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Abstract
Background: Decision curve analysis is a novel method for evaluating diagnostic tests, prediction
models and molecular markers. It combines the mathematical simplicity of accuracy measures, such
as sensitivity and specificity, with the clinical applicability of decision analytic approaches. Most
critically, decision curve analysis can be applied directly to a data set, and does not require the sort
of external data on costs, benefits and preferences typically required by traditional decision analytic
techniques.

Methods: In this paper we present several extensions to decision curve analysis including
correction for overfit, confidence intervals, application to censored data (including competing risk)
and calculation of decision curves directly from predicted probabilities. All of these extensions are
based on straightforward methods that have previously been described in the literature for
application to analogous statistical techniques.

Results: Simulation studies showed that repeated 10-fold crossvalidation provided the best
method for correcting a decision curve for overfit. The method for applying decision curves to
censored data had little bias and coverage was excellent; for competing risk, decision curves were
appropriately affected by the incidence of the competing risk and the association between the
competing risk and the predictor of interest. Calculation of decision curves directly from predicted
probabilities led to a smoothing of the decision curve.

Conclusion: Decision curve analysis can be easily extended to many of the applications common
to performance measures for prediction models. Software to implement decision curve analysis is
provided.

Background
Clinical medicine has traditionally been divided into
diagnosis, treatment and prognosis. From a research per-
spective, diagnosis and prognosis constitute a similar
challenge: the clinician has some information and wants
to know how this relates to the true patient state, whether

this can be known currently (diagnosis) or only at some
point in the future (prognosis). This information can take
the form of a test – such as ultrasound for a blocked vein
in the legs – or a statistical prediction model including
several different variables. An example of the latter is the
"Framingham risk calculator" which predicts death from
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cardiovascular disease on the basis of age, gender, smok-
ing status, blood pressure and blood lipids[1]. Recent
advances in medical biology, especially genomics, have
raised the possibility that molecular markers might aid
diagnosis or prediction. For example, it has been postu-
lated that analysis of genes in breast cancer tissue can help
predict whether breast cancer is likely to recur after sur-
gery, and therefore whether chemotherapy would be of
benefit[2].

Decision analytic and biostatistical approaches to the 
evaluation of tests, models and markers
Decision curve analysis is a novel method for evaluating
diagnostic tests, prediction models and molecular mark-
ers[3]. It was developed to overcome the limitations of
traditional biostatistical methods on the one hand, and
decision-analytic alternatives on the other. The traditional
biostatistical approach to evaluating tests, models and
markers focuses on accuracy, evaluating calibration and
discrimination using metrics such as sensitivity, specificity
or area-under-the-curve (AUC). Such methods are mathe-
matically simple, can be used irrespective of whether the
predictor is binary or continuous and generally have an
intuitive interpretation. However, they have little clinical
relevance. For example, how high an AUC is high enough
to justify clinical use of a prediction model? Or take the
case where a new diagnostic test increased specificity by
10% but decreased sensitivity by 5% compared to a stand-
ard test: should the new or old test be used?

Answering such questions depends on the consequences
of the particular clinical decisions informed by the test,
model or marker. In the case of the test that was more spe-
cific, but less sensitive, than the standard, its value
depends on the harm of missing a case of disease relative
to the harm of treating a patient unnecessarily. Decision-
analytic methods can explicitly consider the clinical con-
sequences of decisions. They therefore provide data about
the clinical value of tests, models and markers, and can
thus determine whether or not these should be used in
patient care. Yet traditional decision-analytic methods
have several important disadvantages that have limited
their adoption in the clinical literature. First, the mathe-
matical methods can be complex and difficult to explain
to a clinical audience. Second, many predictors in medi-
cine are continuous, such as a probability from a prognos-
tic model or a serum level of a molecular marker, and such
predictors can be difficult to incorporate into decision
analysis. Third, and perhaps most critically, a comprehen-
sive decision analysis usually requires information not
found in the data set of a validation study, that is, the test
outcomes, marker values or model predictions on a group
of patients matched with their true outcome. In the prin-
cipal example used in this paper, blood was taken imme-
diately before a biopsy for prostate cancer and various

molecular markers measured. The data set for the study
consisted of the levels of the various markers and an indi-
cator for whether the biopsy was positive or negative for
cancer. A biostatistician could immediately analyze these
data and provide an investigator with sensitivities, specif-
icities and AUCs; a decision analyst would have to obtain
additional data on the costs and harms of biopsy and the
consequences of failing to undertake a biopsy in a patient
with prostate cancer. Perhaps as a result, the number of
papers that evaluate models and tests in terms of accuracy
dwarfs those with a decision-analytic orientation.

Decision curve analysis
Decision curve analysis has been described in prior meth-
odologic[3] and conceptual papers[4]. In brief, the
method is based on the principle that the relative harms
of false positives (e.g. unnecessary biopsy) and false nega-
tives (e.g. missed cancer) can be expressed in terms of a
probability threshold. For example, if a man would opt
for biopsy if he was told that his risk of prostate cancer was
20% or more, but not if his risk was less than 20%, it can
be shown that he considers that harms associated with a
missed cancer to be four times greater than the harms
associated with an unnecessary biopsy, that is, the ratio of
harms is the odds at the probability threshold[5]. This
threshold probability can therefore be used to determine
both whether a patient is defined as test-positive or nega-
tive and to model the clinical consequences of true and
false positives using a clinical net benefit function:

where n is the total number of patients in the study and pt

is the threshold probability. The threshold probability can
then be varied to create the "decision curve" for any par-
ticular model, test or marker. The model, test or marker
under study should first be converted to a predicted prob-
ability of the undesirable outcome (e.g. cancer on biopsy)

denoted by : for a binary test, these probabilities are set

to 1 and 0 for positive and negative test results; for a
molecular marker, marker levels should be converted to a
probability using logistic regression. The method of deci-
sion curve analysis is then as follows:

1. Select a pt

2. Define a patient as positive if  ≥ pt

3. Calculate the number of true and false positives

4. Calculate net benefit

Net benefit = −
−

⎛
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5. Repeat for a range of pt

6. Repeat steps 1 – 5 for all models and for the strategy of

treat all patients (i.e.  = 1)

A typical decision curve is given in Figure 1. This curve was
derived from a data set of men undergoing biopsy for
prostate cancer and serves as the principal example for this
paper. In brief, the data set included 740 men, never pre-
viously screened for prostate cancer, who were recom-
mended for biopsy based on an elevated total PSA. Free
PSA was also measured, and a digital rectal exam per-
formed, on all men. Approximately one-quarter (n = 192)
were diagnosed with cancer.

Interpretation of the decision curve depends on compar-
ing the net benefit of the test, model or marker with that
of a strategy of "treat all" (the thin grey line) and "treat
none" (parallel to the x axis at net benefit of zero). The
strategy with the highest net benefit at a particular pt is
optimal, irrespective of the size of the difference. Deter-
mining which men should be biopsied using the statisti-
cal model is superior to biopsying all men with elevated
PSA once the threshold probability reaches about 10%,
and is superior to the strategy of biopsying no man up to
a threshold probability of about 90%. To interpret this
result, one needs to consider the sort of probability for
prostate cancer that men would need before they would
decide to have a biopsy. A very risk averse man might opt
for biopsy even if he had only a 10% risk of cancer. How-
ever, it seems unlikely that many men would demand,

p̂

Decision curve for a model predicting the outcome of prostate biopsyFigure 1
Decision curve for a model predicting the outcome of prostate biopsy. The thin grey line is the net benefit of biopsy-
ing all men; the thin black line is the net benefit of biopsying men on the basis of the statistical model; the thick black line is the 
net benefit of biopsying no man.
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say, a 50% risk of cancer before they had a biopsy; this
threshold would imply that an unnecessary biopsy is just
as bad as a missed cancer. So one estimate for the range of
pt's in the community might be 10 – 40%. The net benefit
of the decision curve for the statistical model is higher
than that for either biopsying all or no men for all likely
threshold probabilities (figure 2). This suggests that bas-
ing biopsy on the basis of our model will improve clinical
outcome. Accordingly, decision curve analysis allows us
to assess clinical relevance – which accuracy metrics can-
not – without the need for additional data – as required
by traditional decision-analytic approaches. The relative
advantages and disadvantages of traditional biostatistical
and decision-analytic approaches are described in Table 1,
along with a comparison to decision curve analysis.

We should note, however, that application of decision
curve analysis comes relatively late in the development of
a test, model or marker, once initial evaluations are com-
plete and investigators are interested in understanding
clinical consequences; indeed, a decision analytic evalua-
tion of clinical value is often the last stage before clinical
implementation. Biostatistical metrics are certainly key
during earlier stages of development: for example, by
assessing calibration and discrimination, those develop-
ing a statistical model can assess where improvements
might need to be made.

Limitations of decision curve analysis
Our initial paper on decision curve analysis was intended
as an introduction to the method and did not include four
critical aspects of model evaluation. First, models that are

Decision curve for a model predicting the outcome of prostate biopsyFigure 2
Decision curve for a model predicting the outcome of prostate biopsy. The thin grey line is the net benefit of biopsy-
ing all men; the thin black line is the net benefit of biopsying men on the basis of the statistical model; the thick black line is the 
net benefit of biopsying no man. The decision curve is shown for the key threshold probability range 10 – 40%.
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evaluated on the same data set that was used to build the
model are at risk for overfit[6]. This can result in an overly
optimistic evaluation of a model's value. As an example,
take a 500 patient data set with an event rate of 10%, for
which we develop a model with 20 variables, values of
which are drawn randomly from a normal distribution.
The model will typically have an AUC of around 0.70.
Randomly selected numbers have no association with
outcome and the AUC should be 0.50, reflecting poor dis-
crimination of the model when applied to a data set of
new patients.

One way to correct for overfit is to split the data into a
"training" set, on which the model is constructed, and a
"validation" set, on which the properties of the model,
such as specificity, are calculated[7]. Although a robust
and elegant solution to overfitting, splitting the data set
reduces statistical power. A variety of statistical methods
have been proposed that use the entire data set for both
training and validation, but nonetheless correct for over-
fit. The two most common are cross-validation and boot-
strapping[8]. In cross-validation, the data set is first
randomly split into K groups. A model is then constructed
using the data from the first K-1 groups and applied to the
Kth group. The model building and validation process is
repeated K times with each of the samples used once as
the validation set. Accordingly, no patient is used both to
develop and test a model. The idea of bootstrapping is to
provide an estimate of the optimism associated with eval-
uating a model on the same data set that was used to
develop it. This is achieved by creating training sets repeat-
edly by bootstrapping, building a model on the training
set, and then calculating the difference in predictive accu-
racy between the model when applied to the training set
and when applied to the validation set, which is simply
the original data.

We have presented no method for correcting decision
curve analysis for overfit. Hence it is entirely plausible that
a method which has extremely poor discrimination after
correction for overfit would appear to have clinical value
in a decision curve analysis.

Second, in our initial paper on decision curve analysis, we
presented no method for calculation of confidence inter-

vals. It has been argued that confidence intervals have low
relevance for decision-analytic methods. This is on the
grounds that given a choice between two strategies, we
should choose the one most likely to give us the best out-
come, regardless of whether we believe it will be superior
51% or 99% of the time[9]. However, it is reasonable to
suppose that, in some cases, clinicians will want to be sure
that introduction of prediction model has a low chance of
leading to inferior patient outcomes. This might be in the
case where a well accepted clinical practice would be
changed, for example, treating patients on the basis of a
prediction model, rather than routinely treating all
patients. Alternatively, a confidence interval might be
used to inform the question of whether further research
would be of value.

Third, we initially presented decision curve analysis only
for binary outcomes. No method was provided for apply-
ing the method to censored ("survival time") data such as
typically found in cancer studies.

Fourth, decision curve analysis requires a data set for
which both patient outcome and the predictor for each
patient are known. There may be situations where an ana-
lyst wishes to investigate a model on a data set where out-
come is not known, such as the evaluation of a published
statistical model on patients who have not been followed
sufficiently. Similarly, for case control data, the values of
the predictor are not known for all patients, only for cases
and those selected as controls.

In this paper we present four extensions to decision curve
analysis to address each of these issues: correction for
overfit, calculation of confidence intervals, application to
censored data and application directly to predicted prob-
abilities.

Correcting decision curves for model overfit
Methods
We tested the two most common methods of correcting
for overfit, cross-validation and bootstrapping[10]. Tech-
niques of cross-validation can vary with respect to the
number of K folds; whether the cross-validation is con-
ducted just once or n times with the results averaged over
the n iterations; whether what is estimated for the Kth

Table 1: Comparison of decision curve analysis with traditional statistical and decision-analytic methods

Traditional statistical analysis Traditional decision analysis Decision curve analysis

Mathematics Simple Can be complex Simple
Additional data Not required Patient preferences, treatment costs or 

effectiveness
General clinical estimates only

Predictors Binary or continuous Continuous predictors problematic Binary or continuous
Assess clinical value? No Yes Yes
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group is the models' value (e.g. AUC), which is then aver-
aged across K iterations, or a predicted probability for
each patient, with the estimate for the model's value esti-
mated just once using the predicted probabilities. We
evaluated 10 and 2 fold cross-validation, on the grounds
that these are the most common values for K and use
repeated cross-validation. We also estimated probabilities
rather than the decision curve for the Kth group on compu-
tational grounds: a decision curve is a vector of net bene-
fits at each threshold probability so we would need to save
a vector for K groups and then average across groups.

We also investigated the value of bootstrap resampling
correction for decision curve. For bootstrap correction we
used the following steps:

1. Sample with replacement from the data set

2. Fit the model with the sample in (1)

3. Apply the fitted model in (2) to the sample in (1) to
obtain the predicted probability of a prostate cancer diag-
nosis, and then compute the net benefit at various thresh-
old probabilities.

4. Apply the fitted model (2) to the original data set to
obtain the predicted probability of a prostate cancer diag-
nosis, and then compute the net benefit at various thresh-
old probabilities.

5. Compute the difference in the net benefit obtained in
(3) and (4) for each threshold probability.

6. Repeat steps (1) to (5) 200 times. Compute the mean
difference in net benefit for each threshold probability
across the 200 replications. This is the optimism.

7. The corrected net benefit for each threshold probability
is the uncorrected net benefit minus the optimism from
(6).

Repeated 10-fold cross-validation used the following
steps:

1. Randomly divide the data set into 10 sets of equal size,
ensuring equal numbers of events in each set

2. Fit the model leaving out the 1st set

3. Apply the fitted model in (2) to the 1st set to obtain the
predicted probability of a prostate cancer diagnosis.

4. Repeat steps (2) to (3) leaving out and then applying
the fitted model to the ith group, i = 2, 3... 10. Every sub-

ject now has a predicted probability of a prostate cancer
diagnosis.

5. Using the predicted probabilities, compute the net ben-
efit at various threshold probabilities.

6. Repeat steps (1) to (5) 200 times. The corrected net
benefit for each threshold probability is the mean across
the 200 replications.

Repeated 2-fold cross-validation is as for repeated 10-fold
cross-validation, but with 2 sets instead of 10.

Data
Using the prostate biopsy data set described above, we
used logistic regression to estimate the probability of a
prostate cancer diagnosis with predictors of total PSA,
free-to-total PSA ratio, age (>60 vs ≤ 60) and digital rectal
exam result (abnormal vs normal). We dichotomized age
so that the model would include two continuous and two
categorical variables. We used the net benefit for this full
sample as the gold standard (we describe this as the "best
estimate" of net benefit). To artificially induce overfit, we
randomly sampled from the data set such that we reduced
the number of cancers to exactly n, where n took on values
of 100, 50, 40, 30, and 20. In doing so, we kept the inci-
dence the same (that is, when we sampled 100 cancers,
there were 100/26% = 385 non-cancers). Using the pre-
dicted probability from the model, we estimated the net
benefit at various threshold probabilities (15%, 25%,
35%, 60%, and 80%) with each data set. This gave us the
uncorrected net benefit. We then calculated the corrected
net benefits, using three methods: bootstrap, repeated 10-
fold cross-validation, and repeated 2-fold cross-valida-
tion. The reported estimates of the uncorrected and cor-
rected net benefits are the mean and 5th to 95th percentiles
across 2000 replications.

Results and discussion
The simulation results comparing the correction methods
for the decision curve net benefits are shown in Table 2.
For a threshold probability of 15%, the uncorrected esti-
mate was over-optimistic for all scenarios; all correction
methods gave an estimate lower than the best estimate of
net benefit; repeated 10-fold cross-validation had the least
bias for all but the scenario with 100 events, where the
bootstrap estimate had slightly lower bias (-0.0001 vs -
0.0005). Similar results were obtained for threshold prob-
abilities of 25% and 35%. For the threshold probabilities
of 60% and 80%, the bootstrap method had the least bias.
The variability of the bootstrap and repeated 2-fold cross-
validation methods was similar, however, the repeated
10-fold cross-validation method tended to have slightly
less variability.
Page 6 of 17
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Table 2: Simulation results for correction for over-fit.

Threshold
probability

Number of events
(Total sample size)

"Best estimate"
of net benefit

Uncorrected Correction
Method

Bootstrap Repeated
2-fold

Repeated
10-fold

15% 100
(385)

0.1590 0.1618
(0.1438, 0.1799)

0.1589
(0.1406, 0.1771)

0.1569
(0.1412, 0.1734)

0.1585
(0.1425, 0.1755)

50
(193)

0.1625
(0.1327, 0.1940)

0.1558
(0.1250, 0.1878)

0.1542
(0.1268, 0.1845)

0.1577
(0.1292, 0.1887)

40
(154)

0.1625
(0.1288, 0.1972)

0.1540
(0.1181, 0.1902)

0.1517
(0.1185, 0.1877)

0.1565
(0.1222, 0.1937)

30
(116)

0.1630
(0.1233, 0.2039)

0.1510
(0.1088, 0.1943)

0.1471
(0.1093, 0.1881)

0.1545
(0.1152, 0.1974)

20
(77)

0.1670
(0.1155, 0.2224)

0.1484
(0.0946, 0.2044)

0.1341
(0.0877, 0.1837)

0.1509
(0.0998, 0.2061)

25% 100
(385)

0.1167 0.1216
(0.1021, 0.1420)

0.1172
(0.0977, 0.1381)

0.1160
(0.0988, 0.1342)

0.1174
(0.0990, 0.1363)

50
(193)

0.1234
(0.0900, 0.1585)

0.1143
(0.0802, 0.1504)

0.1129
(0.0834, 0.1460)

0.1169
(0.0856, 0.1522)

40
(154)

0.1243
(0.0861, 0.1640)

0.1131
(0.0733, 0.1541)

0.1104
(0.0747, 0.1483)

0.1155
(0.0787, 0.1556)

30
(116)

0.1241
(0.0783, 0.1709)

0.1088
(0.0601, 0.1562)

0.1058
(0.0660, 0.1500)

0.1134
(0.0717, 0.1591)

20
(77)

0.1297
(0.0741, 0.1892)

0.1069
(0.0474, 0.1679)

0.0918
(0.0411, 0.1440)

0.1098
(0.0529, 0.1712)

35% 100
(385)

0.0940 0.0967
(0.0744, 0.1189)

0.0916
(0.0692, 0.1139)

0.0893
(0.0715, 0.1087)

0.0916
(0.0720, 0.1121)

50
(193)

0.0980
(0.0652, 0.1347)

0.0877
(0.0535, 0.1251)

0.0857
(0.0557, 0.1198)

0.0901
(0.0574, 0.1260)

40
(154)

0.0993
(0.0602, 0.1411)

0.0865
(0.0455, 0.1297)

0.0829
(0.0456, 0.1212)

0.0883
(0.0495, 0.1281)

30
(116)

0.0999
(0.0531, 0.1482)

0.0829
(0.0334, 0.1316)

0.0782
(0.0359, 0.1237)

0.0856
(0.0407, 0.1348)

20
(77)

0.1048
(0.0472, 0.1665)

0.0795
(0.0178, 0.1421)

0.0636
(0.0134, 0.1162)

0.0822
(0.0238, 0.1436)

60% 100
(385)

0.0547 0.0568
(0.0377, 0.0765)

0.0498
(0.0302, 0.0699)

0.0446
(0.0275, 0.0628)

0.0495
(0.0320, 0.0688)

50
(193)

0.0574
(0.0236, 0.0922)

0.0433
(0.0083, 0.0793)

0.0362
(0.0052, 0.0701)

0.0441
(0.0103, 0.0792)

40
(154)

0.0593
(0.0181, 0.1007)

0.0421
(-0.0001, 0.0851)

0.0316
(-0.0045, 0.0708)

0.0405
(-0.0013, 0.0831)

30
(116)

0.0608
(0.0123, 0.1116)

0.0384
(-0.0119, 0.0915)

0.0255
(-0.0152, 0.0715)

0.0373
(-0.0107, 0.0889)

20
(77)

0.0650
(0.0060, 0.1286)

0.0324
(-0.0289, 0.0981)

0.0082
(-0.0392, 0.0610)

0.0291
(-0.0321, 0.0976)

80% 100
(385)

0.0189 0.0218
(0.0000, 0.0477)

0.0140
(-0.0068, 0.0391)

0.0104
(-0.0064, 0.0305)

0.0139
(-0.0032, 0.0350)

50
(193)

0.0259
(-0.0148, 0.0670)

0.0100
(-0.0305, 0.0535)

0.0008
(-0.0305, 0.0377)

0.0100
(-0.0237, 0.0521)

40
(154)

0.0287
(-0.0178, 0.0779)

0.0088
(-0.0381, 0.0581)

-0.0061
(-0.0424, 0.0357)

0.0068
(-0.0360, 0.0537)

30
(116)

0.0351
(-0.0160, 0.0924)

0.0091
(-0.0436, 0.0638)

-0.0160
(-0.0611, 0.0354)

0.0022
(-0.0492, 0.0597)

20
(77)

0.0404
(-0.0227, 0.1077)

0.0010
(-0.0672, 0.0714)

-0.0434
(-0.1057, 0.0199)

-0.0106
(-0.0872, 0.0678)

Values are mean (2.5th – 97.5th centile) of 2000 replications.
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A comparison of corrected net benefits from bootstrap
and 10-fold cross-validation is shown in Table 3. In all
comparisons for all threshold probabilities except 60%
and 80%, the absolute difference in the corrected esti-
mates was less than 0.005, with a relative difference in net
benefit <6% (calculated as difference in net benefit
divided by best estimate of net benefit). The 60% and
80% thresholds are near the tail of the decision curve, and
are subject to excess random noise. The properties of the
decision curve near this threshold are of minor interest
because few men would require a ≥ 60% probability of
cancer before they would accept biopsy. Thus the superior
properties of the bootstrap at this threshold are of little
value. To further examine the preferred correction
method, we plotted sample decision curves with correc-

tion for overfit from a data set with 30 events (Figure 3
and Figure 4). One immediate attraction of repeated 10-
fold cross-validation is that it has a smoothing effect on
the decision curve. The curve remains unstable at very
high threshold probabilities; however, these are rarely
encountered in clinical practice (we rarely consider unnec-
essary treatment, say, 20 times worse than untreated dis-
ease). We therefore recommend repeated 10-fold cross-
validation as a method to correct decision curves created
using the same data as that used to generate the model.

That said, we saw very little optimism where the number
of events per variable was greater than 20, and thus do not
see a strong justification for correcting decision curves for
overfit where studies are of sufficient size. This will likely

Decision curve for a model predicting the outcome of prostate biopsy, with correction for overfit by crossvalidationFigure 3
Decision curve for a model predicting the outcome of prostate biopsy, with correction for overfit by crossvali-
dation. The thin grey line is the net benefit of biopsying all men; the dashed black line is the net benefit of biopsying men on 
the basis of the statistical model; the thin black line is the results of the statistical model corrected for overfit; the thick black 
line is the net benefit of biopsying no man.
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be the case for the sort of studies typically appropriate for
decision curve analysis: we do not analyze small, prelimi-
nary studies to determine whether a test, marker or model
would be of clinical benefit; evaluation of clinical effects
is normally reserved for larger and more robust data sets.

Confidence intervals for net benefits
A decision curve plot will have at least two curves and a
straight line, and there will be many areas in which the
curves overlap or are very close. Adding confidence bands
to a plot, therefore, is likely to lead to confusing graph that
is difficult to interpret. Accordingly, the best way to
present confidence intervals for a decision curve analysis
would be, first, to choose a limited number of key thresh-
olds, and second, report the 95% C.I. for the difference in

net benefit for pairwise comparisons between models at
each of these thresholds.

Methods
We propose bootstrap methods, which are widely used
and simple to implement, to obtain confidence intervals
for the net benefit at a particular threshold.

1. Choose a limited number of threshold probabilities.

2. Sample with replacement from the data set

3. Fit the models of interest and compute the net benefits
at threshold probabilities specified in (1) with the sample
in (2)

Decision curve for a model predicting the outcome of prostate biopsy, with correction for overfit by bootstrapFigure 4
Decision curve for a model predicting the outcome of prostate biopsy, with correction for overfit by bootstrap. 
The thin grey line is the net benefit of biopsying all men; the dashed black line is the net benefit of biopsying men on the basis 
of the statistical model; the thin black line is the results of the statistical model corrected for overfit; the thick black line is the 
net benefit of biopsying no man.
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4. Repeat steps (2) to (3) n times (we recommend n ≥
1000). The 95% confidence interval for the net benefit is
given by the 2.5th – 97.5th percentiles across n replications.

It may be of interest to obtain the confidence interval for
the difference in net benefit for two treatment strategies,
for example, treating according to a model vs. treating all
patients. In this case, in step 3 the difference in net benefit
of those two treatment strategies should be computed.

Data
Logistic regression was used to estimate the predicted
probability of a prostate cancer diagnosis. We fit one
model with total PSA as the only predictor (the base
model) and another model with total PSA, free-to-total
PSA ratio, age and digital rectal exam result as the predic-
tors (the full model). We used bootstrap methods to com-
pute the confidence interval for three strategies: treat all
patients, treat according to the base model, and treat
according to the full model. We also computed the confi-
dence interval around the difference in net benefit for the

full model vs. treating all and full model vs. the base
model.

Results
We obtained the confidence intervals for the net benefits
associated with threshold probabilities of 15, 25, 35, 60,
and 80% using bootstrap methods with 2000 replications
(Table 4). Given are the point estimates of the net benefit
for the three treatment strategies and the difference in full
vs base and full vs all. The lower bound of the full model
has a superior net benefit than both the base model and
treating all for all threshold probabilities evaluated except
80%. We might therefore consider the value of the full
model confirmed for the entire range of threshold proba-
bilities that a man would typically require for a prostate
biopsy.

Application of decision curve analysis to censored data
Calculation of net benefit for a decision curve requires an
estimate of the rate of true and false positives. For survival
time data, this requires that survival time must be con-

Table 3: Simulation results for correction for over-fit: "best estimate" of net benefit minus net benefit after correction.

Threshold Number of events Correction method Bootstrap – 10-fold

(Total sample size) Bootstrap 2-fold 10-fold

15% 100 (385) 0.0001 0.0021 0.0005 -0.0004
50 (193) 0.0032 0.0048 0.0013 0.0019
40 (154) 0.0050 0.0073 0.0025 0.0025
30 (116) 0.0080 0.0119 0.0045 0.0035
20 (77) 0.0106 0.0249 0.0081 0.0025

25% 100 (385) 0.0005 0.0007 0.0007 -0.0002
50 (193) 0.0024 0.0038 0.0002 0.0022
40 (154) 0.0036 0.0063 0.0012 0.0024
30 (116) 0.0079 0.0109 0.0033 0.0046
20 (77) 0.0098 0.0249 0.0069 0.0029

35% 100 (385) 0.0024 0.0047 0.0024 0.0000
50 (193) 0.0063 0.0083 0.0039 0.0024
40 (154) 0.0075 0.0111 0.0057 0.0018
30 (116) 0.0111 0.0158 0.0084 0.0027
20 (77) 0.0145 0.0304 0.0118 0.0027

60% 100 (385) 0.0049 0.0101 0.0052 -0.0003
50 (193) 0.0114 0.0185 0.0106 0.0008
40 (154) 0.0126 0.0231 0.0142 -0.0016
30 (116) 0.0163 0.0292 0.0174 -0.0011
20 (77) 0.0223 0.0465 0.0256 -0.0033

80% 100 (385) 0.0049 0.0085 0.0050 -0.0001
50 (193) 0.0089 0.0181 0.0089 0.0000
40 (154) 0.0101 0.0250 0.0121 -0.0020
30 (116) 0.0098 0.0349 0.0167 -0.0069
20 (77) 0.0179 0.0623 0.0295 -0.0116
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verted to a binary endpoint at a prespecified landmark
time, for example, patient alive at five years. However, sur-
vival data are typically subject to censoring: a man who
entered a study, say, three years before the analysis was
conducted and was alive at that time is "censored"
because we know he lived more than three years, but not
how much longer.

One solution is to exclude patients who were event free at
last follow-up but whose survival time is less than our
landmark time. This is associated with two problems. The
first is that informative data are removed from analysis: a
patient who was censored at 4 years and 11 months most
likely survived to 5 years but is treated identically in the
analysis as a patient followed for only one month. Sec-
ond, removing censored patients from the analysis
increases the prevalence of the event. This is because
patients followed for less than 5 years will be counted if
they die but not if they survive. Changing the prevalence
is important because it affects the proportion of true and
false positives, and therefore the net benefit.

Methods
To calculate the net benefit for survival time data subject
to censoring, we first define x = 1 if the patient has a pre-
dicted probability from the model ≥ pt (the threshold
probability) and x = 0 otherwise; s(t) is the Kaplan-Meier
survival probability at our chosen landmark time t, and n
is the number of subjects in the data set. Using methods
similar to Begg et al[11], the number of true positives is
given by [1 - (s(t) | x = 1)] × P(x = 1) × n and the false pos-
itives as (s(t) | x = 1) × P(x = 1) × n. Naturally, one assump-
tion of the method is that the mechanism of censoring is
independent from the predictors used to create the model.

Heagerty et al[12] point out that this method can, in some
instances, result in a non-monotone relationship between
the predicted probability from the model and sensitivity
or specificity. Yet there is no requirement that a decision
curve be monotone by pt: there is no inherent contradic-
tion in having net benefit increase above some pt = k, and
then decrease at some pt = l for l > k. Indeed, this is often
what is seen in the right-hand tail of the decision curve,

Table 4: Confidence intervals for the net benefits using bootstrap methods.

Threshold Net benefit Point Estimate Bootstrap Mean Bootstrap confidence interval

For: (2000 replications) 2.5th percentile 97.5th percentile

15 All 0.1288 0.1288 0.0922 0.1669
Base 0.1288 0.1290 0.0922 0.1669
Full 0.1590 0.1613 0.1280 0.1955
Full vs All 0.0302 0.0325 0.0172 0.0490
Full vs Base 0.0302 0.0322 0.0170 0.0488

25 All 0.0126 0.0126 -0.0288 0.0559
Base 0.0748 0.0735 0.0432 0.1036
Full 0.1167 0.1214 0.0919 0.1522
Full vs All 0.1041 0.1088 0.0802 0.1369
Full vs Base 0.0419 0.0479 0.0257 0.0712

35 All -0.1393 -0.1393 -0.1871 -0.0894
Base 0.0428 0.0410 0.0181 0.0662
Full 0.0940 0.0965 0.0652 0.1291
Full vs All 0.2333 0.2358 0.1990 0.2712
Full vs Base 0.0511 0.0555 0.0293 0.0836

60 All -0.8514 -0.8513 -0.9291 -0.7703
Base 0.0149 0.0159 -0.0041 0.0378
Full 0.0547 0.0569 0.0331 0.0838
Full vs All 0.9061 0.9083 0.8345 0.9824
Full vs Base 0.0399 0.0410 0.0176 0.0676

80 All -2.7027 -2.7026 -2.8581 -2.5405
Base -0.0149 -0.0028 -0.0230 0.0243
Full 0.0189 0.0223 -0.0054 0.0527
Full vs All 2.7216 2.7249 2.5649 2.8757
Full vs Base 0.0338 0.0251 0.0000 0.0595
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where there is a relatively limited number of cases, and the
curve is subject to excess sampling variation. Nonetheless,
the rationale for decision curve analysis is to evaluate the
clinical effects of a test, model or marker. Studies aiming
to affect clinical practice tend to be large, and should be
well populated across the threshold probabilities of inter-
est. As such, we should expect the important parts of the
decision curve to be monotone.

In time-to-event analyses where the failure event is some-
thing other than death, it is often important to consider
the effects of competing risks. A competing risk is any
event that a subject could experience, that would alter the
likelihood of having the event of interest. The most com-
mon competing risk is death before the event of interest,
such as recurrence of cancer, since a subject cannot expe-
rience the event of interest after they die. In the presence
of competing risks, the cumulative incidence function,
which takes into account the probability of having the
competing risk event, can be used to estimate the proba-
bility of having the event of interest [13]. To calculate the
net benefit in the presence of competing risks, we denote
the cumulative incidence of the event of interest by time t
as I(t). The number of true positives is given by (I(t) | x =
1) × P(x = 1) × n and the false positives as [1 - (I(t) | x =
1)] × P(x = 1) × n. That is, we use the same formula as in
the absence of competing risks, but using the estimate
from the cumulative incidence function in place of the
Kaplan-Meier estimate. It is known that the probability of
the event calculated using Kaplan-Meier methods is gener-
ally higher than when taking into account competing risks
[14]. We therefore expect that, in general, net benefit will
be lower when competing risks are taken into account.

Simulation study without competing risks
We conducted a simulation study with 2000 replications
to check the method for computing the net benefit for sur-
vival time data in the absence of competing risks. We sim-
ulated data with 5000 subjects and created a binary
predictor x (1 if positive and 0 if negative) and generated

an event time Ti for each subject i such that Ti was related
to x. We then generated a uniform censoring time Ci for
each subject i and defined the observed time for subject i
as the minimum of Ti and Ci, denoted by Yi. We deter-
mined the coverage of the method described above, for a
given time t and for a threshold probabilities of 15, 30,
and 60%. Coverage was defined as the proportion of 95%
confidence intervals, calculated using bootstrap methods
described above, that contained the true net benefit. To
obtain the true net benefit, we simulated data in the same
way but with an arbitrarily large data set and Yi equal to Ti.
Due to the absence of censoring, the true positives are sub-
jects with x = 1 and Ti <t and the false positives are subjects
with x = 1 and Ti > t. We conducted simulations for three
time-points t and with three relationships between the
predictor and event: the predictor equally sensitive and
specific, the predictor more specific, and the predictor
more sensitive. Approximately 10%, 20%, and 30% of
patients were censored, respectively, before time-point 1,
2, and 3.

Results of simulation study without competing risk
Results of the simulation study where the predictor was
equally sensitive and specific are given in Table 5. For all
scenarios, there was little bias and coverage was excellent.
For example, for a threshold probability of 15%, a predic-
tor being equally sensitivity and specific to the event, and
evaluated at timepoint 1, the true net benefit was 0.0185
and the mean net benefit over 2000 replications was
0.0186. Similar results were obtained for the simulations
where the predictor was more specific and where the pre-
dictor was more sensitive (data not shown).

A decision curve from a survival time data set with 30%
censoring is shown in figure 5. To create this figure, we
used an uncensored survival time data set, created a binary
outcome for survival at t, and calculated net benefit for
binary data. We then applied censoring as described
above, and calculated a second decision curve calculating
net benefit for censored data. The two curves are essen-

Table 5: Simulation results for a survival-time endpoint.

Threshold Timepoint True Net benefit Mean estimate Coverage (%)

15% 1 0.0185 0.0186 95.0
2 0.1171 0.1169 94.7
3 0.2177 0.2172 95.0

30% 1 -0.0526 -0.0524 95.3
2 0.0672 0.0670 94.5
3 0.1894 0.1888 95.6

60% 1 -0.3546 -0.3543 94.5
2 -0.1450 -0.1453 94.5
3 0.0688 0.0678 95.3
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tially overlapping, suggesting good properties of our
method.

Data for censored data with competing risks
We used two previously studied data sets to demonstrate
the effects of competing risks on decision curve analysis.
The first data set contained 4462 bladder cancer patients
who underwent radical cystectomy [15]. The event of
interest was recurrence (1068 events). Since bladder can-
cer patients tend to have significant comorbid conditions,
846 patients died from other causes without recurrence,
which was considered the competing risk event. We calcu-
lated the decision curve for a multivariable prediction
model (the "bladder nomogram") with and without
adjustment for competing risks[15]. Age is one of the pre-

dictors in the model and is strongly associated with the
death from other causes. We therefore expected the deci-
sion curves with and without adjustment for competing
risks to be different.

The second data set contained 7765 prostate cancer
patients treated by radical prostatectomy [16]. Similar to
the bladder cancer data set, the event of interest was recur-
rence and the competing risk event was death from other
causes without recurrence. Prostate cancer patients tend to
be in otherwise good health, only 368 patients died with-
out recurrence, while 1256 patients recurred. We calcu-
lated the decision curve for a multivariable model
including PSA, stage, and grade. As the competing risk was
rare, and the predictors for recurrence unassociated with

Decision curves for survival time dataFigure 5
Decision curves for survival time data. The thick grey line is the net benefit for a strategy of treating all men; the thick 
black line is the net benefit of treating no men. A thin grey line is calculated from an uncensored data set for a binary variable 
of survival at time t; a thin black line is calculated from the data set after censoring was introduced, using the net benefit for-
mula for censored data. The two curves are essentially overlapping and appear as a single dark grey line.
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the competing risk of death, we expected the decision
curves with and without adjustment for competing risk to
be very similar.

Results for survival time data with competing risks
Decision curves with and without adjustment for compet-
ing risk are shown in figure 6 and figure 7. In the bladder
cancer example – where the incidence of the competing
risk is high, and the predictor is associated with the com-
peting risk – we do see, as expected, that adjustment for
competing risk lowers net benefit for both the model and
for the strategy of "treat all". However, decisions about the
value of the model are not likely to be affected because the
model remains of value over a wide range of threshold
probabilities. In the prostate cancer example – where the

incidence of the competing risk is low, and the predictor
unassociated with the competing risk – the decision
curves with and without adjustment for competing risk
are essentially overlapping.

Application of decision curve analysis when outcome or 
predictor data are not available
We may sometimes want to calculate decision curves in
the absence of outcome data. For example, a statistical
model is published in the literature and is shown to be
well-calibrated. An investigator wishes to know whether
application of the model would be of clinical benefit,
either because this was not reported by the original
authors, or because the investigator believes that the prop-
erties of the model may differ for the population that he

Decision curve for survival time data with and without adjustment for competing risk, where the incidence of competing risks is high (bladder cancer data set)Figure 6
Decision curve for survival time data with and without adjustment for competing risk, where the incidence of 
competing risks is high (bladder cancer data set). The thick grey line is the net benefit for a strategy of treating all 
patients with (dashed line) and without (solid line) adjustment for competing risk; the thin black line is the net benefit of a strat-
egy of treating patients according to the model with (dashed line) and without (solid line) adjustment for competing risk; the 
thick black line is the net benefit of treating no patients.
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or she is interested in, because the distribution of predic-
tors may vary between populations. The model predicts
some future event, such as cancer incidence or recurrence,
and the investigator's data set is relatively immature, with
few patients followed for a sufficient period of time.

Alternatively, we may wish to calculate a decision curve in
the absence of predictors. This would occur in a case-con-
trol study, where predictors are only measured on a pro-
portion of patients without the event.

If a model is well calibrated, that is, if close to x% of a sam-
ple of patients with a predicted risk of x% have the event,

true and false positives can be calculated directly from pre-

dicted probabilities. Using  as the predicted probability

for the ith patient, where m > 0 patients have  ≥ pt, net

benefit is calculated as:

A decision curve for the principal example, calculated
using this formulation rather than outcome data, is given
in figure 8. The curve is not subject to sampling noise and
so has a smooth shape.
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Decision curve for survival time data with and without adjustment for competing risk, where the incidence of competing risks is low (prostate cancer data set)Figure 7
Decision curve for survival time data with and without adjustment for competing risk, where the incidence of 
competing risks is low (prostate cancer data set). The thick grey line is the net benefit for a strategy of treating all men 
with (dashed line) and without (solid line) adjustment for competing risk; the thin black line is the net benefit of a strategy of 
treating men according to the model with (dashed line) and without (solid line) adjustment for competing risk; the thick black 
line is the net benefit of treating no men. Since the incidence of competing risk is low, the curves for treating all are essentially 
overlapping and appear as a single grey line.
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Statistical code for decision curve analysis
We have written statistical code to implement decision
curve analysis and its extensions. In Stata, we have created
two commands: dca for a binary outcome and stdca for a
survival-time outcome; corresponding Stata ado and help
files are available for both commands. For dca, the user
inputs a binary outcome variable and one or more predic-
tor variables. Within the command, the user has the
option to plot the decision curve or save the points of the
decision curve to a Stata data file. To calculate a decision
curve in the absence of outcome data, the user specifies
the predicted probability from the model as both the out-
come and the predictor variable. For stdca, the user inputs
the predictor variables (the data must already be declared
as survival-time data using stset) and a timepoint of inter-
est. The output is similar to that of dca. In R, we have cre-
ated two R functions: dca.R and stdca.R. These functions
are implemented similar to the Stata commands, how-

ever, in stdca.R the user must also specify as inputs the
time and failure variables. The Stata and R code can be
found at http://www.decisioncurveanalysis.org along
with tutorials on using the code (including survival time
data, multivariable models, joint and conditional mod-
els), discussions of how to interpret decision curves, and
code to implement correction for overfit by repeated 10-
fold cross-validation.

Conclusion
In this paper, we have described four extensions to deci-
sion curve analysis: correction for overfit, confidence
intervals, application to time-to-event data and applica-
tion to data sets where outcome or predictor data are
unknown. All of these extensions are based on straightfor-
ward methods that have previously been described in the
literature for application to analogous statistical tech-
niques.

Decision curve for complete data set calculated directly from predicted probabilitiesFigure 8
Decision curve for complete data set calculated directly from predicted probabilities.
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