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Abstract

Background: Diabetes is a major risk factor for cardiovascular disease. In particular, type |
diabetes compromises the cardiac function of individuals at a relatively early age due to the
protracted course of abnormal glucose homeostasis. The functional abnormalities of diabetic
myocardium have been attributed to the pathological changes of diabetic cardiomyopathy.

Methods: In this study, we used high field magnetic resonance imaging (MRI) to evaluate the left
ventricular functional characteristics of streptozotocin treated diabetic Sprague-Dawley rats (8
weeks disease duration) in comparison with age/sex matched controls.

Results: Our analyses of EKG gated cardiac MRI scans of the left ventricle showed a 28% decrease
in the end-diastolic volume and 10% increase in the end-systolic volume of diabetic hearts
compared to controls. Mean stroke volume and ejection fraction in diabetic rats were decreased
(48% and 28%, respectively) compared to controls. Further, dV/dt changes were suggestive of
phase sensitive differences in left ventricular kinetics across the cardiac cycle between diabetic and
control rats.

Conclusion: Thus, the MRI analyses of diabetic left ventricle suggest impairment of diastolic and
systolic hemodynamics in this rat model of diabetic cardiomyopathy. Our studies also show that in
vivo MRI could be used in the evaluation of cardiac dysfunction in this rat model of type | diabetes.

Background diac failure. A high prevalence of cardiac failure is seen in
Diabetic cardiomyopathy (DCM) is characterized by a  individuals with diabetic cardiovascular complications,
cascade of myocardial changes that occurs in diabetes  with DCM as one of the key determinants [1]. DCM is
mellitus with fibrosis, hypertrophy and microcirculatory = marked by diastolic dysfunction early in the disease pro-
abnormalities. These cardiovascular complications com-  gression [2-4], with its reported occurrence even in
promise cardiac performance ultimately resulting in car-  patients with well-controlled diabetes in the absence of
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clinically detectable cardiac disease [5]. In addition
reports also suggest subtle systolic dysfunction later dur-
ing the course of diabetes that evades detection with
echocardiography [2]. Meanwhile it has been suggested
that detection of systolic dysfunction might require highly
sensitive techniques [3].

Magnetic resonance imaging (MRI) has proven to be a
powerful and robust noninvasive imaging modality for
structural and function evaluation of the rat heart [6].
However, in vivo cardiac MRI studies using diabetic rat
models are very limited. For example, Al-Shafei and col-
leagues [7,8] performed elaborate MRI studies with a 2 T
magnet on streptozotocin- (STZ) diabetic Wistar rats to
assess abnormalities of myocardial structure and cardiac
cycle events in diabetes.

Understanding the course of pathological events in an
appropriate model is the key for developing therapeutic
strategies aimed at preventing the heart failure. In order to
evaluate the cardiac performance in vivo we used MRI, a
robust technique for resolving cardiac functional informa-
tion and the reference standard for real time three dimen-
sional visualization of myocardial structure [9,10]. In a
previous study, we demonstrated the merits of high reso-
lution MRI in visualizing the diabetic heart and character-
ized the structural properties of non-beating myocardial
tissue in the STZ-diabetic Sprague-Dawley rat [11]. As an
extension of our previous study, we have characterized the
cardiac dysfunction associated with diabetes in this
model. In particular, we report quantitative measure-
ments on left ventricular end-diastolic and end-systolic
volumes and demonstrate that these parameters are differ-
ent for STZ-diabetic Sprague-Dawley rats compared to
control rats.

Methods

Experimental model of type | diabetes

All procedures on rats were approved by the University of
Kansas Medical Center Institutional Animal Care and Use
Committee. Twelve male Sprague-Dawley rats aged 2
months with an initial body mass of approximately 250 g
were used for the study. The rats were randomly assigned
to control or diabetic groups (n = 6 per group). The rats in
the diabetic group were given a single intraperitoneal dose
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of streptozotocin (65 mg/kg, Sigma, St. Louis, MO) in 10
mM sodium citrate buffer, pH 4.5. The control rats were
injected with the same volume of vehicle. Diabetes was
confirmed in the former group by measuring the non-fast-
ing plasma glucose levels (> 300 mg/dL) two days follow-
ing the injection. Body mass and plasma glucose levels
were recorded once weekly. All rats were given unlimited
access to chow and water for the entire duration of study.

MRI procedures

At the end of 8 weeks of diabetes, MRI scans were per-
formed on rats using a 9.4 T horizontal bore scanner (Var-
ian Inc., Palo Alto, CA) and a 60 mm radio frequency
volume coil while the rats were under 1.5% isoflurane
anesthesia delivered via a nose cone in a mixture of air
and oxygen (60% and 40% respectively). A cardiovascular
physiological monitoring system (SA Instruments Inc.,
New York, NY) was used to monitor electrocardiogram
(EKG), respiratory status, and body temperature. The
physiological status of the rats was continuously moni-
tored to ensure stable heart and respiratory rates during
the imaging session. The rats were positioned in the mag-
net bore for imaging the left ventricle (LV). After confir-
mation of position with scout images, EKG gated
gradient-echo based sequence was used to acquire cine
images of cardiac cycle from a short axis view of the heart
over 10 equally incremented intervals (labeled phase 1
through 10) with the following parameters: TR/TE = 25/
2.44 ms, number of averages = 1, image matrix = 128 pix-
els x 128 pixels, field-of-view = 60 mm x 60 mm, frame
rate = 10, number of slices = 1, and slice thickness = 2.0
mm. The image acquisition was repeated for a total of six
times by moving the slice location to completely encom-
pass the LV cavity from the base to the apex.

Image analyses

Images were analyzed using the Image J software [12] at
300% precision zoom. For the purpose of graphical repre-
sentation and discussion, the cardiac cycle was appor-
tioned into ten phases. The blood filled LV appeared
hyper-intense on images, thus providing excellent con-
trast for manually tracing the boundary of LV endocar-
dium. For each LV slice, the slice volume of the particular
phase was computed by the product of slice thickness and
area of the manually traced blood disc using the pixel to

Table I: Glucometry and gravimetry data obtained at 8 weeks of diabetes

Rat group (n) Plasma glucose HbAIc (%) Heart mass (mg) Body mass (g) Heart to body
(mg/dL) mass ratio (mg/g)
Control (6) 110+ 15 47102 1,305 + 80 420 + 20 3.1 £0.1
Diabetic (6) 545 + 45% 13% # 1,132 + 81 292 + 35% 3.9 £ 0.5%

* P < 0.05 when diabetic rat values were compared to controls.

#— since all diabetic rats had HbA I c levels higher than detectable by the method used, we used the highest detectable value (13%) for statistical

purposes.
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area conversion factor 1pixel/0.22 mm?2. The volumes
from all six slices acquired during the same phase delay
were integrated to obtain the volume of LV at the corre-
sponding phase. These computations were repeated for all
ten phases of the cardiac cycle. The phases corresponding
to the largest and smallest LV volume were chosen to be
representative of end-diastole and end-systole, respec-
tively. The difference between the LV end-diastolic and the
LV end-systolic volume was expressed as the stroke vol-
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ume. The ratio of stroke volume to the end-diastolic vol-
ume was expressed as the ejection fraction (%).

The LV wall volume was calculated from the phase 1
reconstruction of all six slices. Briefly, the LV wall was
manually traced to obtain the pixel count within the
region of interest, and the abovementioned pixel to area
conversion factor was used to estimate the LV wall area.
The wall volume for each slice was obtained from the
product of slice thickness and estimated area [11]. The

Control

Diabetic

End diastole End systole

Figure |

Representative end-diastolic and end-systolic cine MR images of left ventricle (LV) from control and diabetic
rats Typical slices of LV along the cardiac short axis obtained during end diastole and end systole from age-matched control
and diabetic rats (8 weeks diabetes duration) are shown. The blood and the endocardium are clearly distinguished during both

phases by the contrast provided by high resolution MRI.
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sum of wall volumes from all six slices was expressed as
the total LV wall volume.

Glucometry and gravimetry

Plasma glucose, body mass, and glycated hemoglobin
(HbA1) levels were measured at the end of 8 weeks, one
day prior to MRI scans. Plasma glucose levels were meas-
ured using AccuCheck Active (Roche Diagnostics Co, Indi-
anapolis, IN) meter. HbAl. was determined using
antibody based A1CNow meter (Metrika Inc, Sunnyvale,
CA). After MRI procedures, rats were euthanized with an
overdose of sodium pentobarbital. The hearts were
excised, washed in cold phosphate buffered saline, blot-
ted, and weighed.

Statistical analysis

The data were analyzed using SigmaPlot 2000 software.
All the values were presented as group means + SDs. One-
sided independent sample Student's t-test was used to
assess the difference between group means. The difference
between groups was considered significant when P = 0.05.

Results

Animal model characteristics

The animal glucometric and gravimetric characteristics
measured at the termination of experiment, for both con-
trol and diabetic groups, are presented in Table 1. Diabetic
rats displayed dramatically elevated plasma glucose level
when compared to controls. Glycated hemoglobin
increased beyond the level of measurable range (>13 %),
confirming long-term uncontrolled hyperglycemia in the
diabetic rats. The mean body mass value was significantly
decreased in diabetes. The mean heart to body mass ratio
was significantly higher in the diabetic group compared to
controls (P < 0.05). All these parameters suggested that
the rat model used in this study displayed features charac-
teristic of type 1 diabetes.

Left ventricular characteristics

The entire cardiac cycle of all rats was partitioned into 10
equi-duration phases. There was an insignificant (P >
0.05) increase in the mean R-R interval of diabetic rats
(242.5 £ 15.0 ms) compared to controls (216.7 + 28.7
ms).

Gating the data acquisition with strong R wave on the
EKG signal resulted in the LV attaining maximum volume
at phase 1 of the cardiac cycle in both control and diabetic
rats. Hence this maximum was taken as the LV end-diasto-
lic volume (Fig. 1). The mean LV end-diastolic volume in
the control group was 579.7 + 8.4 ul, while the diabetic
group showed a significantly (P < 0.01) decreased value of
419.4 + 5.4 pl (Fig. 2).
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The LV end-systolic volume was taken as the lowest car-
diac cycle phase volume which occurred at phase 6 in
both control and diabetic rats (Fig. 1). The mean LV end-
systolic volume was 206.7 + 7.0 ul in the control group
and it was significantly (P < 0.01) increased in the diabetic
group (226.3 + 5.3 pl) (Fig. 2).

Subsequently, the mean stroke volume was 373.1 + 8.8 ul
in the control rats. Diabetic rats showed a significantly (P
< 0.01) decreased value of 193.2 + 4.5 pul. The mean ejec-
tion fraction remained significantly (P < 0.01) lower in
diabetic group compared to the controls (46.1 % vs 64.4
%, respectively).

The body mass normalized mean end-systolic and stroke
volumes (Table 2) were significantly (P < 0.01) different
between control and diabetic rats, while the normalized
end-diastolic volume values demonstrated no difference
between groups (P > 0.05). The body mass normalized
mean LV wall volume however showed an increase (P <
0.01) with diabetes, suggesting LV hypertrophy in the dia-
betic rats.

The first derivatives of the LV volume with respect to time
(dV/dt) during the cardiac cycle phase transitions are pre-
sented in Figure 3. The dV/dt values remained signifi-
cantly different (P < 0.05) between the control and
diabetic groups at all but the phase 6-7 (the end-systolic
phase) transition suggesting a phase sensitive flow veloc-
ity difference between control and diabetic LV in this par-
ticular model of DCM.

Discussion

The STZ induced diabetic rats used in our experiments are
reminiscent of a model of uncontrolled hyperglycemia
due to absolute insulin deficiency. The later feature closely
captures the metabolic condition of type 1 diabetes. The
STZ rat model has been used to study both tissue pathol-
ogy [13,14] and therapeutic interventions [15,16] in type
1 diabetes. There has been a growing interest in the appli-
cation of MRI to obtain structural and functional informa-
tion from a variety of tissues including the eye [17], the
kidney [18] and the heart [7,8,19] that are targeted by dia-
betic complications.

Functional sensitivity of imaging modalities poses a major
challenge for delineation of abnormalities of cardiac func-
tion in DCM [3]. However, limitations on functional sen-
sitivity might be lowered with the use of robust non-
invasive techniques such as MRI. MRI has evolved as a
powerful tool for the evaluation of cardiac function in
both humans and experimental animal models of cardio-
vascular pathology [6,20]. Hence MRI can be applied to
the study of cardiac structure and function in DCM. In
particular, the MRI study of cardiac abnormalities in DCM
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Left ventricular (LV) volume profiles of control and
diabetic rats obtained from MRI reconstruction of LV
slices collected throughout the complete cardiac
cycle Graphical representation of LV volumes correspond-
ing to ten equally incremented phases of the rat cardiac cycle
is provided. The LV volumes for control (open circles) and
diabetic (filled circles) rats were computed from the corre-
sponding MRI scans as described in methods. End-diastole
and end-systole correspond to phase | and phase 6, respec-
tively, in both the control and diabetic group. LV volumes in
all but phases 4 and 5 were significantly different (¥, P < 0.05)
between groups. Note that the actual cardiac cycle duration
was 216.7 £ 28.7 ms in control and 242.5 + 5.0 ms in dia-
betic rats, with an insignificant difference (P > 0.05). Hence
the cardiac cycle was divided into phases | through 10 as dis-
cussed in the methods section.

provides unique insights into cardiac dynamics that may
remain undetected otherwise, with the use of other tech-
niques. For example, echocardiography fails to capture
the real state of the tissue due to intrinsic assumptions of
tissue geometry [21]. Our gravimetric finding of higher
heart to body mass ratio in the diabetic group when com-
pared to the control (Table 1) is suggestive of cardiac
hypertrophy and altered ventricular geometry in this rat
model at 8 weeks of diabetes. The LV wall volume, calcu-
lated from MR images of diabetic rats was not significantly
different from that of controls. However with body mass
normalization, the mean LV wall volume of the diabetic
group became significantly higher than the control group.
This supports our gravimetric results and indicates LV
hypertrophy in this model of DCM, and is in agreement
with our earlier findings reported on non-beating diabetic
hearts [11].

In this study we utilized EKG gating to correlate the image
acquisition with electromechanical end diastole to obtain
functional information on the diabetic LV. The use of cine

http://www.cardiab.com/content/5/1/7

MRI to image the LV along the cardiac short axis provided
excellent temporal resolution to delineate volume
changes. The high contrast between the blood and endo-
cardium allowed us to perform the planimetry on LV cav-
ities from all images representing the ten phases of cardiac
cycle. LV volume calculations showed a significant reduc-
tion of 28% in the mean end-diastolic volume of the dia-
betic group compared to controls. It has been suggested
that the reduction of end-diastolic volume might be the
undesirable consequence of an adaptive mechanism of
stiff myocardium, in an effort to compensate for poor con-
tractility by increased pressure during experimental cardi-
omyopathy [22]. A stiff myocardium is characteristic of
STZ induced diabetes of similar duration [11]. However
the difference in mean end-diastolic volume between
groups disappeared when normalized for their body mass
suggesting that the role of abovementioned early diastolic
adaptive mechanism is plausible in DCM. Meanwhile the
end-systolic volume of the diabetic rats increased 10%
compared to controls. This difference between groups was
also present after body mass normalization suggesting
systolic volume dysfunction in this model. As a conse-
quence of disparity between control and diabetic rats in
phase volumes, the stroke volume and ejection fraction
declined (48% and 28%, respectively) in the diabetic
group compared to controls.

The LV end-diastolic volume, stroke volume and ejection
fraction displayed significant changes with diabetes in this
study, in accordance with a previous report [8]. However,
in contrast to our finding of an increase in LV end-systolic
volume with diabetes (8 weeks diabetes duration), the
previous study (9 weeks diabetes duration) observed no
change in this parameter [8]. In addition, the difference in
body mass normalized end-diastolic volume between
groups was insignificant in our study. Meanwhile recent
MRI analyses of cardiac function in 8 weeks STZ-diabetic
Wistar-Kyoto rats showed no significant difference in the
LV end-diastolic volume, end-systolic volume, stroke vol-
ume and ejection fraction from age matched controls
[23]. These results may reflect the difference in the strain
of rats, since this factor has been shown to clearly influ-
ence DCM in the STZ model of type 1 diabetes [24]. Strain
differences exist in their susceptibility to DCM with STZ
induced diabetes in rodent models [24,25] even though
the diabetic cardiovascular complications closely imitate
the human condition [26]. In addition, echocardio-
graphic differences in performance have been detected in
the two widely used diabetic rat models, viz. STZ-diabetic
Wistar [27] and STZ-diabetic Sprague-Dawley [28] rats.
The differences in DCM susceptibility and cardiac per-
formance may underlie the manifestation of cardiac func-
tional abnormalities in these models of type 1 diabetes.
Meanwhile stroke volume and ejection fraction were
decreased in the STZ-diabetic Sprague-Dawley model
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Table 2: Left ventricular (LV) characteristics normalized to body
mass

Parameter Control Diabetic
LV wall volume (mm3/g) 1.12 £ 0.30 2.00 + 0.30%*
End-diastolic volume (pul/g) 1.38 £ 0.10 1.46 £ 0.20
End-systolic volume (ul/g) 0.49 + 0.01 0.79 £ 0.10*
Stroke volume (ul/g) 0.89 + 0.01 0.67 + 0.10*

* P < 0.05 when diabetic rat values were compared to controls.

used in our study, a finding in agreement with results
from the STZ-diabetic Wistar model [8], suggesting that
the overall cardiac performance is compromised in both
models of type 1 diabetes. Interestingly, in a rat model of
type 2 diabetes with DCM, the LV end-diastolic volume
remained comparable to the age-matched controls while
the end-systolic volume was increased due to poor longi-
tudinal contractility of LV [19]. In addition to compro-
mised myocardial contractility in diabetes, the
hemodynamic consequences of increased vascular resist-
ance and compromised isoflurane induced vessel wall
relaxation may also affect the cardiac cycle systole in these
diabetic models [23,29].

The derivatives of volume with respect to time (dV/dt) of
the end-diastole to systolic transition and end-systole to
diastolic transition were also significantly different
between the diabetics and controls, substantiating the
pathological changes involving both active (myocytes)
and passive (matrix) components, respectively, in the dys-
function of diabetic LV [2,3]. The complex pathology of
DCM that limits normal ventricular function involves
both cardiomyocyte loss [30,31] and interstitial collagen
accumulation [11,16,32]. The loss of force-producing
myocytes may underlie contractile dysfunction whereas
the accumulation of interstitial collagen might produce
difficulties with passive stretch of myocardium during
diastole thereby compromising ventricular relaxation in
DCM [31,33]. Accordingly, we speculate that a compro-
mised systolic function in this rat model, suggesting loss
of contractility may have been the result of myocyte loss
due to apoptosis/necrosis that characterize the middle
stage of human DCM [3]. Cardiomyocytes demonstrate
both impaired contractility and delayed relaxation in
mice models of DCM as well [34,35]. Interestingly, the
flow velocity of the diabetic group (dV/dt) in this study
was not different from the control group at the 6-7 phase
transition. This indifference in dV/dt at the end-systolic
phase transition suggests that the compromised compli-
ance of the diabetic myocardium is not global, encom-
passing the entire cardiac cycle. This unexpected result
also demonstrates the ability of MRI to provide unique
insights that may fail detection otherwise by methods
both invasive and non-invasive. However the insignifi-
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Cardiac cycle left ventricular (LV) dV/dt values for
control and diabetic rats First derivatives of LV volume
with respect to time for control (open bars) and diabetic
(filled bars) rats obtained from slopes of secant lines con-
necting the subsequent phases of cardiac cycle are presented.
The x-axis labels refer to phase transitions during the cardiac
cycle (for example, 'I' corresponds to phase 1-2 transition).
The negative dV/dt values correspond to systole and positive
values correspond to diastole. The dV/dt values correspond-
ing to all transitions except 6—7 (the end-systolic phase tran-
sition) were significantly different between control and
diabetic rats (*, P < 0.05).

cant difference in dV/dt between the diabetic and control
end-systolic phase transition requires cautious interpreta-
tion since dV/dt measures are restricted as an indirect
index of flow velocity only under assumptions of linear
relationship between the variables concerned.

Although our choice of division of the cardiac cycle into
equi-duration phases in this study was arbitrary, thus
facilitating the evaluation of LV volume with respect to
time as a perfectly smooth function between phases, our
results nevertheless agree to a substantial degree, with pre-
vious reports on normal and diabetic left ventricular func-
tion utilizing a slightly different methodology [8,29].

Limitations of the study

In this study we did not investigate right ventricular
dynamics in diabetes. However convincing evidence sug-
gests the impairment of right ventricular function as early
as at 6 weeks of diabetes [8]. In addition it may be noted
that the LV planimetry in our study was accomplished
manually which limits quantitative accuracy. The later
limitation could be overcome however in future studies
by tailoring software suitable for cardiac functional evalu-
ation. Further, isoflurane has been reported to enhance
the ejection fraction of rat hearts [23,29]. The later needs
to be taken into account during quantitative cardiac eval-
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uation. However, our study utilized identical anesthetic
regimen for both control and diabetic animals to over-
come this limitation on the ejection fraction. Finally, in
this study we used a single time point of diabetes (8
weeks), although cardiac dysfunction was manifested at
this duration of diabetes. Longitudinal investigations will
be needed to further characterize the progression of DCM
in order to search for effective interventions.

Conclusion

In conclusion, the results from our investigations indicate
that the functional manifestation of DCM in the STZ rat
model of subchronic diabetes include early diastolic flow
adaptation, systolic volume dysfunction and cardiac cycle
phase dependent diminution of LV kinetics. Our study
also demonstrates that in vivo MRI is capable of evaluat-
ing the cardiac dysfunction in this model of diabetes.
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