calponin was
verified using real-time PCR. For this, total RNA was
extracted from SPC with RNeasy columns (Qiagen,
Venlo, The Netherlands) according to the manufac-
turer’s instructions. One microgram of total RNA was
reverse transcribed to cDNA using oligo-dT, random
hexamers, and Superscript reverse transcriptase (Invitro-
gen, Carlsbad, CA, USA). Taqman quantitative real-time
PCR reactions were performed in duplicate on an ABI
Prism 7700 Sequence Detection System using pre-
designed primer sets for of aSMA, collagen-I, calponin,
TGF-b1, BMP-6, and housekeeping gene b-actin
(Taqman assays-on-demand, Applied Biosystems, Nieu-
werkerk a/d IJssel, The Netherlands). mRNA expression
was quantified using the comparative Ct method using
b-actin as the reference gene. b-actin was chosen as
reference gene as it has been shown to be a stable
housekeeping gene in diabetic conditions in vitro and in
vivo [11].

Statistical analysis
All data are presented as mean ± SEM. The Mann-
Whitney test was used to compare means between
groups. A value of p < 0.05 was considered statistically
significant.

Results
Course of diabetes
Glucose levels exceeded twice the upper limit of normal
within 2 days after STZ injection. Blood glucose levels

in diabetic mice remained at least above twice the upper
limit of normal during the course of the experiment
(average 24.5 ± 1.6 mmol/l). Blood glucose levels in con-
trol mice ranged from 6.5 to 9.5 mmol/l (average
8.5 ± 0.5 mmol/l; p < 0.001 vs diabetic mice). At termi-
nation after a total of 8 weeks hyperglycemia, HbA1c
levels were 8.3 ± 0.4% in STZ diabetic mice compared
to 4.9 ± 0.5% in control mice (p < 0.0001). After injec-
tion with streptozotocin, diabetic mice initially lost
some weight, but this stabilized after insulin pellet pla-
cement. During the further study protocol body weights
remained fairly constant in diabetic mice (25.2 ± 0.7 vs.
23.7 ± 1.3, p = ns), while there was normal weight gain
in control mice (24.9 ± 0.7 vs. 35.1 ± 1.0, p < 0.0001).

Intimal hyperplasia is exaggerated after cuff-induced
vascular injury in diabetic mice
We evaluated if the STZ-induced diabetic mice in our
study displayed an exaggerated neointima formation as
we expected. Indeed, twenty-one days after vascular
injury the intima-media ratio was higher in diabetic ani-
mals than in controls (0.68 ± 0.15 versus 0.29 ± 0.06;
p < 0.05, Figure 1), corresponding with an increased
number of intimal aSMA-positive cells (31 ± 4 vs
17 ± 2 cells per cross-section; p < 0.005, Figure 1). No
intima hyperplasia was observed in non-cuffed control
arterial segments of both control and diabetic animals.

Bone marrow derived cells home to sites of neointima
formation
In cuffed arterial segments of GFP-chimeric animals,
GFP-positive bone marrow derived cells were observed
in the neointima (4.4 ± 3.3 cells per section) and parti-
cularly in the adventitia (43.6 ± 9.3 cells per section).
These cells were in majority a-SMA negative (Figure 2),
but frequently positive for macrophage marker MAC-3
(Figure 3A). In non-cuffed control arterial segments
bone marrow derived cells were observed only sporadi-
cally in the adventitia.

SPC differentiation is accelerated under diabetic
conditions
Under SPC culture conditions, a proportion of spleen
mononuclear cells became adherent to the culture dish,
adopted an elongated morphology and started expres-
sing a-SMA and collagen type 1 (Figure 4AB). After
4 days of culture, 20 ± 6% of adherent cells from control
animals were double-positive for both a-SMA and col-
lagen type 1 and were thus identifiable as SPC, while
more than 50 ± 4% of adherent cells had differentiated
into SPC in cultures from diabetic animals (p < 0.001,
Figure 4C). After 10 days of culture, nearly 100% of
adherent cells was positive for SPC markers in cultures
from both diabetic and control mice. Real-time PCR
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confirmed the expression of aSMA, collagen-I and also
calponin. SPC from both control and diabetic mice were
negative for endothelial marker CD31, but uniformly
positive for macrophage marker MAC-3 (Figure 3BC).

SPC number is increased in diabetic mice
The absolute number of SPC cultured from diabetic ani-
mals after 4 days was higher than from controls (7.5 ±
1.4 vs 2.3 ± 0.4 per HPF; p < 0.01, Figure 4C). After 10
days, total cell number in both groups had increased
further than the original number of adherent cells on day
4, indicating that SPC proliferate in culture. The total
number of SPC in cultures from diabetic mice remained
substantially higher compared to cultures from controls
(24.6 ± 8.8 vs 8.3 ± 2.0 per HPF; p < 0.05, Figure 4C).

SPC cultured from spleen mononuclear cells are bone
marrow derived
A control experiment in GFP bone marrow transplanted
mice showed that indeed the vast majority of mononuc-
lear cells isolated from the spleen are bone marrow
derived (range: 91-94% GFP-positive, n = 4). Also after
culturing the spleen mononuclear cells to SPC, most
proved bone marrow derived in both control and
diabetic animals (range 79-91%), indicating that contam-
inating spleen stroma is at most a minor factor in SPC
cultures from spleen.

mRNA expression of BMP6 is decreased and of TGF-b
increased in diabetic SPC
Quantitative RT-PCR of SPC cultured for 10 days
showed a 2.7-fold down regulation of BMP-6 in SPC
derived from diabetic mice in comparison with control
SPC (p < 0.05, Figure 5A). TGF-b expression in diabetic
SPC was 4.2-fold up regulated compared to control SPC
(p < 0.001, Figure 5B).

Discussion
In the present study, we show increased frequency of
SPC in peripheral blood cultures from diabetic mice,
associated with an increased expression of TGF-b and
decreased expression of BMP-6 in the diabetic SPC.
This modulation of TGF-b/BMP-6 expression may
underlie enhanced SPC differentiation and expansion
from diabetic mononuclear cells ex vivo and may be of
consequence for expanding intimal lesions to which
SPC home. In GFP-chimeric animals we show that
substantial numbers of bone marrow derived cells incor-
porate into sites of neointimal formation, particularly
the adventia. Mouse SPC expressed MAC-3, which
would be consistent with a monocytic origin. Bone-
marrow derived cells in the vessel wall of GFP-chimeric
animals in part expressed MAC-3, but we rarely
observed a-SMA expression in GFP-positive cells.
We observed increased neointima formation in STZ-

induced diabetic mice, while intimal hyperplasia was
not increased in STZ-induced diabetic rats in two ear-
lier studies [12,13]. This may be related to differences
in the animal model of arterial injury as we used a
non-constrictive perivascular cuff, where the other two
studies used balloon denudation of the carotid artery
and placement of an aortic bare metal stent [12,13].
Perivascular inflammation is pivotal in the non-restric-
tive cuff model [14]. We chose the non-restrictive cuff
model for its good reproducibility [15] and because it
results in modest intimal hyperplasia and incorporation
of bone marrow derived cells under control conditions
[3], while other models induce such strong intimal
hyperplasia in controls that aggravating influences may
be obscured.
Using bone marrow chimeric animals, we show that

part of the neointimal cells are of bone marrow origin,
consistent with recent reports by others [3]. It was
shown that smooth muscle cells of bone marrow origin
also contribute to transplant arteriosclerosis and hyperli-
pidemia-induced atherosclerosis [16-19]. Histological
studies of autopsy material of patients after bone mar-
row transplantation confirmed that smooth muscle cells
in human vascular lesions are in part bone marrow
derived [20]. The origin of SPC, their regulation, and
how SPC respond to pathophysiological stimuli asso-
ciated with the development of CVD has not been fully

C D

BA

Figure 1 Intima formation in cuffed femoral artery segments.
Representative pictures of Elastin Von Gieson stained cuffed femoral
artery sections from non-diabetic (A) and diabetic animals (B).
21 Days after vascular injury intima/media ratio is higher in diabetic
animals (C) and intimal lesions of diabetic animals contain more
aSMA positive cells as compared to control animals (D). *p < 0.05,
# p < 0.005.
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elucidated. One study found SPC to be mainly derived
from CD34+ hematopoietic stem cells, but others found
circulating endoglin(CD105)+ CD14+ monocytes as a
main source of SPC [8]. Interestingly, circulating levels
of these CD105+CD14+ cells were increased in a popu-
lation of mostly non-diabetic patients with manifest
CVD compared to controls, suggesting that SPC levels
may be increased in a pro-atherosclerotic milieu [8]. We
have previously reported increased SPC differentiation
in Type I diabetic patients, in which we cannot exclude
an influence of a presence of subclinical atherosclerotic
disease [9]. Our current observation of enhanced SPC
levels in mice with inducible diabetes provides strong
additional evidence for the involvement of diabetes in
enhancement of SPC differentiation. The uniform
expression of macrophage marker MAC-3 by SPC sup-
ports that these cells are of monocytic origin. Although

we found MAC-3 positive bone-marrow derived cells in
the vessel wall of cuffed arterial segments as a compo-
nent of the perivascular inflammatory infiltrate, we
rarely observed a-SMA-expression in incorporated bone
marrow derived cells. Therefore, adventitial MAC-3
positive cells do not necessarily undergo mesenchymal
differentiation, even in a pro-fibrotic environment. This
observation is in line with a previous study, in which
bone marrow derived adventitial MAC-3-positive cells
did not show clear a-SMA-expression in intimal hyper-
plasia in a cuff model [21]. Interestingly, MAC-3 posi-
tive cells were shown to express histidine decarboxylase
(HDC) and intimal hyperplasia was attenuated in HDC
knockout animals, suggesting a relevant pathophysiolo-
gical role mediated by histamine [21]. Importantly,
plasma histamine levels and HDS activity in various
tissues are increased in diabetes [22].

C 

D E F 

GFP 
(bone marrow derived) 

TRITC 
( -SMA) 

Merge
(top panel including DAPI) 

B A 

Figure 2 GFP-positive bone marrow derived cells incorporate into the vessel wall at sites of neointimal formation. Sections from cuffed
femoral artery segments from GFP-chimeric animals show incorporation of bone marrow derived cells. TRITC-labeled a-SMA-positive and bone
marrow derived GFP-positive cells are shown in separate fluorescence channels (A/D and B/E respectively) and in overlay images (C/F, including
DAPI for C). Panels A/B/C show representative pictures using a regular fluorescence microscope, which was used to quantify GFP-positive cell
incorporation (G). Substantial numbers of GFP-positive cells incorporated into the cuffed femoral artery segment, particularly in the adventitia (G).
Panels D/E/F show a striking example of a section of a cuffed arterial segment that is completely occluded by neointima, which has been
visualized using a confocal fluorescence microscope. A detail of the merged picture F is shown in H, illustrating that most of the bone marrow
derived GFP-positive cells are located in the adventitia, although various GFP-positive cells can be found dispersed throughout the neointima.
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BMP-6 may act as both a stimulator and suppressor of
epidermal proliferation [23]. Over-expressing BMP-6
delays scar formation in wound healing [24], but stimu-
lates fibrous encapsulating of BMP-6 over-expressing
tumours [25]. TGF-b enhances the outgrowth of SPC-
like collagen-secreting pericytes from mononuclear cell
cultures [26]. Under these circumstances, BMP-6 may
act as an inhibitor of TGF-b and BMP-6 was shown to
attenuate TGF-b-induced upregulation of a variety of
SMC differentiation markers, including smooth muscle
actin, in mature smooth muscle cells [27]. Diabetes is
associated with higher TGF-b levels in the circulation
[28,29]. Therefore, we assessed the expression TGF-b
and BMP-6 in SPC from diabetic animals. We observed
increased TGF-b and decreased BMP-6 expression in
diabetic SPC, which could explain the accelerated
maturation and increased frequency of diabetic SPC in
culture. Furthermore, since circulating SPC home to
sites of injury and constitute a significant proportion of
neointimal cells [3,18] and in our observations also a
major source of adventitial cells, enhanced TGF-b and
reduced BMP-6 production may exert paracrine effects
on resident smooth muscle cells. Overexpression of
TGF-b induces formation of a cellular and matrix-rich
intima even in uninjured arteries [30], while inhibition
of TGF-b signalling attenuates intimal hyperplasia and
remodeling after vascular injury [31,32]. We indeed
observed aggravated intima-formation in the diabetic

mice in our study. As we observed low numbers of bone
marrow derived cells incorporating into the neointima
and only rarely a-SMA expression in these cells, we
speculate that the paracrine factors from the abundant
adventitial bone marrow derived cells are the predomi-
nant mode of influence.
Interestingly, in both our current animal study and the

previously reported study in human patients with type I
diabetes, augmented SPC differentiation and sustainably
increased SPC proliferation was observed ex vivo under
normoglycemic culture conditions. This indicates that
the effects of the hyperglycemic state in vivo are to
some extent ‘imprinted’ upon the circulating progenitor
cell population. Further research is required which
mechanisms are involved in this process.
In this study we used spleen mononuclear cells because

of the low numbers of circulating cell numbers in mice.
This is different from our previous human study in which
SPC were isolated from peripheral blood [9]. Spleen
mononuclear cells are a reservoir for circulating mono-
nuclear cells and permit higher cell numbers to be
obtained from individual animals. Using GFP-bone mar-
row transplanted animals, we confirmed that cultured
splenic SPC are indeed from hematological lineage.
Our study has several limitations. We used an induci-

ble model of diabetes with STZ, which allows for the
use of excellent controls, but could be confounded by
non-diabetic toxic effects. However, as STZ has a short

 B AA B  

C  

Overlay 
GFP / MAC-3-TRITC 

MAC-3-TRITC 
SPC culture 

Figure 3 MAC-3 expression by adventitial bone marrow derived cells and SPC in culture. Adventitial GFP-positive bone marrow derived
cells were frequently positive for macrophage marker MAC-3 (white arrows; A). SPC from both control (B) and diabetic (C) mice were uniformly
MAC-3 positive.
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Figure 4 SPC characterization and quantification. Cultured mouse SPC expressed collagen type I (detected by FITC-labelled antibody; A) and
a-smooth muscle actin (detected by TRITC-labeled antibody; B) demonstrated by immunofluorescent staining. The number of SPC obtained
after 4 and 10 days culture (C) is higher in diabetic animals (black bars) than in non-diabetic animals (white bars). * p < 0.01, # p < 0.05.

B A 

Figure 5 BMP-6 and TGF-b mRNA expression in SPC. Quantitative PCR showed decreased BMP-6 (A) and increased TGF-b (B) mRNA
expression in SPC from diabetic animals compared to controls. mRNA levels are expressed relative to the mean expression in the non-diabetic
control group in SPC cultured for 10 days. * p < 0.05, # p < 0.001.
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half-life of 1 hour after intraperitoneal injection in mice
and our assessment of the developing neointima and
cell cultures took place 8 weeks after STZ injection,
direct toxic effects of STZ on cultured cells or the
developing neointima are highly unlikely and we are
confident that the effects are mediated by the hypergly-
caemic state of the animals. Identification of SPC
required in vitro culture for several days as a-SMA and/
or collagen-I expression could not be detected by
immunocytochemistry on freshly isolated cells. There-
fore, we cannot determine if the numeric differences
observed by us in SPC cultures of diabetic animals after
4 days was the result of an increased level of circulating
SPC or if it is attributable to enhanced proliferation or
survival in vitro. Also, we were unable to reliably quan-
tify TGF-b and BMP-6 protein levels in the cultured
SPC and thus did not exclude if posttranscriptional
modulation may have attenuated the effects of the pre-
sence of diabetes on TGF-b and BMP-6 gene expres-
sion. In vivo, definite confirmation of modulation of
TGF-b/BMP-6 expression in the neointima itself could
not be confirmed by us and remains to some extent
speculative. Other studies do confirm increased TGF-b
in arteries of diabetic animals in vivo [33-36].
The present data are consistent with our previous

observations that SPC levels are increased in Type I dia-
betic patients and lack BMP-6 [9]. Increased SPC num-
bers have also been observed in (non-diabetic) patients
with manifest coronary artery disease [8]; however,
whether SPC from these patients have altered TGF-b/
BMP-6 expression has not been studied.

Conclusions
The current study shows that in a diabetic mouse
model, SPC levels are increased and SPC TGF-b/BMP-6
expression is modulated. Altered TGF-b/BMP-6 expres-
sion is known to regulate smooth muscle cell differen-
tiation and may facilitate SPC differentiation. This may
contribute to exaggerated intimal hyperplasia in diabetes
as bone marrow derived cells home to sites of neointima
formation. Further studies are required to evaluate if
inhibition of SPC differentiation, e.g. by modulating the
TGF-b/BMP-6 expression, may reduce intimal hyperpla-
sia in diabetes.
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