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Abstract
Background: Routine surveillance of disease notification data can enable the early detection of
localised disease outbreaks. Although hidden Markov models (HMMs) have been recognised as an
appropriate method to model disease surveillance data, they have been rarely applied in public
health practice. We aimed to develop and evaluate a simple flexible HMM for disease surveillance
which is suitable for use with sparse small area count data and requires little baseline data.

Methods: A Bayesian HMM was designed to monitor routinely collected notifiable disease data
that are aggregated by residential postcode. Semi-synthetic data were used to evaluate the
algorithm and compare outbreak detection performance with the established Early Aberration
Reporting System (EARS) algorithms and a negative binomial cusum.

Results: Algorithm performance varied according to the desired false alarm rate for surveillance.
At false alarm rates around 0.05, the cusum-based algorithms provided the best overall outbreak
detection performance, having similar sensitivity to the HMMs and a shorter average time to
detection. At false alarm rates around 0.01, the HMM algorithms provided the best overall
outbreak detection performance, having higher sensitivity than the cusum-based Methods and a
generally shorter time to detection for larger outbreaks. Overall, the 14-day HMM had a
significantly greater area under the receiver operator characteristic curve than the EARS C3 and
7-day negative binomial cusum algorithms.

Conclusion: Our findings suggest that the HMM provides an effective method for the surveillance
of sparse small area notifiable disease data at low false alarm rates. Further investigations are
required to evaluation algorithm performance across other diseases and surveillance contexts.

Background
The potential benefits of applying automated monitoring
methods to population health data are being increasingly
realised, particularly given the growing volume of elec-
tronic data that are routinely collected by population
health surveillance systems. Models applied to these data

need to detect meaningful increases in reported disease
incidence quickly using methods which are sensitive to
the abnormal aggregation of cases in time and space. Spa-
tio-temporal methods for disease surveillance are thought
to offer an improved ability to detect localised events
occurring in small regions relative to the temporal surveil-
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lance of larger areas [1]. This paper describes the perform-
ance of a simple generalised hidden Markov model
(HMM) for the surveillance of small area notifiable dis-
ease data.

Investigations of spatio-temporal modelling for disease
surveillance suggests that simpler approaches which do
not require repeated model fitting may be more appropri-
ate for the analysis of large datasets [2]. Spatio-temporal
scan statistics which search for evidence of clustering are
now commonly used for the detection and evaluation of
disease clusters [3]. HMMs also offer a conceptually sim-
ple and potentially powerful approach for monitoring
sequential data such as those typically generated by sur-
veillance systems. Although HMMs have been proposed
for disease surveillance [4,5], they appear to have been
rarely used in practice.

HMMs provide a natural way of modelling epidemic and
non-epidemic periods by assigning different probability
distributions to these two states [4]. The first-order Mark-
ovian assumption of HMMs significantly simplifies the
time dependency in the data, and the hidden state func-
tions as a switch between the identified states [5]. These
models assume that the data are generated from a prede-
termined number of distributions, and unlike time series
approaches, arbitrary choices about the number of transi-
tions between states or their timing are avoided [4].
Importantly for notifiable disease surveillance applica-
tions, HMMs are also suitable for applications where the
data are sparse.

Good agreement has been found between the perform-
ance of HMMs and recognised influenza-like-illness and
poliomyelitis epidemics [4]. When compared with meth-
ods traditionally used to model the seasonality of influ-
enza outbreaks [6], HMMs which used the hidden
variable to eliminate the need for explicit modelling of
trend and seasonal effects that can introduce detection
bias were found to produce fewer false alarms and be
more robust to variations in the data [7]. Rath and cow-
orkers [7] also highlight the advantage of HMMs for auto-
mated monitoring over traditional cyclic regression
methods in that they can be applied to historical data
without the need to distinguish between epidemic and
non-epidemic periods.

Bayesian temporal HMMs for disease surveillance have
also been proposed [5], illustrating the ease by which
these models can incorporate alternative distributional
forms. Bayesian methods allow incorporation of prior
knowledge and expert opinion, and are most suited to sit-
uations where there is some prior knowledge to inform
the choice of model parameters. A Bayesian approach may
offer advantages in accounting for uncertainty in esti-

mated parameters, as has been recently demonstrated in
an application of empirical Bayes methods for the surveil-
lance of multiple data series using statistical process con-
trol methods [8]. The approach may also be more robust
to changes in the system being monitored over time.

Further research is required to evaluate the use of general-
ised HMMs for disease surveillance. We aimed to evaluate
the performance of a simple Bayesian HMM that requires
little baseline data for notifiable infectious disease surveil-
lance.

Methods
We developed a simple Bayesian HMM for the surveil-
lance of daily reported case counts of hepatitis A in post-
code areas in Western Australia. The model was evaluated
using simulated outbreaks superimposed on historical
baseline data, and outbreak detection performance was
compared with the established Early Aberration Reporting
System (EARS) algorithms C1, C2 and C3, and a negative
binomial cusum. The HMM design, evaluation scenario,
comparison algorithms and performance indicators are
described in the following sections. This research was
approved by the Human Research Ethics Committee of
Curtin University of Technology.

Hidden Markov model
The HMM is based on an existing temporal HMM [9] (pp.
313) which was modified to incorporate spatially refer-
enced data, and is fully described in Additional file 1. As
the disease notification data were spatially referenced
according to postcode of residence, the spatial structure of
the data was incorporated in the model by summing
reported cases for each postcode area and any cases
reported among its nearest neighbours. Postcode areas
which share a common boundary were considered to be
nearest neighbours. This process effectively increases the
weighting for cases which occur in neighbouring areas in
the model.

The HMM requires a valid range of neighbours to be iden-
tified for each postcode area in Western Australia. The five
postcode areas in Western Australia representing neigh-
bourless islands (Rottnest, Barrow, Thevenard, Cockatoo
and Koolan Islands) were allocated as neighbours of the
nearest mainland postcode area, representing the usual
routes of human movement between these areas. These
islands have small or nonexistent resident populations,
being predominantly tourism or mining areas, and their
treatment has little influence on the results of the analysis.

For simplicity we have restricted the model to a first order
HMM where the unobserved disease process is repre-
sented by one of two states: an endemic (non-outbreak)
state, and an epidemic (outbreak) state. Previous research
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provides both epidemiological and empirical support for
the development of two-state models [4]. We model the
distribution of x [t, i] being the sum of observed disease
counts in each small area y [t, i] and in area neighbours yn
[t, i] at each time point (day) t = 1, ..., t, in each small area
i = 1, ..., n, in the two disease states as Poisson. The Pois-
son model is commonly used for count data, however this
model implies that the variance of x [t, i] is equal to its
expected mean. Descriptive analysis of the historical hep-
atitis A notification data suggest that they are over-dis-
persed, and fluctuating variance has been reported as
problematic for automated disease surveillance [10]. A
gamma prior distribution for the means of each state in
the model was used to describe extra variation in the data
that can not be explained by the Poisson assumption.

Using a Bayesian approach requires specification of prior
distributions for unknown model parameters, which
include the mean of each of the two hidden disease states,
and the transition matrix which governs movement
between the two hidden states. Prior distributions reflect
our uncertainty about the unknown parameter values,
and can be used to include expert knowledge or parame-
ters derived from historical data in the analysis. We evalu-
ated the models using relatively uninformative priors
which were designed to provide limited information
about the value of the unknown parameters.

Movement between the two disease states in the model is
governed by a stationary transition matrix which deter-
mines the transition probabilities. An uninformed Dirich-
let prior distribution was used for the prior on the initial
transition probabilities, which is a generalisation of the
beta distribution to K variables, with each assuming a
value between 0 and 1. For the priors on the subsequent
transition probabilities we used a gamma equivalent to
the Dirichlet [9].

Gamma priors on the means for the baseline and out-
break states were selected to describe a small probability
of more extreme state mean values, however other distri-
butions could be used. The relatively uninformative priors
gamma(10,10) and gamma(40,20) were used, which pro-
duced distribution means of 1 and 2 respectively, with a
common variance of 0.1. Due to the sparse nature of the
baseline dataset, the prior means for the baseline and out-
break states were approximately 5 and 10 times greater
than the baseline mean respectively. The prior mean for
the outbreak state was also equal to the maximum daily
case count of the baseline dataset. To investigate the influ-
ence of these parameters on the model performance, the
HMM was also tested using a prior mean of 3 for the out-
break state in the 7 and 14-day models, and a prior mean
of 4 for the outbreak state in the 28-day baseline model.

Due to the potential problem of label switching, the prior
mean for the outbreak disease state was constrained to be
greater than the mean for the baseline disease state, as has
been used previously [5,9]. The model was implemented
in WinBUGS 1.4.3 [11] (available from http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml).

We aimed to develop a simple maintenance-free HMM
that has general application and requires little baseline
data. As such, no covariates were included in the model.
Like other algorithms [3], the model has been simplified
by assuming that the population at risk remains stable
over time. However, these models can be easily extended
to include covariates such as population denominators, or
day-of week effects.

To limit the computing resources required for analysis,
the HMM is evaluated here using just 7 temporal data
points during any single analysis. This is implemented as
a moving 7-day analysis window which progresses from
analysing days 1–7 through to analysing days 144–150 of
the test datasets. This provides baseline data requirements
for the HMM that are comparable with the EARS cusums.
We also evaluate the use of additional baseline data in the
model by aggregating 14 days of baseline data into seven
consecutive 2-day units, and 28 days of baseline data into
seven consecutive 4-day units, to allow efficient analysis
using the 7-day model structure.

The Markov Chain Monte Carlo (MCMC) sampling algo-
rithm was run for an initial 1000 iterations before model
parameters were monitored for a further 1000 iterations.
The results based on this sample from the posterior distri-
bution were used for model inference. Tests of the model
using two chains with different initial values suggested
that the chains quickly converged, and the sampling was
sufficient to produce stable results for trial purposes while
minimising the time required to run the model. The time
required for one analysis of daily data from the 383 areas
using a Pentium 4 3.0 GHz computer with 1 gigabyte of
RAM was approximately 2 minutes. We used the R statis-
tical analysis software version 2.7.1 [12] and the
R2WinBUGs package [13] to automate prospective analy-
sis of the test datasets.

Evaluation scenario
The model was evaluated using semi-synthetic data. Sim-
ulated outbreaks of hepatitis A were superimposed on his-
torical baseline data for hepatitis A in Western Australia
extracted from the National Notifiable Diseases Surveil-
lance System. National notifiable disease surveillance
data in Australia is spatially referenced by residential post-
code to protect individual confidentiality. There were no
reported outbreaks in Western Australia during the 150-
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day baseline period (January to May 2004); however, the
presence of small undetected outbreaks cannot be
excluded.

A total of 31 cases of hepatitis A were notified during the
baseline period, producing an average notification rate of
0.2 cases per day, and a maximum of two cases were noti-
fied on any single day during the baseline period. The
HMM analysed the semi-synthetic data as if the data were
being received prospectively by date of report.

Historical notification data are limited in that notification
of cases is dependent upon a number of processes which
are required before a person who becomes ill seeks help,
receives an accurate diagnosis and is notified to health
authorities. Notification data are also not directly related
to the population at risk, as they depend on health service
use and provision, and reflect the use of targeted screening
and contact tracing activities.

A spatial stochastic simulation model programmed in
MapBasic version 8.0 (MapInfo Corporation, 2005) was
used to simulate 4 different outbreak scenarios for per-
formance evaluation. Outbreaks of hepatitis A were simu-
lated using a state-transition model based on household
address point data for Western Australia to ensure a real-
istic distribution of cases in space [14]. The model was
parameterised based on a mean incubation period of 28
days, with a range from 15 to 50 days, consistent with doc-
umented parameters [15]. A latent period of between 7
and 29 days (with a most likely value of 14 days) and an
infectious period of between 14 and 21 days (with a most
likely value of 17 days) were parameterised using beta-
PERT distributions [16] (pp. 275). Transition to the symp-
tomatic state was parameterised based on the onset of
infectiousness to preserve the known association between
decreasing infectiousness and the commencement of
symptoms [15]. Infectious cases had an average of 5 close
contacts per day which was Poisson-distributed. The
detailed process of case detection was not modelled, and
all outbreak cases were assumed to be detected on the day
that they became symptomatic. For each simulation, the
index case was randomly allocated to a spatial location
based on the distribution of all households in Western
Australia.

To allow analysis of the influence of outbreak characteris-
tics on algorithm performance, simulation parameters
were varied to create four outbreak scenarios based on two
factors: the degree of clustering of cases, and the size of the
outbreak. The four outbreak scenarios compared were
labelled according to the characteristics of the simulated
outbreaks: small less clustered (S1), small more clustered
(S2), large less clustered (S3) and large more clustered
(S4). Population susceptibility to infection was specified

as 5 per cent for the smaller outbreak scenarios and 10 per
cent for the larger outbreak scenarios. The geographic area
within which an infectious individual could infect suscep-
tible individuals was specified as a circular buffer with its
radius randomly varying between 5 and 10 km for more
clustered outbreaks, and 10 and 20 km for less clustered
outbreaks.

One hundred outbreaks were simulated for each outbreak
scenario, with the index case randomly inserted between
day 35 and 85, so that the earliest possible notification of
the first case would occur on day 50 of the historical base-
line. From 35 days following infection of the index case,
outbreak control measures were introduced to eliminate
the outbreak and limit the proportion of the test datasets
that represented outbreak days.

From among the 100 simulated datasets for each outbreak
scenario, datasets with 5 or more outbreak cases were
selected for analysis to provide a standard minimum out-
break size for evaluation which is of particular epidemio-
logical interest due to the potential for early detection and
disease control interventions. The number of simulated
outbreaks used to evaluate the algorithms for the four sce-
narios was then 64, 62, 95 and 93 for the small less clus-
tered, small more clustered, large less clustered and large
more clustered scenarios respectively. The temporal pro-
file of outbreaks from the smaller and larger outbreak sce-
narios is illustrated in Figures 1 and 2. Smaller outbreak
scenarios had an average of 8.1 cases per outbreak (stand-
ard deviation = 2.9, range = 5–16), and larger outbreak
scenarios averaged 16 cases per outbreak (standard devia-
tion = 8.0, range 5–39). The average interval between the
first two cases that were classified as outbreak cases (cases
2 and 3) was 4.5 days for the smaller scenarios and 3.5
days for the larger scenarios. The average intervals
between cases 2 and 4, and 2 and 5 were 8.1 and 11.2 days
for the smaller outbreak scenarios, and 6.1 and 8.2 days
for the larger outbreak scenarios respectively.

For each evaluation dataset the results of the daily HMM
analysis, being the daily probability of each postcode area
being in an outbreak state, was monitored. Summary sta-
tistics were generated based on the maximum daily HMM
value to enable comparison of performance between dif-
ferent scenarios and outbreak detection algorithms.

Comparison algorithms
The EARS C1, C2 and C3 algorithms [17] were used to
provide an established standard with which to compare
algorithm performance. The EARS cusums require limited
baseline data, and are widely used for monitoring popula-
tion health surveillance data, including notifiable disease
data in New Zealand [18]. The algorithms were run using
the R statistical software based on the implementation of
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(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2009, 9:39 http://www.biomedcentral.com/1472-6947/9/39
the algorithms in the EARS-X Microsoft Excel software ver-
sion, which can be downloaded from http://
www.bt.cdc.gov/surveillance/ears/downloadearsx.asp. A
negative binomial cusum (NBC) [19] based on an existing
model [20] was also selected for comparison due to the
potential ability of this method to minimise false alarms.
The R code for the EARS and negative binomial cusums is
provided in Additional file 1.

The EARS algorithms were originally designed to signal an
aberration when the cusum values exceed 2, which
implies that the surveillance data have exceeded a level
which is three standard deviations greater than the base-
line mean. Although the cut-off value used to determine
signalling of the cusums was varied to allow exploration
of performance at different false alarm rates, the imple-
mentation of the C3 algorithm retains the threshold of 2
used to exclude large observed counts on the current or

previous two days from the cusum total score, as imple-
mented in the EARS-X software (see Additional file 1).

The negative binomial cusum traditionally signals when
the cumulative sum value exceeds a predetermined
threshold which is found by specifying the desired in-con-
trol average run length, and monitoring for a change in
the over-dispersion parameter 'c' from a specified in con-
trol level to a specified out of control level. The negative
binomial cusum was calibrated to an out of control state
being two standard deviations greater than the historical
mean, which was estimated based on the most recent 7,
14 or 28 days of data.

Performance indicators
Performance was summarised over multiple simulation
datasets for each outbreak scenario. Averaging outbreak
detection performance over the datasets with randomly

Hepatitis A case notifications, outbreak period (shaded) and scores for the EARS C3, 14-day negative binomial and 14-day hid-den Markov model algorithms for simulation 15 from the smaller less clustered simulation scenario (S1)Figure 1
Hepatitis A case notifications, outbreak period (shaded) and scores for the EARS C3, 14-day negative binomial 
and 14-day hidden Markov model algorithms for simulation 15 from the smaller less clustered simulation sce-
nario (S1).
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inserted outbreaks eliminates bias due to the timing and
location of the outbreak in the baseline dataset, and
allows estimation of the average expected detection per-
formance of the models using different alarm thresholds
given the baseline data. The results from these trials were
used to describe model performance and the relationship
between sensitivity, timeliness and false alarms.

Performance comparisons were based on two main indi-
cators: sensitivity, which describes the ability of the algo-
rithm to detect simulated outbreaks at any time during
each outbreak period; and timeliness, which describes the
number of days from the beginning of each outbreak
period until the first signal for each outbreak. As timeli-
ness was only able to be calculated for outbreaks that were
detected, an additional outcome variable 'adjusted timeli-
ness' was derived to enable the generation of complete
timeliness data by allocating a value of 28 days as the
timeliness result if an outbreak was undetected.

The outbreak period was defined as beginning on the day
that the second outbreak case was inserted, and ending on
the third day following the detection of the last outbreak
case. As such, outbreaks occurred on days when epidemi-
ological linkages were present for two or more cases. Any
signals that occurred during the outbreak period were
considered valid, and the first of these was used to calcu-
late the time to detection. Signals that occurred on non-
outbreak days were considered false alarms, and the aver-
age proportion of false alarms was calculated as the total
number of false alarms divided by the total number of
non-outbreak days for each simulated dataset. To com-
pare algorithm performance, empirical methods were
used to determine the signalling threshold cut-off values
for each algorithm that would produce equivalent false
alarm rates. We investigate the performance of both algo-
rithm types using false alarm rates of approximately 0.05
and 0.01, which implies that threshold values were
selected so that the algorithms are expected on average to

Hepatitis A case notifications, outbreak period (shaded) and scores for the EARS C3, 14-day negative binomial and 14-day hid-den Markov model algorithms for simulation 78 from the larger more clustered simulation scenario (S4)Figure 2
Hepatitis A case notifications, outbreak period (shaded) and scores for the EARS C3, 14-day negative binomial 
and 14-day hidden Markov model algorithms for simulation 78 from the larger more clustered simulation sce-
nario (S4).
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produce a false positive alarm approximately once every
twenty and once every one hundred non-outbreak days
respectively.

The performance of each algorithm was also evaluated by
comparing the area under the receiver operating character-
istic (ROC) curve (AUC) (Table 1) [21]. The AUC calcula-
tions were performed using the trapz function of the
CaTools package for the R statistical software [22]. To
allow the consideration of both sensitivity and timeliness
in AUC comparisons, a combined AUC indicator (CAUC)
was also generated [21], which weights the contribution
of the sensitivity component of the AUC indicator based
on the proportion of time saved relative to a reference
value. As no historical data were available to provide a ref-
erence value, a fixed value of 10 days was used. The
weightings applied to the sensitivity data were calculated
as (10-timeliness)/10, with a lower limit of zero. As such,
outbreaks detected more than ten days after their com-
mencement contribute no value to the CAUC indicator.
Both AUC and CAUC indicators were calculated for false
alarm rates between 0 and 0.1, representing the most rel-
evant portion of the ROC curve for disease surveillance
applications.

To limit the number of statistical tests conducted, formal
statistical comparisons of AUC, CAUC, sensitivity, and
timeliness were performed for six of the algorithms tested:
the three HMMs, the best performing EARS algorithm
(C3) and two negative binomial cusum algorithms (7 and
14-day models). Comparisons were made using Friedman
Rank Sum Tests as implemented in the Stats package for
the R software version 2.7.1 [12], as the parametric model
requirements of normality cannot be assumed. Selected 2-
sided multiple comparisons were performed using paired
Wilcoxon Signed Rank tests to investigate difference in
performance between the three HMMs and three other
algorithms, including comparisons between HMMs of dif-

ferent baseline lengths. As these twelve comparisons were
conducted for each analysis, the two-tailed p-value used
to determine significance for the Wilcoxon Signed Rank
tests was adjusted to reflect the repeated testing and set at
0.05/12, or 0.0042.

Results
Figures 1 and 2 illustrate the daily signalling pattern of the
HMM, NBC and EARS algorithms for two randomly
selected simulations for the smaller less clustered and
larger more clustered simulation scenarios respectively.
Compared with the cusum-based algorithms which
respond quickly to changes in the incidence of cases, the
HMM responds most strongly to the accumulation of
cases in close proximity.

The sensitivity of the algorithms for false alarm rates less
than 0.1 is summarised for the smaller less clustered and
larger more clustered simulation scenarios in Figures 3
and 4 respectively. The sensitivity of the 28-day HMM is
not displayed in Figures 3 and 4 as it was indistinguisha-
ble from that of the 14-day HMM with a prior mean of 3.
The shorter-baseline HMMs were more sensitive when the
smaller outbreak prior mean was used; however, there was
no appreciable difference for both prior means tested for
the 28-day HMM. The following results present the per-
formance of the 7, 14 and 28-day HMMs using the out-
break state prior means of 2, 2, and 3 respectively.

Area under the ROC curve
There was a significant difference in AUC0–0.1 among the
algorithms formally compared for all simulation scenar-
ios (S1 Friedman χ2 = 120.2, p < 0.00001, S2 Friedman χ2

= 131.8, p < 0.00001, S3 Friedman χ2 = 157.5, p < 0.00001
and S4 Friedman χ2 = 175.8, p < 0.00001). For all simula-
tion scenarios, the 14-day HMM had significantly greater
AUC than the 7-day HMM (all p < 0.00001). For both
larger outbreak simulation scenarios, the 14-day HMM

Table 1: Algorithm area under the ROC curve (AUC) and Combined AUC (CAUC) performance statistics for false alarm rates 
between 0 and 0.1 by simulation scenarios S1–S4.

mean (median) AUC0–0.1 × 10-3 mean (median) CAUC0–0.1 × 10-3

Algorithm S1 S2 S3 S4 S1 S2 S3 S4

EARS C1 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.04 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
EARS C2 0.3 (0.0) 0.3 (0.0) 0.3 (0.0) 0.3 (0.0) 0.2 (0.0) 0.2 (0.0) 0.1 (0.0) 0.2 (0.0)
EARS C3 0.3 (0.0) 0.3 (0.0) 0.3 (0.0) 0.4 (0.0) 0.2 (0.0) 0.2 (0.0) 0.1 (0.0) 0.2 (0.0)
NBC 7 3.6 (0.0) 3.4 (0.0) 5.2 (8.1) 5.6 (8.2) 1.5 (0.0) 1.6 (0.0) 1.9 (0.0) 2.1 (0.0)
NBC 14 5.1 (8.1) 4.8 (8.1) 6.0 (8.8) 6.3 (8.7) 2.6 (0.0) 2.5 (0.0) 2.4 (0.0) 2.6 (0.0)
NBC 28 4.7 (4.5) 4.7 (4.5) 2.9 (0.0) 3.1 (0.0) 2.2 (0.0) 2.5 (0.0) 1.4 (0.0) 1.7 (0.0)
HMM 7 6.0 (7.7) 5.8 (7.7) 7.6 (8.3) 7.7 (8.3) 2.3 (0.0) 2.0 (0.0) 3.2 (1.8) 2.9 (1.8)
HMM 14 7.5 (8.3) 8.1 (8.4) 7.9 (8.7) 8.3 (8.8) 3.5 (3.5) 3.9 (4.1) 3.6 (3.4) 4.1 (4.4)
HMM 28 5.2 (8.9) 6.2 (9.1) 4.3 (0.0) 4.9 (8.8) 2.4 (0.0) 3.2 (0.0) 2.1 (0.0) 2.5 (0.0)

ROC: receiver operating characteristic
Simulation scenarios S1:smaller less clustered; S2:smaller more clustered; S3:larger less clustered; S4:larger more clustered.
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also had significantly greater AUC0–0.1 than the 28-day
HMM (both p ≤ 0.0009), and the 7-day HMM had signif-
icantly greater AUC0–0.1 than the 28-day HMM for the
larger less clustered scenario (p = 0.0004) but not the
larger more clustered scenario after adjustment for multi-
ple testing (p = 0.005).

All HMMs had a significantly greater AUC0–0.1 than the
EARS C3 algorithm (all p ≤ 0.00001) for all simulation
scenarios. The 14-day HMM also had significantly greater
AUC0–0.1 than the 7-day NBC (all p ≤ 0.00001) for all sim-
ulation scenarios, and the 28-day HMM had a signifi-

cantly greater AUC0–0.1 than the 7-day NBC for both
smaller simulation scenarios (both p ≤ 0.004).

Combined area under the ROC curve
There was a significant difference in CAUC0–0.1 among the
algorithms compared for all simulation scenarios (S1
Friedman χ2 = 77.3, p < 0.00001, S2 Friedman χ2 = 96.1,
p < 0.00001, S3 Friedman χ2 = 109.4, p < 0.00001 and S4
Friedman χ2 = 118.4, p < 0.00001). For all simulation sce-
narios, the 14-day HMM had significantly greater CAUC0–

0.1 than the 7-day HMM (all p ≤ 0.0002). For both larger
outbreak simulation scenarios, the 14-day HMM also had
significantly greater CAUC0–0.1 than the 28-day HMM
(both p ≤ 0.002).

For all simulation scenarios, all HMMs had a significantly
greater CAUC0–0.1 than the EARS C3 algorithm (all p ≤
0.00002). The 14-day HMM also had significantly greater
CAUC0–0.1 than the 7-day NBC for all simulation scenar-
ios (all p ≤ 0.0002). For both larger outbreak simulation
scenarios, the 14-day HMM had significantly greater
CAUC0–0.1 than the 14-day NBC (both p ≤ 0.001), and the
7-day HMM had significantly greater AUC0–0.1 than the 7-
day NBC (p ≤ 0.0008).

Sensitivity and timeliness
The sensitivity and timeliness of the algorithms tested for
false alarm rates approximating 0.05 and 0.01 are summa-
rised in Tables 2 and 3, and Additional file 1. Algorithm
performance was most strongly dependent on the desired
false alarm rate for surveillance, followed by the size of the
outbreak and the extent of clustering. As such, perform-
ance is described below according to two false alarm rates
that are commonly used for performance evaluation.

0.05 false alarm level
At false alarm rates approximating 0.05, there was little
difference in the sensitivity of the algorithms tested, apart
from EARS C1, which had consistently lower sensitivity
than all other algorithms. Among the algorithms com-
pared, there was a significant difference in sensitivity for
the smaller less clustered and larger more clustered simu-
lation scenarios (S1 Friedman χ2 = 15.7, p = 0.008, S2
Friedman χ2 = 8.1, p = 0.15, S3 Friedman χ2 = 8.6, p = 0.13
and S4 Friedman χ2 = 12.7, p = 0.03); however, all multi-
ple comparisons were non-significant following adjust-
ment for multiple testing (all p > 0.008).

There was a significant difference in timeliness among the
algorithms compared for all simulation scenarios at the
0.05 false alarm rate (S1 Friedman χ2 = 53.4, p < 0.00001,
S2 Friedman χ2 = 60.6, p < 0.00001, S3 Friedman χ2 =
70.1, p < 0.00001 and S4 Friedman χ2 = 76.7, p <
0.00001), with the HMM on average detecting outbreaks
several days later than the EARS C3 and NBC algorithms.

Sensitivity of the outbreak detection algorithms according to false alarm rates less than 0.1 for the smaller less clustered simulation scenario (S1)Figure 3
Sensitivity of the outbreak detection algorithms 
according to false alarm rates less than 0.1 for the 
smaller less clustered simulation scenario (S1).

Sensitivity of the outbreak detection algorithms according to false alarm rates less than 0.1 for the larger more clustered simulation scenario (S4)Figure 4
Sensitivity of the outbreak detection algorithms 
according to false alarm rates less than 0.1 for the 
larger more clustered simulation scenario (S4).
Page 8 of 12
(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2009, 9:39 http://www.biomedcentral.com/1472-6947/9/39
Multiple comparisons for the both smaller simulation sce-
narios found the 28-day HMM had a significantly greater
time to detection than all other algorithms (all p ≤ 0.002),
with the exception of the 7-day HMM (p = 0.22) for the
smaller more clustered simulation scenario. The 7-day
HMM also had a significantly greater time to detection
than the EARS C3 algorithm and the 7 and 14-day NBCs
(p < 0.001) for the smaller less clustered simulation sce-
nario.

For the larger simulation scenarios, the 14 and 28-day
HMMs had significantly greater time to outbreak detec-
tion than the EARS C3 and 7 and 14-day NBCs (p <
0.002). For the larger more clustered scenario the 7-day
HMM also had significantly greater time to detection than
the EARS C3 and 7 and 14-day NBCs (p < 0.002). For the
larger less clustered scenario, the 7-day HMM had a signif-
icantly lower time to detection than the 14 and 28-day
HMMs (both p < 0.004).

Table 2: Algorithm performance statistics for smaller less clustered outbreaks (S1:n = 64) for false alarm (FA) rates approximating 
0.05 and 0.01.

Algorithm mean
FA rate

mean sensitivity mean (median) timeliness mean (median) adjusted timeliness

EARS C1 0.048 56.3 6.4 (0) 15.8 (19.5)
EARS C2 0.045 85.9 6.0 (2) 9.1 (6)
EARS C3 0.049 96.9 3.0 (0) 3.8 (0)
NBC 7 0.050 96.9 3.7 (1) 4.5 (1)
NBC 14 0.049 96.9 3.9 (1) 4.6 (1)
NBC 28 0.052 93.8 4.8 (1) 6.3 (1)
HMM 7 0.049 98.4 3.5 (1) 3.9 (1)
HMM 14 0.051 100 5.0 (2) 5.1 (2)
HMM 28 0.050 89.1 6.9 (5) 9.2 (6)

EARS C1 0.0004 10.9 4.4 (3) 25.4 (28)
EARS C2 0.008 10.9 3.0 (2) 25.3 (28)
EARS C3 0.008 26.6 4.3 (2) 21.7 (28)
NBC 7 0.008 60.9 7.7 (4) 15.6 (16.5)
NBC 14 0.010 75.0 5.6 (2.5) 11.2 (7.5)
NBC 28 0.012 76.6 8.2 (6) 12.9 (10)
HMM 7 0.009 79.7 8.5 (7) 12.5 (11)
HMM 14 0.008 93.8 7.3 (5.5) 8.6 (6)
HMM 28 0.010 89.1 7.1 (5) 9.4 (6)

Table 3: Algorithm performance statistics for larger more clustered outbreaks (S4:n = 93) for false alarm (FA) rates approximating 
0.05 and 0.01.

Algorithm mean
FA rate

mean sensitivity mean (median) timeliness mean (median) adjusted timeliness

EARS C1 0.049 55.9 6.2 (2.5) 15.8 (18)
EARS C2 0.048 92.5 5.0 (4) 6.7 (4)
EARS C3 0.050 93.5 2.8 (0) 4.4 (1)
NBC 7 0.050 97.8 2.7 (1) 3.3 (1)
NBC 14 0.050 98.9 2.6 (1) 2.9 (1)
NBC 28 0.055 97.8 3.5 (1) 4.0 (1)
HMM 7 0.049 97.8 4.2 (3) 4.7 (3)
HMM 14 0.049 98.9 4.3 (3) 4.6 (3)
HMM 28 0.049 100 4.7 (3) 4.7 (3)

EARS C1 0.0004 18.3 7.8 (9) 24.3 (28)
EARS C2 0.009 20.4 8.4 (5) 24.0 (28)
EARS C3 0.009 41.9 7.1 (4) 19.2 (28)
NBC 7 0.009 76.3 7.2 (5) 12.1 (10)
NBC 14 0.010 82.8 6.6 (5) 10.3 (7)
NBC 28 0.013 89.2 7.2 (6) 9.4 (7)
HMM 7 0.010 94.6 6.6 (5.5) 7.7 (6)
HMM 14 0.008 97.8 4.9 (4) 5.4 (4)
HMM 28 0.010 100 5.0 (4) 5.0 (4)
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0.01 false alarm level
There was a significant difference in sensitivity among the
algorithms compared for all simulation scenarios at the
0.01 false alarm level (S1 Friedman χ2 = 103.4, p <
0.00001, S2 Friedman χ2 = 119.6, p < 0.00001, S3 Fried-
man χ2 = 140.3, p < 0.00001 and S4 Friedman χ2 = 168.6,
p < 0.00001). The smaller more clustered scenario was the
only scenario to show a significant difference in perform-
ance between the different HMMs, with the sensitivity of
the 7-day HMM significantly lower than both the 14 and
28-day HMMs (both p ≤ 0.001).

For all simulation scenarios, all HMMs had significantly
greater sensitivity than the EARS C3 algorithm (all p ≤
0.00001), and the 14-day and 28-day HMMs had signifi-
cantly greater sensitivity than the 7-day NBC (all p ≤
0.00001). For both the larger simulation scenarios, the 7-
day HMM also had significantly greater sensitivity than
the 7-day NBC (both p ≤ 0.00001). For all simulation sce-
narios except the smaller less clustered scenario, the 14
and 28-day HMMs also had significantly greater sensitiv-
ity than the 14-day NBC (all p ≤ 0.00001).

At the 0.01 false alarm level, there was a significant differ-
ence in timeliness among the algorithms compared for
the larger simulation scenarios only (S1 Friedman χ2 =
5.1, p < 0.41, S2 Friedman χ2 = 9.3, p < 0.10, S3 Friedman
χ2 = 20.3, p < 0.001 and S4 Friedman χ2 = 17.1, p < 0.004).
For the larger simulation scenarios the 14 and 28-day
HMMs had a significantly lower time to detection than the
7-day HMM (both p < 0.002), and the 14-day HMM also
had a significantly lower time to detection than both the
7 and 14-day NBCs (all p < 0.0042). For the larger less
clustered scenario the 28-day HMM also had a signifi-
cantly lower time to detection than the 7-day NBC (p =
0.0008), and for the larger more clustered scenario the 28-
day HMM also had a significantly lower time to detection
than both the 7 and 14-day NBCs (both p < 0.003).

Discussion
The proposed HMM which uses Bayesian methods to esti-
mate the model parameters provides a conceptually sim-
ple basis for the surveillance of small area disease
notification data. Unlike the cusum-based comparison
models, HMMs can benefit from the spatial information
associated with the postcode-based disease notification
data. Overall performance comparisons based on the
AUC and CAUC indicators at false alarm rates less than
0.1 found the 14-day HMM provided the best outbreak
detection performance, with the area under the receiver
operator characteristic curve being significantly greater
than the EARS C3 and 7-day negative binomial cusum
algorithms for all AUC and CAUC comparisons.

The desired false alarm rate for surveillance was the most
important determinant of the best performing algorithm.

The specific outbreak scenario was still an important
source of performance differences, with the size of the
outbreak having a greater impact on performance differ-
ences between algorithms than the extent of clustering. At
higher false alarm rates, the cusum-based algorithms pro-
vided significantly earlier outbreak detection compared
with the HMMs. At lower false alarm rates the HMMs pro-
vided significantly higher sensitivity across all simulation
scenarios compared with the EARS C3 and negative bino-
mial cusums, and significantly earlier outbreak detection
among the larger outbreak scenarios compared with the
negative binomial cusum.

Our findings are similar to previous comparative studies
which suggest that the EARS algorithms detect events
quickly and have a relatively high rate of false alarms
[23,24]. The consistent and early detection of outbreaks at
low false alarm rates remains challenging. A large-scale
simulation study found that the algorithms tested did not
reliably detect outbreaks of interest across a wide range of
scenarios at low alert rates [25], and a similar decline in
algorithm performance at low false alarm rates, particu-
larly among the EARS algorithms, was observed in this
study.

The use of longer series of baseline data for automated
surveillance is recognised to provide less volatile baseline
estimates [26], and a review suggests that few methods
demonstrate reliable detection using short-term baseline
data [27]. Although the HMMs that analysed more than 7
days of data were found to have better overall perform-
ance than the 7-day HMM, model performance was not
significantly improved by analysing more than 14 days of
data, possibly due to the effect of data aggregation. The
14-day negative binomial cusum also provided improved
performance over the 7-day negative binomial cusum,
and other investigations with cusum-based models have
demonstrated that performance quickly improves as the
baseline estimation period is increased to more than 7-
days [23].

The scope for improving the performance of the EARS
algorithms by increasing the amount of historical data
used remains to be investigated; however, our results
demonstrate that at low false alarm rates, equivalent short
baseline models for both the HMM and the NBC demon-
strate significantly improved performance compared with
the EARS algorithms, indicating that the limited baseline
period alone is insufficient to explain the performance
differences found. Comparative analysis of algorithm per-
formance using common datasets is an important means
of identifying the distinguishing performance characteris-
tics of different algorithms and enabling the selection of
complementary algorithms in surveillance systems. The
absence of standard evaluation scenarios limits wider
comparison of our study findings, and further perform-
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ance comparisons with alternative HMMs and spatio-tem-
poral methods such as SaTScan [3] are required.
Additional work is needed to investigate the potential
benefits of using a HMM structure of longer than 7 days,
and the factors which determine the optimal baseline
period for monitoring; including baseline characteristics
such as periodicity, and disease-specific factors such as
generation time.

Applications of the HMM require prior means to be spec-
ified for the outbreak and non-outbreak states of the
HMM. Our findings suggest that HMM performance was
generally better when lower prior means were specified;
however, longer baseline models were less sensitive to
changes in the prior mean, with the 28-day HMM demon-
strating little difference in performance between the two
prior means trialled. Although we attempted to compare
algorithms across a variety of outbreak scenarios which
were based on known disease transmission parameters
and would not favour any single algorithm, we cannot
rule out the use of scenarios which may have favoured the
HMM. Further algorithm comparison is required with
respect to different outbreak data, diseases and spatial
contexts before more general performance descriptions
can be made. The current study is limited in the use of
only a single typical series of baseline data in the evalua-
tions, and the study of a single disease. The performance
evaluation process also excluded very small outbreaks of
less than 5 cases, and although this could affect algorithm
comparison results, this would be limited to events of
lesser public health importance.

Evaluation using epidemiologically and spatially appro-
priate data is important to ensure that algorithms are
selected based on scenarios closely related to those in
which they are to be applied. Defining outbreaks for the
purposes of performance evaluation is also an area of con-
siderable uncertainty. We used simulated outbreaks to
describe and compare algorithm performance. Although
we based disease transmission settings on epidemiologi-
cal knowledge and attempted to test the algorithms over a
variety of outbreak scenarios using a locally appropriate
spatial structure, the evaluation may be not be an accurate
representation of performance for actual hepatitis A out-
breaks due to the simplification process involved or the
simulation settings used.

Most algorithms currently used for automated surveil-
lance are based on temporal monitoring methods [3]. The
EARS algorithms have been found to be effective in a
number of contexts for predicting and monitoring trends
for influenza surveillance based on diagnostic and pre-
diagnostic data [28-30]. Consideration of the epidemiol-
ogy of the conditions under surveillance, public health
priorities and response capacities are required to deter-

mine the relative importance of false alarm rate, sensitiv-
ity and timeliness for each particular surveillance
application. In a routinely collected notifiable disease sur-
veillance context where data transfer can be delayed, when
one case does not automatically initiate public health
action, and when the disease has a low reproductive
number, small differences in the timeliness or sensitivity
of algorithms may not significantly affect their usefulness.
The need to monitor multiple data streams is also likely to
influence the desired false alarm rate for surveillance.
However, the cost of false alarms may not be high if they
are linked with clear procedures that facilitate efficient
epidemiological review of relevant data to determine if
further investigation or heightened monitoring is war-
ranted.

The increasingly timely availability of diagnostic health
data provides opportunities for the application of auto-
mated surveillance methods to help ensure the early
detection and control of outbreaks. We have described a
general method for the surveillance of small area count
data that only requires case data, although the model may
be extended to include covariates. Postcode areas in West-
ern Australia vary widely in terms of area and population
size and are not ideal spatial units for surveillance. In
Western Australia the size of postcode areas ranges from
less than 0.7 square kilometres to over 700,000 square kil-
ometres. However, the HMM may be applied to any avail-
able spatial areal unit, or applied to point-level data using
distance-based models. The investigation of alternative
methods to the deterministic nearest neighbours
approach to identify clustered cases within the HMM, par-
ticularly given improved spatial data resolution, such as a
Gaussian Spatial Exponential model [31], are likely to
improve the model performance.

Conclusion
The general Bayesian HMM performs well when com-
pared with established limited-baseline temporal surveil-
lance methods at low false alarm rates, and provides a
viable addition to temporal surveillance algorithms in
practice, particularly if high false alarm rates are problem-
atic. We found that the use of different prior means for the
HMM had only a small impact on model performance,
suggesting that available historical data or surveillance
goals should provide adequate basis for the specification
of model parameters.
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