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Abstract

Diabetes mellitus currently affects more than 170 million individuals worldwide and is expected to afflict another
200 million individuals in the next 30 years. Complications of diabetes as a result of oxidant stress affect multiple
systems throughout the body, but involvement of the cardiovascular system may be one of the most severe in light
of the impact upon cardiac and vascular function that can result in rapid morbidity and mortality for individuals.
Given these concerns, the signaling pathways of the mammalian target of rapamycin (mTOR) offer exciting
prospects for the development of novel therapies for the cardiovascular complications of diabetes. In the
cardiovascular and metabolic systems, mTOR and its multi-protein complexes of TORC1 and TORC2 regulate insulin
release and signaling, endothelial cell survival and growth, cardiomyocyte proliferation, resistance to β-cell injury,
and cell longevity. Yet, mTOR can, at times, alter insulin signaling and lead to insulin resistance in the cardiovascular
system during diabetes mellitus. It is therefore vital to understand the complex relationship mTOR and its
downstream pathways hold during metabolic disease in order to develop novel strategies for the complications of
diabetes mellitus in the cardiovascular system.
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Introduction
The mammalian target of rapamycin (mTOR) is a serine/
threonine protein kinase that controls cellular growth as
well as cellular homeostasis [1]. It was isolated in Saccharo-
myces cerevisiae with the generation of rapamycin-resistant
TOR mutants that resulted in the identification of proteins
participating in rapamycin toxicity with two homologous
genes, namely TOR1 and TOR2 [2]. In eukaryotes, a single
gene TOR is present [3]. The protein mTOR is expressed
throughout the body and is present in the brain, cardiopul-
monary system, gastrointestinal system, immune system,
skeletal system, and the reproductive system [4]. The
mTOR protein is a 289 kDa protein with multiple domains.
The carboxy-terminal acid kinase domain contains a con-
served sequence with homology to the catalytic domain of
phosphoinositide 3 –kinase (PI 3-K) family [5]. In this do-
main are the regulatory phosphorylation sites of mTOR
that include serine2448, serine2481, threonine2446, serine2159,
and threonine2164 [6-9]. The C-terminal also contains
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FKBP12 (FK506 binding protein 12) -rapamycin-associated
protein (FRAP), ataxia-telengiectasia (ATM), and transacti-
vation/transformation domain-associated protein domain
(FAT) [10]. The FKBP12-rapamycin binding domain (FRB)
is adjacent to the FAT domain and is the site of interaction
between mTOR and FKBP12 protein bound to rapamycin
[11]. The N-terminal of mTOR contains at least a 20
HEAT (Huntingtin, Elongation factor 3, A subunit of Pro-
tein phosphatase-2A, and TOR1) repeat [12]. This site pro-
vides the necessary binding of the mTOR complex for
multimerization with the regulatory-associated protein
mTOR (Raptor) or rapamycin-insensitive companion of
mTOR (Rictor) [12]. The phosphorylation site serine1261

within the HEAT domain can be phosphorylated by insulin
signaling both in mTORC1 and mTORC2 through PI 3-K
[13]. This leads to an increase in the activity of mTOR and
phosphorylation of this site also is required for mTOR
serine2481 autophosphorylation [13].
Signaling pathways of mTOR
mTOR can form two multi-protein complexes that consist
of mTOR Complex 1 (mTORC1) and mTOR Complex 2
(mTORC2) [1,14]. mTORC1 employs the regulatory-
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Figure 1 Insulin mammalian target of rapamycin signaling pathways. Insulin activates mTORC1 through phosphoinositide 3 kinase (PI 3-K)/
Akt mediated pathways. mTORC1 consists of the regulatory-associated protein of mTOR (Raptor), the proline rich Akt substrate 40 kDa (PRAS40),
the mammalian lethal with Sec13 protein 8 (mLST8), and the DEP domain-containing mTOR interacting protein (Deptor). Insulin can stimulate PI
3-K activation and subsequent recruitment of Akt to the plasma membrane through activation by phosphoinositide dependent kinase 1 (PDK1).
Once active, Akt can result in the activation of mTORC1 through a series of signaling pathways. Akt can also directly phosphorylate PRAS40 and
reduce its binding to Raptor and release mTORC1 from its suppression by PRAS40. Upon activation, mTORC1 phosphorylates its two major
downstream targets p70 ribosome S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein 1 (4EBP1) and mediates cell growth,
proliferation, and cell survival. mTOR can lead to inhibitory phosphorylation of the insulin receptor substrate 1 (IRS1). mTORC2 contains Rictor,
mTOR, mLST8, Deptor, the mammalian stress-activated protein kinase interacting protein (mSIN1), and protein observed with Rictor-1 (Protor-1).
The sirtuin SIRT1 may regulate the transcription of the gene encoding rapamycin insensitive companion of mTOR (Rictor) and promote the
activation of mTORC2. mTORC2 regulates actin skeleton organization and cell survival through activating Akt and protein kinase C (PKC). In
addition, mTORC2 can activate Rho GTPases and control cell to cell contact via Rho signaling pathways.
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associated protein of mTOR (Raptor) as a scaffolding pro-
tein which is essential to recruit mTOR substrates to
mTORC1 [15]. The other components of mTORC1 are
the proline rich Akt substrate 40 kDa (PRAS40), the mam-
malian lethal with Sec13 protein 8 (mLST8), and the DEP
domain-containing mTOR interacting protein (Deptor)
[1,4,16]. Also known as Akt1s1, PRAS40 can block
mTORC1 activity through its association with Raptor
[17,18]. Insulin can stimulate the phosphorylation of
PRAS40 through protein kinase B (Akt) to prevent the in-
hibition of mTORC1 by PRAS40 [19]. mLST8 may func-
tion to maintain insulin signaling through FoxO3 [20] and
has recently been associated with extension of lifespan in
mice [21]. Deptor expression is inhibited by mTORC1 and
mTORC2 [1,4,16]. In the absence of Deptor, Akt,
mTORC1 and mTORC2 activities are increased, but in
some forms of cancer, Deptor expression is necessary for
Akt signaling [22] (Figure 1).
The serine/threonine kinase ribosomal protein

p70S6K and the eukaryotic initiation factor 4E-binding
protein 1 (4EBP1) are two downstream targets of
mTORC1. The binding of Raptor to mTOR is necessary
for mTOR-catalyzed phosphorylation of 4EBP1. This bind-
ing enhances mTOR kinase activity toward p70S6K [23].
In contrast, PRAS40 can competitively inhibit the binding
of the mTORC1 substrates p70S6K and 4EBP1 to Raptor.
Phosphorylation of p70S6K by mTORC1 promotes mRNA
biogenesis, translation of ribosomal proteins, and cell
growth [24]. In the hypophosphorylated state, 4EBP1 binds
competitively to the translation initiation factor eukaryotic
translation initiation factor 4 epsilon (eIF4E) to block
translation through eukaryotic translation initiation
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factor 4 gamma (eIF4G), a protein necessary to bring
mRNA to the ribosome, by inhibiting contact of eIF4E
with 5’- capped mRNAs. Phosphorylation of 4EBP1 by
mTORC1 results in the dissociation from eIF4E to allow
eIF4G to begin mRNA translation. Insulin has been
found to augment phosphorylation of 4EBP1 through
mTOR mediated pathways [25].
Unlike mTORC1, mTORC2 does not have Raptor as a

component but contains Rictor (Figure 1). However,
mTORC2 shares several common components with
mTORC1, such as mTOR, mLST8, and Deptor. mTORC2
also associates with the mammalian stress-activated pro-
tein kinase interacting protein (mSIN1) and protein
observed with Rictor-1 (Protor-1). mTORC2 not only regu-
lates actin cytoskeleton organization [26], but also can con-
trol cell size, cell cycle progression [27], and endothelial
cell survival and migration [28]. Rictor is relatively insensi-
tive to rapamycin, promotes the activity of mTORC2, and
is necessary for insulin-stimulated glucose uptake [29]. Ric-
tor enables mTORC2 to phosphorylate Akt at Ser473 to
lead to its activation and to facilitate threonine308 phos-
phorylation by phosphoinositide-dependent kinase 1
(PDK1) [30]. As previously noted, mLST8 is important to
maintain the Rictor-mTORC2 interaction along with Ric-
tor phosphorylation of Akt and PKCα [20]. Alternate spli-
cing can generate at least 5 isoforms for mSIN1 that can
respond to different signals, such as insulin, to allow
TORC2 to phosphorylate Akt [31]. Rictor and mSIN1 have
been shown to stabilize each other to form the structural
basis of mTORC2 and are required for Akt phosphoryl-
ation [32]. Recently, mTOR has been shown to phosphor-
ylate mSIN1 to prevent its lysosomal degradation [33].
Protor-1 is a Rictor-binding subunit of mTORC2 that does
not affect the expression or activity of the other mTORC2
components to phosphorylate Akt or PKCα [34]. Protor-1
may function to activate serum and glucocorticoid induced
protein kinase 1 (SGK1) through mTORC2. Loss of Pro-
tor-1 in mice leads to a reduction in the hydrophobic motif
phosphorylation of SGK1 and its substrate N-Myc downre-
gulated gene 1 in the kidney [35]. Similar to TORC1,
TORC2 inhibits Deptor expression. In addition, Deptor
can negatively modulate TORC2 [22].
Downstream targets of TORC2 include Akt, protein

kinase C (PKC), P-Rex1 and P-Rex2, and Rho GTPases.
P-Rex1 and P-Rex2 are tied to Rac activation, mTORC2,
and cell migration [36]. mTORC2 also phosphorylates
PKCα to modulate cytoskeleton remodeling [37],
increases Akt activation [30], and affects Rho signaling
pathways that control cell - cell contact [38].

Diabetes mellitus and cardiovascular disease
Diabetes mellitus (DM) is becoming a significant burden
to the world healthcare system with more than 170 million
individuals affected throughout the globe [39-42]. In the
Unites States alone, it is expected that greater than 20
million individuals in the United States suffer from DM
with an additional significant number of individuals that
are undiagnosed DM [43], signaling the need for
improved healthcare for metabolic disorders [41,44,45].
Type 1 insulin-dependent DM is present in approxi-
mately 10 percent of all diabetics, is increasing in ado-
lescent minority groups, and leads to complications in
the cardiovascular system [46,47]. Patients with Type 1
DM have insulin resistance that is usually characteristic
of Type 2 DM and can result in neurological and vascu-
lar disease [48,49]. Type 2 noninsulin-dependent DM
represents at least 80 percent of all diabetics and repre-
sents a progressive deterioration of glucose tolerance
with early β-cell compensation for insulin resistance
[50,51]. This is followed by progressive decrease in β-
cells mass. Type 2 DM usually occurs in individuals over
40 years of age and is increasing in incidence as a result
of changes in human behavior and increased body mass
index [40,44,52-54].
Complications of DM and insulin resistance have been

closely tied to the release of reactive oxygen species (ROS)
and subsequent oxidative stress [45,55,56]. The initial
period of elevated glucose may increase the presence of po-
tentially protective pathways [57-59], but more prolonged
exposure of elevated glucose can lead to ROS generation
[60,61] and can be detrimental even if glucose levels are
controlled [62]. Hyperglycemia can lead to oxidative stress
in the cardiovascular system [47,63]. Prolonged periods of
elevated glucose is not necessary to lead to vascular oxida-
tive stress injury, since minimal periods of hyperglycemia
generate ROS and lead to endothelial cell death [64-66].
Elevated glucose in human endothelial cells also can
raise the expression of antioxidants that include super-
oxide-dismutase, catalase, and glutathione peroxidase, il-
lustrating that vascular cells may attempt to initially negate
the effects of oxidant stress injury [67]. In addition, path-
ways associated with the transcriptional coactivator, per-
oxisome proliferator activated receptor-gamma coactivator
1α (PGC-1α), may provide protection in the cardiovascular
system to maintain mitochondrial homeostasis [68]. Other
therapeutic regiments that block oxidative stress in the
vascular system involve the cytokine erythropoietin [56,69]
and growth factors such as insulin growth factor [70]. At
the clinical level, DM in the cardiovascular system can re-
sult in platelet dysfunction [71], lead to increased mortality
with acute coronary syndromes [72], and result in impair-
ments in sympathetic nervous [73].

Diabetes and cell longevity pathways
Knowledge from clinical studies strongly suggest that
acute glucose level changes can trigger oxidative stress
during Type 2 DM, suggesting the need for effective and
therapeutic interventions during acute and sustained



Figure 2 The role of mTOR in diabetic cardiovascular disease. Activation of mTOR promotes the secretion of insulin and increases insulin
sensitivity. In contrast, rapamycin reduces insulin sensitivity, reduces glucose uptake and may prevent obesity. Hyperleptinemia can occur with
diabetes and activates mTOR, stimulates vascular smooth muscle cell (VSMC) proliferation, and ultimately may contribute to atherosclerosis and
hypertension. High glucose and obesity stimulate the production of angiotensin II (ANG II) to result in insulin resistance and elevated vascular
tension, contributing to hypertension. Elevated resistin (for resistance to insulin) levels during diabetes can increase insulin resistance and promote
mTOR activity to favor the growth of cardiomyocytes and cardiac hypertrophy.

Chong and Maiese Cardiovascular Diabetology 2012, 11:45 Page 4 of 8
http://www.cardiab.com/content/11/1/45
hyperglycemic episodes [74,75]. In this regard. it is inter-
esting to note that diabetic complications that can in-
volve multiple systems of the body including the
cardiovascular system also have been closely linked with
pathways of cell longevity and mTOR signaling. In studies
that have examined caloric restriction in male mice, genes
with the greatest statistical change following caloric restric-
tion involved those linked to the sirtuin pathways and the
inhibition of mTOR signaling [76]. Sirtuins, such as SIRT1,
have been shown to be protective in the cardiovascular sys-
tem during DM [77-80]. SIRT1 activation can prevent
endothelial senescence during hyperglycemia [81] reduce
endothelial atherosclerotic lesions during elevated lipid
states [82], and prevent oxidative stress injury in cardio-
myocytes through p53 deacetylation and the expression of
manganese superoxide dismutase (MnSOD) [83,84]. SIRT1
blocks endothelial cell apoptosis during experimental dia-
betes [65,85], and prevents age-related cardiac hyper-
trophy, apoptosis, cardiac dysfunction, and senescence
marker expression in mice [86].
SIRT1 appears to be closely linked to mTOR signaling
during DM. Recent work has shown that hepatic SIRT1
deficiency yields hepatic glucose overproduction, hypergly-
cemia, products of oxidative stress, and inhibition of the
gene encoding Rictor that lead to impaired TORC2 and
Akt signaling [87]. In addition, under some conditions of
cell stress such as nutrient loss in other cell systems,
SIRT1 may have an inverse relationship with mTOR activ-
ity [88]. Furthermore, other studies have demonstrated
that inhibition of mTOR signaling can extend lifespan in
mammals [21,89], provide resistance to the loss of insulin
signaling [90], and prevent age –related weight gain that
can generate strain upon the cardiovascular system [91].

mTOR signaling in diabetic cardiovascular disease
Intact mTOR pathways may be vital for proper insulin sig-
naling in diabetics (Figure 2. In pancreatic β-cells, loss of
mTOR signaling with p70S6K has been shown to lead to
hypoinsulinemia, glucose intolerance, insulin insensitivity
to glucose secretion, and a decrease in β-cell size [92].
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Furthermore, increased phosphorylation of p70S6K and
4EBP1 in pancreatic β-cells results in mice improved insu-
lin secretion and resistance to β-cell streptozotocin toxicity
and obesity [93]. In contrast, mTOR inhibition during rapa-
mycin application leads to insulin resistance, reduces β-cell
function and mass, limits insulin secretion, and results in
DM [94]. Although inhibition of mTOR with rapamycin
reduces food intake and prevents fat-diet induced obesity
in mice, rapamycin administration attenuates glucose up-
take and metabolism in skeletal muscle through prevention
of insulin generated Akt activation and alteration in the
translocation of glucose transporters to the plasma mem-
brane [95].
It is important to note that although insulin is a potent

activator of mTOR through Akt regulatory pathways,
mTOR may have a negative feedback loop and led to glu-
cose intolerance through inhibition of the insulin receptor
substrate 1 (IRS1). For example, mTOR signaling through
the tuberous sclerosis complex (TSC1, hamartin/ TSC2,
tuberin) can inactivate IRS and phosphorylate p70S6K to
block IRS1 activity by direct phosphorylation [96]. As a re-
sult, activation of the mTOR pathway in the cardiovascular
system may lead to poor insulin signaling and insulin re-
sistance. In experiments with high fat fed obese rats, activ-
ity of the mTOR pathway is elevated in skeletal muscle
and leads to inhibitory phosphorylation of IRS1, impaired
Akt signaling, and insulin resistance [97]. Increased con-
sumption of high fat diets also activates the renin-angio-
tensin-aldosterone system with increased circulating
angiotensin II (ANG II). In aortic endothelial cells, ANG II
can stimulate mTOR and p70S6K activation that phos-
phorylates IRS1 and inhibits endothelial nitric oxide syn-
thase that not only may contribute to insulin resistance
but also to vasoconstriction and hypertension [98].
Cardiac protection during DM may rely upon the activa-

tion of AMP activated protein kinase (AMPK). AMPK can
phosphorylate tuberin (TSC2) and inhibit mTORC1 [99].
Increased AMPK activation has been shown to reduce
myocardial infarct size during models of DM [100]. In
addition, loss of AMPK activity can increase insulin resist-
ance in skeletal muscle [101]. Down-regulation of the
AMPK pathway also may be detrimental to cardiac tissue.
For example, the liver kinase B1 (LKB1) can regulate the
activation of AMPK via phosphorylation [102]. Loss of
LKB1 has been shown to impair cardiac function during
either aerobic or ischemic conditions [103], illustrating the
importance of AMPK signaling in the mTOR pathway for
the cardiovascular system.
Cardiac hypertrophy also may be a product of increased

mTOR activity during diabetes (Figure 2). The signaling
molecule resistin (for resistance to insulin) has enhanced
circulating levels during obesity and diabetes. In addition,
application of anti-resistin antibodies improves blood glu-
cose and insulin efficacy in murine models of diet-induced
obesity [104]. Resistin has recently been shown in rat ven-
tricular myocytes to inhibit AMPK activity, activate TCS2
of the mTOR pathway, and increase cell size leading to car-
diac hypertrophy [105]. Resistin also phosphorylates IRS1
through mTOR to promote insulin resistance [105].
Cardiovascular disease also may be mediated through

hyperleptinemia and the activation of mTOR (Figure 2).
Hyperleptinemia can co-exist with DM and has been
shown to enhance mTOR activity and stimulate vascular
smooth muscle cell proliferation [106]. Complications of
drug eluting stents coated with the mTOR inhibitor rapa-
mycin that lead to re-stenosis in patients with DM are
believed to occur as a result of concurrent hyperleptinemia
that can override the mTOR inhibition of rapamycin in
these patients. Interestingly in patients with metabolic syn-
drome that have elevated insulin levels, lymphocytes of
these patients have reduced expression of mTOR that may
contribute to increased risk for vascular thrombosis [107].
Furthermore, exercise in obese rats increased the ability of
insulin to phosphorylate Akt and led to increases in Raptor,
p70S6K, and 4EBP1 phosphorylation, suggesting that
under some circumstances a balanced level of mTOR path-
way activity may be beneficial for patients with DM [108].

Conclusions
Metabolic cardiovascular disease is closely regulated
through the mTOR signaling pathways. The mTOR
multi-protein complexes of TORC1 and TORC2 can
oversee insulin signaling, vascular survival, and cardio-
myocyte growth. Downstream, pathways tied to mTOR
pathway components, such as p70S6K and 4EBP1, can
regulate insulin secretion and resistance to β-cell injury
that ultimately affect diabetic complications in the car-
diovascular system. Interestingly, new studies have linked
mTOR signaling to the cell longevity pathways of SIRT1
that can also provide robust cardiovascular protection
against models of experimental diabetes.
Although mTOR can be beneficial to promote insulin

signaling through regulatory pathways that involve Akt, a
careful modulation of mTOR activity may be necessary for
the treatment of cardiovascular complications during DM.
Increased physical activity, which is a requisite therapy for
diabetics, can promote phosphorylation of mTORC1 com-
ponents Raptor, p70S6K, and 4EBP1 to assist with insulin
signaling. Yet, mTOR may have a negative feedback loop
and can inactivate IRS that may lead to poor insulin signal-
ing and insulin resistance in the cardiovascular system. In
addition, mTOR signaling during DM may result in car-
diac hypertrophy, promote some of the ill effects of hyper-
leptinemia, and further diabetic retinopathy [109] given
the ability of mTOR to promote angiogenesis [1,110]. Acti-
vation of pathways of mTOR also may promote tumor
growth [38,111] and increase the activation of inflamma-
tory cell pathways [112-116] that may negatively impact
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the cardiovascular system. It therefore becomes crucial to
elucidate the varied pathways of mTOR signaling and the
role that these pathways have upon the metabolic and car-
diovascular systems for the effective and safe development
of promising therapies that can be targeted against diabetic
complications in the cardiovascular system.
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