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Abstract
Background: Different methods have recently been proposed for predicting morbidity in intensive care
units (ICU). The aim of the present study was to critically review a number of approaches for developing
models capable of estimating the probability of morbidity in ICU after heart surgery. The study is divided
into two parts. In this first part, popular models used to estimate the probability of class membership are
grouped into distinct categories according to their underlying mathematical principles. Modelling
techniques and intrinsic strengths and weaknesses of each model are analysed and discussed from a
theoretical point of view, in consideration of clinical applications.

Methods: Models based on Bayes rule, k-nearest neighbour algorithm, logistic regression, scoring systems
and artificial neural networks are investigated. Key issues for model design are described. The
mathematical treatment of some aspects of model structure is also included for readers interested in
developing models, though a full understanding of mathematical relationships is not necessary if the reader
is only interested in perceiving the practical meaning of model assumptions, weaknesses and strengths
from a user point of view.

Results: Scoring systems are very attractive due to their simplicity of use, although this may undermine
their predictive capacity. Logistic regression models are trustworthy tools, although they suffer from the
principal limitations of most regression procedures. Bayesian models seem to be a good compromise
between complexity and predictive performance, but model recalibration is generally necessary. k-nearest
neighbour may be a valid non parametric technique, though computational cost and the need for large data
storage are major weaknesses of this approach. Artificial neural networks have intrinsic advantages with
respect to common statistical models, though the training process may be problematical.

Conclusion: Knowledge of model assumptions and the theoretical strengths and weaknesses of different
approaches are fundamental for designing models for estimating the probability of morbidity after heart
surgery. However, a rational choice also requires evaluation and comparison of actual performances of
locally-developed competitive models in the clinical scenario to obtain satisfactory agreement between
local needs and model response. In the second part of this study the above predictive models will therefore
be tested on real data acquired in a specialized ICU.
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Background
Different quantitative approaches are frequently used in
medical practice to estimate the risk of mortality and mor-
bidity (severity-of-illness) of critical patients [1-4]. Partic-
ular attention has been paid to patients after heart surgery
in order to improve patient outcomes and improve assess-
ment of the advantages and limits of this costly, high-pro-
file surgery [4]. Many studies have been addressed to
developing models to predict the onset of serious postop-
erative complications [5-8]. However, although heart sur-
gery is one of the commonest operations in the western
world and much data is available, it is difficult to model
because of the low event rate and the huge number of var-
iables routinely collected. Certain variables are consist-
ently, reliably and reproducibly related to successful
prediction of morbidity, whereas many others are not so
reliable [7,9-11].

A general point that has given rise to many controversies
is the effective exportability of any predictive model to
clinical scenarios different from those in which the model
was designed [1,5]. Previous papers have demonstrated
that morbidity models developed in a specific intensive
care unit (ICU) may not be suitable for other ICUs [5,12-
14]. However, for benchmarking purposes, one may want
to use the same model, say one based on national data, for
all hospitals in the country in question. Customizing the
model locally to each hospital would make each hospital
appear normal, or average, rather than possibly an outlier
in relation to the national norm.

Three principal approaches have been used for cardiac
surgery risk modelling [4]: logistic regression (LR), Bayes
rule and artificial neural networks. The logistic regression
approach [15] is perhaps the most common technique
used to develop multivariate statistical models to predict
morbidity and mortality risk after coronary artery bypass
grafting. These models have become very popular in clin-
ical practice since they were transformed into score sys-
tems, eliminating computational difficulty in clinical
application [7]. In these very attractive models, a risk score
is simply estimated by adding several integer coefficients
for certain clinical evidence. To this end, any predictive
variable has to be categorized by empirically identifying
cut-off values which define a risk jump. Although such
numerical scoring systems suffer from the subjective
choice of cut-off values and a rounding mathematical
operation reducing model performance, they have had
great success because of their computational simplicity
and satisfactory performance in predicting mortality
[7,8,11,16-20].

More complex models may be significantly more accurate
than simple score models, although they often require
special software programs to estimate the risk of morbid-

ity. Algorithms derived from the Bayes theorem can be
valid alternatives to score systems [21,22]. Other
advanced models, such as artificial neural networks, have
also been investigated for improving the accuracy of clin-
ical risk prediction [2,3].

Many studies have compared the performance of different
models [23-28]. Asimakopoulos and colleagues [23]
investigated the suitability of six different risk stratifica-
tion systems for estimating mortality risk and comparing
surgical performance between institutions or surgeons.
They pointed out that all score systems perform moder-
ately at ranking patients and may be useful for patient
management. On the contrary, Bridgewater and col-
leagues [24] tested four score models and demonstrated
differences between the British and American heart sur-
gery populations and that North American algorithms are
not useful for predicting mortality in the United King-
dom. They therefore advised great care in using methods
of this type to compare units and surgeons. Tu and col-
leagues [25] observed that their LR and artificial neural
network models learned similar relationships between
patient characteristics and mortality after coronary artery
bypass graft surgery. Lippmann and Shahian [26] were
not able to demonstrate that artificial neural networks led
to significant improvements over logistic or Bayesian
models. Knuiman and colleagues [27] compared four
approaches for estimating risk of death from coronary
heart disease, concluding that there was good, but not
excellent, agreement between the methods in estimates of
risk for individuals. Marshall and colleagues [28] proved
that LR models offer the best overall performance, though
other approaches (such as models based on Bayes rule)
are good alternatives. More recently, Bayesian statistical
models were shown to achieve performances equivalent
to those of pure LR but significantly better than LR-
derived scoring systems [5].

A salient review of major risk models in cardiac surgery is
given in a recent paper [4] that focuses more on funda-
mental aspects of model development, validation, limita-
tions, current uses and prospects for the future than on
model structure. Krumholz [29] and Omar and colleagues
[30] highlighted many unresolved issues in modelling
risk in cardiovascular medicine and underlined the need
to increase literacy regarding risk-adjustment approaches
and to pursue methodologically rigorous research to
address the gaps in physicians' knowledge of them.

The above considerations prompted us to critically review
the characteristics of a number of popular approaches
which can be used to estimate the probability of class
membership in a unitary framework. Bayes rule, k-nearest
neighbour method, logistic regression, score systems and
artificial neural networks were examined and their per-
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formances compared, considering essential issues in
model development and evaluating assumptions and ade-
quacy. The present study it is not an exhaustive review of
multivariate modelling methods that could be used in the
task of predicting the probability of morbidity in heart
surgery patients, because only more popular approaches
were taken into account.

The study is organized in two distinct parts. In this first
part we describe a variety of models to predict morbidity
risk probability in the ICU and discuss their theoretical
advantages and disadvantages. Model structure, predictive
properties and effectiveness of clinical use are analysed
and compared, independently of application to real data.
The mathematical treatment of some aspects of model
structure is also included for readers interested in develop-
ing models, though a full understanding of mathematical
relationships is not necessary if the reader is only inter-
ested in perceiving the practical meaning of model
assumptions, weaknesses and strengths from a user point
of view. In a second part we will apply the same models to
real patient data acquired in a specialized postoperative
cardiac ICU and compare their performance, providing
guidelines for model choice.

Key issues for model design
Clinical framework
Intensive care after heart surgery involves acquisition and
analysis of many preoperative, intraoperative and postop-
erative variables for clinical assessment of patient status.
Many may be associated with risk of morbidity after
admission to the ICU [7,8].

In the medical literature morbidity has been defined in
many different ways but in heart surgery it is always con-
cerned with development of one or more severe cardio-
vascular, respiratory, neurological, renal, infectious or
hemorrhagic complications [7,8,22,31,32].

Predictive models
Various pattern recognition approaches can be used to
design models to separate and classify patients into differ-
ent prognostic classes [33,34]. Many applications, how-
ever, require more than simple classification. In
particular, probability estimates are central in medical
decision-making, allowing decision makers to incorpo-
rate costs/benefits for evaluating alternatives. In the
present study eight different predictive models for esti-
mating the probability of morbidity risk on admission to
ICU after heart surgery were considered: two Bayesian
models [33,35,36], a k-nearest neighbour model [33], a
logistic regression model [15], two integer score models
[5,7] and two feed-forward artificial neural networks
(ANNs) [2,34]. Although these models are not the only
ones which can be used to estimate the probability of

morbidity risk in cardiac surgery patients [27,28], they are
certainly the most popular in this field [4], except for near-
est-neighbour models which we decided to consider here
because of certain interesting theoretical properties which
justify their use in other biomedical applications [37,38].

Given the set of chosen predictor variables, x, all models
provide a class-conditional probability, P(M | x), of prog-
nostic risk of morbidity, M. Their use for classification
implies the choice of a probability threshold value, Pt,
over/under which patients are recognized to be on a mor-
bid/normal course. In other words, patients are assigned
to the morbidity class when P(M | x) > Pt. The choice of Pt,
depending on the clinical cost of a wrong decision, influ-
ences the classification performance of the algorithm
[33,39].

Model prediction power is usually expressed by discrimi-
nation, calibration and accuracy [1,2,33,40]. Discrimina-
tion capacity is a key target to be optimized in any
predictive model. An ICU morbidity model shows high
discrimination capacity when it correctly distinguishes
patients who will develop at least one complication from
patients on a normal course. However model generaliza-
tion properties (namely the ability to show similar per-
formances in different samples from a given population)
must be checked when optimizing discrimination capac-
ity during model design [2,34,41]. Great care should be
exercised when using models for individual therapeutic
choices and prognostic purposes. In this case model opti-
mization to local data (such as customization to the spe-
cific institution) may be an important target, because
differences between populations may affect model per-
formance [24,29]. This optimization concerns many
important procedures that must be followed to ensure the
highest possible model discrimination power. Among
other things, it includes model choice and updating [42].
When predictive models are used to estimate the proba-
bility of morbidity, it is also fundamental to test the extent
to which predicted probabilities match observed ones,
namely calibration [40,43,44]. Of course, the concept of
calibration is meaningless for a hypothetically perfect pre-
dictive model. Other important targets are simplicity of
model use in clinical routine and effectiveness of imple-
mentation.

Generalization
Generalization is of crucial importance for predictive
models designed on a sample data set of correctly classi-
fied cases (training data) [34,41]. It is defined as the
capacity of the model to maintain the same predictive per-
formance on data not used for training, but belonging to
the same population. It is therefore estimated by testing
model performance on a different data set of correctly
classified cases (testing data). The model generalizes well
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when predictive errors in testing and training data sets do
not differ significantly. Models have to be designed with
efficient control of the training process to improve gener-
alization power. Theoretically, the optimal model is the
simplest possible model designed on training data which
shows the highest possible performance on any other
equally representative set of testing data. Excessively com-
plex models tend to overfit, which means they show an
error on the training data significantly lower than on the
testing data. Overfit is a sort of data storage precluding the
learning of prediction rules. It must be avoided since it
causes loss of generalization.

To prevent overfitting and improve generalization, vari-
ous methods can be applied directly during model design
[34,41]. The leave-one-out method of cross-validation [45]
is a suitable approach for all models except ANNs. For
ANNs the early stopping method is preferred because of
computational difficulties, principally due to initializa-
tion of the training algorithm. Finally, proper reduction of
the number of predictor variables makes model generali-
zation less problematic [39].

Leave-one-out
The leave-one-out (LOO) approach is particularly useful
in biomedical applications where samples of available
cases are generally small, since it allows all cases to be
used efficiently for training the model as well as for testing
its predictive performance, though this procedure is com-
plex and time consuming. Given n correctly classified
cases, n different combinations of n - 1 cases are used for
n training sessions. The n cases left out (one per session)
are used to calculate the error. LOO procedure gives a reli-
able estimate of the prediction error with less bias than
other cross-validation methods and it allows good control
of model generalization capacity using all available data
for training. In most cases, however, it may be better also
to evaluate model generalization on a test set of data not
used in the training process.

Early stopping
The early stopping (ES) method divides the available data
into training and validation sets. The control of generali-
zation for ANNs is carried out directly during an iterative
process of learning. At each iteration (epoch) the ANN is
trained using training data, and the error is computed on
both the training and validation sets. During the first
phase of learning, both training and validation errors
decrease, but, from a given epoch (the ES epoch) onward,
the validation error increases as the network starts to over-
fit, while the training error continues to decrease. Overfit-
ting can be prevented by stopping the training process at
the ES epoch [34].

The ES method is largely employed for training ANNs
because of its very fast computational time. However it is
crucial to realize that the validation error may not be a
good estimate of the generalization error. One method for
obtaining an unbiased estimate of the generalization error
is to test ANN on a third set of data that was not used dur-
ing the training process. When comparing different mod-
els using the same training and testing data sets, it can
however be convenient to avoid the use of three data sets.

Stepwise feature selection
Another well-known source of generalization loss is the
use of too many predictor variables in the model
[33,34,39,41,46]: the greater the number of predictor var-
iables, the greater the number of model parameters to be
estimated. So, for a given training set, model parameter
estimates sharply deteriorate as the number of predictor
variables increases. The immediate consequences are a sig-
nificant loss of model generalization.

Different groups of predictor variables may provide
largely overlapping information and subsets of them may
maintain similar predictive power. It is therefore conven-
ient to select the best minimum subset of predictor varia-
bles (also named features). To select a minimum subset of
features allowing optimization of model generalization, a
computer-aided stepwise technique can be used [47],
together with the LOO (or ES for ANNs) method
described above. At each step of the process, a variable is
entered or removed from the predictor subset on the basis
of its contribution to a statistically significant decrease in
the LOO discrimination error (or ES error for ANNs). The
stepwise process stops when no variable satisfies the crite-
rion for inclusion or removal.

Discrimination: receiver operating characteristic curves
The discrimination capacity of an ICU morbidity predic-
tive model assesses model performance in correctly
assigning patients to classes with different outcomes.
Many criteria exist for evaluating discrimination capacity
[33,34]. A common way for binary diagnostic models is to
evaluate sensitivity (SE) and specificity (SP), describing
the fractions of correctly classified morbid and normal
patients, respectively [48]. Generally, SE and SP depend
on the chosen probability threshold (decision probabil-
ity, Pt) to which the model-predicted probability of mor-
bidity is compared [48].

A receiver operating characteristic (ROC) curve is a
graphic representation of the relationship between the
true-positive fraction (TPF = SE) and false-positive frac-
tion (FPF = 1 - SP) obtained for all possible choices of Pt.
Figure 1 illustrates an example of an empirical ROC curve,
obtained from sample data in an ICU, using patient age as
the only predictor, the numerical values of which are plot-
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ted under the ROC line. Note that the intersection
between the dashed diagonal and ROC lines indicates the
point where SE equals SP. The choice of a decision proba-
bility threshold Pt corresponding to the ROC curve point
of equal SE and SP leads to the same error rate in identify-
ing normal and morbid patients. Different discrimination
criteria, i.e. different pairs of SE and SP, may be chosen,
depending on the clinical cost of a wrong decision [33].

In medical applications the area under the ROC curve
(AUC) is the most commonly used global index of dis-
crimination capacity, although alternative indices can be
used [49-51]. The AUC can be interpreted as the probabil-
ity that a patient randomly selected from the morbidity
group will have a diagnostic marker indicating greater risk
than a randomly selected patient from the normal course
group [52].

AUC can be readily calculated from data samples using an
empirical method involving numerical integration of the
ROC curve [51]. The bootstrap resampling method can be
used to estimate confidence intervals for AUC [51,53].
Bootstrapping amounts to resampling the original data set
(parent sample), with replacement, to generate a number
of bootstrap samples. In traditional applications the size
of a bootstrap sample equals the parent sample size.

Calibration
The agreement between model-predicted and true proba-
bilities is known as calibration or goodness of fit
[2,15,40]. It is independent of discrimination, since there
are models that have good discrimination but poor cali-
bration. A well-calibrated model gives probability values
that can be reliably associated with the true risk of devel-
oping outcomes.

For dichotomous outcomes, true risk probabilities cannot
intrinsically be known. In fact, retrospective data only
provides dichotomous responses, such as presence or
absence of morbidity. Nevertheless, it is sometimes useful
to estimate the occurrence of these events using a contin-
uous scale. For example, in ICU morbidity prediction, a
probabilistic estimate of the patient's outcome is usually
preferred to a simpler binary decision rule.

When evaluating the calibration of LR models with
dichotomous outcomes, the Hosmer-Lemeshow (HL)
method is a commonly used goodness-of-fit test, which is
based on chi-squared statistics comparing expected and
observed frequencies of outcomes [15]. Two formulations
of HL statistics exist, depending on whether the statistics
are derived using fixed deciles of risk, -statistics, or by par-
titioning observations into equal sized groups according
to their predicted probabilities, )-statistics. Generally, )-
statistics is preferred because it avoids empty groups,
despite being heavily dependent on sample size and
grouping criterion [1].

Although the HL test was developed for LR models and its
)-statistics may not be completely appropriate for models
with discrete outputs (such as score systems), it can never-
theless be applied to any predictive model, sometimes
opportunely recalibrated to improve goodness of fit.

Accuracy
The mean squared error, MSE, between model predicted
probability and observed binary outcomes is often taken
as a single global index of model prediction performance
and is known as accuracy. For a sample of n cases, it is
defined as

where Oi is the observed outcome in the i-th case, which
takes a value of 1 or 0 for morbid and normal patients,
respectively, and xi is the corresponding predictor vector.

MSE can be decomposed into three addends, that account
separately for calibration, discrimination and sample data
properties [54].

MSE
Oi P M i

n
i

n

= −

=
∑ [ ( | )]x 2

1

(1)

Example of a receiver operating characteristic (ROC) curve obtained using patient age as only predictorFigure 1
Example of a receiver operating characteristic (ROC) curve 
obtained using patient age as only predictor. Numerical val-
ues of ages are plotted under the ROC line. FPF and TPF 
denote false-positive and true-positive fractions, respectively. 
Diagonal dashed line intersects ROC curve at point where 
sensitivity (SE) and specificity (SP) are equal (71 years in the 
example).
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Model recalibration
A major requirement of any predictive model is that it
adequately reflect risk in the population evaluated. When
model performance is inadequate, the user can apply suit-
able methods to improve model function [42-44,55,56].
Some methods change model discrimination and calibra-
tion, whereas others only modify model calibration [43].
In other words, in the case of a predictive model of mor-
bidity probability with good discrimination and poor cal-
ibration, it is possible to improve calibration without
modifying discrimination capacity [57]. In fact it is intui-
tive that a monotonic mathematical transformation of
model predicted probabilities does not change AUC but
may change calibration.

De Long and colleagues [43] applied two simple monot-
onic transformations to the mortality probability esti-
mated by logistic regression in patients after coronary
artery bypass surgery. The first transformation (prevalence
correction) is a constant correction term which was added
to each patient's risk score; the second (modelling the risk
score) recalibrates the model predicted probability by a
linear regression approach.

Complex models designed to optimize performance in
discriminating binary events tend to create a bimodal
probability distribution. In this case the relationship
between actual and model predicted probabilities could
be better approximated by using other appropriate meth-
ods (e.g. polynomial regression, B-splines or similar). For
example a convenient recalibration of model predicted
probability may be obtained by cubic monotonic polyno-
mial fitting:

where d must be set equal to c2/(3b) to ensure that the
cubic polynomial is a monotonic function. P concisely
indicates the morbidity risk probability, that is P(M | x),
and Prec is the corresponding recalibrated value. The rela-
tionship in equation2 ensures that the recalibrated prob-
ability takes values between 0 and 1.

Polynomial coefficients a, b and c can be estimated from
training data using a least square algorithm to minimize
the expression of MSE. A minimum MSE means a maxi-
mum calibration, because the monotonic transformation
of equation2 does not influence model discrimination or
sample properties, that is, the other two addends of the
linear decomposition of MSE (see previous subsection).
Recalibration effectiveness can also be evaluated on test-
ing data.

Although different more complex recalibration functions
may provide better recalibration on training data, they are
inadvisable because they can cause loss of generalization.
Recalibration should only be done for models for which
the benefit is evident. In particular, well-designed LR
models are usually also well calibrated.

Clinical implementation
In addition to predictive capacity, other key characteristics
for the clinical success of a predictive model, are simplicity
and effectiveness of application, which include easy cus-
tomization to local conditions and/or institutions, easy
updating with new data, computational facility, tolerance
to missing data and ability to provide supplementary clin-
ical information.

Customization
Risk prediction models developed in a different institu-
tion require local validation and tuning before they can be
used to provide risk-adjusted outcomes [5]. Model cus-
tomization to local conditions is necessary because clini-
cal practices are difficult to standardize and because
patient populations differ. For example, different medical
protocols could provide different sets and types of varia-
bles at different times of measurement. Model customiza-
tion implies that feature selection be repeated and new
model parameters be estimated from locally-available
data. A periodic reassessment to account for new measure-
ments and protocols and to ensure that tuning is main-
tained, is also beneficial.

Updating
The capacity of a predictive model to learn from new cor-
rectly-classified cases, day by day, is an import index of
quality, especially in clinical practice where data is usually
scarce and training on new data becomes of crucial impor-
tance. For any model, the whole model design should the-
oretically be repeated when adding a new case to a
training set. However, only simple and rapid procedures
of model updating are generally acceptable, because the
largest proportion of care and time should be dedicated to
optimization of patient treatment.

Computational facility
Score models are much preferred by clinicians because
they do not require the use of computers for classification
of a new test case. Computation facility, greatly appreci-
ated in clinical practice, should however be carefully eval-
uated in conjunction with predictive accuracy, because the
two are often inversely correlated. Too many simple mod-
els may be useless or even counterproductive, giving a
misleading estimation of a patient's clinical risk.

Furthermore, the software for data acquisition, manage-
ment and processing may also be model dependent: for

P
a bP cP dP

rec =
+ + + +

1

1 2 3exp( )
(2)
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example, models requiring fewer predictive variables have
a simpler data entry procedure.

Tolerance to missing data
In clinical practice, data can be missing for many reasons,
such as the impossibility of making a reading or priority
of prompt clinical intervention over data acquisition. In
certain types of models, missing data can be replaced by
suitable procedures, with negligible or tolerable loss of
predictive performance.

Supplementary clinical information
Additional information of clinical interest can also be
obtained. For example, some models allow newly classi-
fied clinical cases to be simply associated with previous
similar cases, providing a useful tool for interpretative and
comparative diagnosis. Other models are particularly con-
venient for simulation purposes, such as for evaluating
changes in prognostic probability due, for example, to
contemplated therapy which may modify the values of
certain predictive variables.

Model description
Bayesian models
Let x be an observed predictor vector and let our aim be to
determine whether x belongs to the class of morbidity
class or of normal course. The Bayes rule enables predic-
tion of the posterior conditional probability of morbidity
class, as follows [33,35,36,39,58]

where P(M) is the prior probability of morbidity, P(N) =
1 - P(M) is the prior probability of normal course and p(x
| M), and p(x | N) are the class-conditional probability
density functions (CPDFs) for morbid and normally
recovering patients, respectively.

Likewise, the posterior conditional probability of normal
course is

A reasonable discrimination criterion would be to assign
patient x to the class with the largest posterior probability,
thus obtaining the Bayes decision rule for minimum error
[33]. This means setting the posterior class-conditional
probability threshold (Pt) equal to 0.5, that is, x is
assigned to class M if P(M | x) is greater than 0.5 and oth-
erwise to class N. However, the decision rule may be for-
mulated using somewhat different reasoning. Often, in
medical applications, the decision rule must account for

the cost of a wrong decision. In this case, a cost can be
assigned to each correct and wrong decision and Pt is cho-
sen to obtain the minimum risk decision rule [33]. From
a purely mathematical point of view, the selection of costs
is equivalent to a change in prior probabilities. Conse-
quently, the decision rule only gives the minimum risk if
P(M) and P(N) do not change, but if prior probabilities
vary, the fixed threshold value no longer gives the mini-
mum achievable risk.

When prior probabilities may vary, it is possible to design
the threshold value so that the maximum possible risk is
minimized, regardless of changes in prior probabilities
(minimax risk decision rule). In particular, setting the cost
of a correct decision equal to 0 and assuming equal costs
for wrong decisions, the boundary for the minimax risk
decision rule satisfies the following relationship [33]

where N and M are the regions in the x domain where we
decide that x belongs to classes N and M, respectively. In
other words, the decision boundary is selected such that
the error percentages for both classes are equal. This
amounts to assigning equal values to SE and SP.

Besides prior probabilities, the above Bayes rule requires
that the class-conditional probability density functions be
known for morbid and normally recovering patients. In
the clinical field, such CPDFs must be estimated using a
finite number of observed cases. If no assumptions are
made, these functions have to be estimated from the train-
ing set using non-parametric methods [39]. However, the
great majority of applications still rely on various para-
metric hypotheses. Very often normal CPDFs are
assumed, since in many cases this choice provides a sim-
ple and robust method of discrimination, especially when
many variables are available and a subset of them has to
be selected [5,33,39,59]. Under this hypothesis the CPDF
of group i (i = M or N) is given by the multivariate normal
probability density

where i and i are the mean and the covariance matrix of
class i, d the number of predictor variables used for dis-
crimination and superscript T indicates matrix transposi-
tion. The CPDFs in equation6 can be easily estimated and
locally tuned, since they require only the calculation of
group means (M and N) and covariance matrices (M
and N) from training data.

P M
p M P M

p M P M p N P N
( )

( | ) ( )
( | ) ( ) ( | ) ( )

| x
x

x x
=

+
(3)

P N P M
p N P N

p M P M p N P N
( ) ( )

( | ) ( )
( | ) ( ) ( | ) ( )

| |x x
x

x x
= − =

+
1

(4)

p M d p N d
N M

( | ) ( | )x x x x
Γ Γ∫ ∫= (5)

p i
d i i i i( | )

( ) /
| | exp ( ) ( )/x x x= − − −⎧
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Based on hypotheses about class covariance matrices, two
parametric Bayesian models can be developed [33]: the
first approach estimates a different covariance matrix for
each class from the training set and leads to the so-called
Bayes quadratic (BQ) classifier, because the decision
boundary is given by a quadratic form in x, while the sec-
ond approach assumes homoscedastic distributions and
leads to the Bayes linear (BL) classifier characterized by a
linear decision boundary. For the BL model the covari-
ance matrix is estimated as the pooled within-sample cov-
ariance matrix.

The k-nearest neighbour model
The k-nearest neighbour (kNN) allocation rule is a
method for classifying patients based on non parametric
estimation of class-conditional probability density func-
tions [33]. Briefly, the training phase of the algorithm
consists of storing the predictor vectors and class labels of
the training samples and mapping the class labels of train-
ing cases into multidimensional predictor space. In the
classification phase, the same predictors as before are
acquired for the test case (the class of which is unknown).
Distances from the new vector to all stored vectors are
computed and k closest cases are selected. The new case is
predicted to belong to the most numerous class in the
neighbourhood of k closest cases. Euclidean distance is
usually used. Thus multidimensional predictor space can
be simply partitioned into regions by assigning each point
in the space to the class which is the most popular among
the k nearest training cases.

Neighbourhood size is essential in building the kNN clas-
sifier because it can strongly influence the quality of pre-
dictions; larger values of k can reduce the effect of noise on
the classification but make boundaries between classes
less distinct. Typically, k should depend on the size of the
training set [33]. A common and simple heuristic choice
is setting k equal to the square root of the number (n) of
cases in the training set [60], although different choices
are possible (for more details see Discussion). In Part II of
our study the value of k was set at

where the operator round indicates rounding to the near-
est integer.

The model predicted conditional probability of morbidity
can be estimated as follows

P(M | x) = kM/k (8)

where kM is the number of morbid cases in the training
neighbourhood of k cases. In particular, equation8 corre-
sponds to the Bayes decision rule for minimum error if the

prior probability of morbidity P(M) is assumed equal to
nM/n, where nM indicates the number of morbid cases in
the training set [33].

Logistic regression model
Binomial (or binary) logistic regression is a form of regres-
sion which can be used to predict outcome probability
when the dependent variable is dichotomous and the
independent predictor variables are of any type
[15,33,39]. Predictors may be a combination of continu-
ous and categorical variables. Multinomial logistic regres-
sion exists to handle the case of dependent variables with
more than two classes [61,62]. When multiple classes of
the dependent variable can be ranked, then ordinal logis-
tic regression is preferred to multinomial logistic regres-
sion [61]. Continuous variables are not used as dependent
variables in logistic regression.

When considering morbidity of ICU patients the outcome
is a dichotomous variable which can be binarized as 1 and
0 for morbidity and normal clinical course, respectively
(binary LR). Though the binary LR model is used for a cat-
egorical dichotomous variable, the output is a continuous
function (S-shaped curve) that represents the outcome
probabilities associated with being in a specific category
of the dependent variable. The conditional probabilities
of outcome are expressed as

where the constant  and the vector of coefficients  are
the model parameters. Data from a training set are used to
obtain the maximum likelihood estimates of these LR
model parameters [48].

The ratio P(M | x)/[1 - P(M | x)], termed the odds of mor-
bidity, is given by

so that the natural logarithm of the odds (called the logit)

is a linear function of x. The parameters of the logistic
regression model can therefore be interpreted as the
regression coefficients of equation11 and exponentiating
these parameters provides the odds ratio corresponding to
a one unit change in each independent predictor variable.
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Integer score models
The Higgins score model
Higgins and colleagues proposed a procedure for design-
ing a simple-to-use score model (HS model) for predict-
ing morbidity risk on admission to ICU after coronary
artery bypass grafting [7]. The design of this type of model
first requires the development of a LR model as discussed
in the previous subsection. After the LR model has been
built using a forward stepwise selection procedure for the
choice of a subset of predictor variables xi (i = 1, 2,...,d),
each continuous predictor is categorized using a locally
weighted scatterplot procedure to subjectively identify
cut-off points on the basis of training data. Then a new LR
model is again developed using predictors as categorical
variables. Finally, a numeric score si is given to each pre-
dictor by multiplying the estimate of the corresponding
parameter i of this second LR model by 2 and rounding
the result to the nearest integer [7]. Given a test patient x
to classify, all observed predictor values (xi) are compared
to the associated model cut-off points. Whenever this
comparison gives a categorical variable value correspond-
ing to an increased risk of morbidity, the associated score
si is added to model score. Thus the model score for the
test patient x is obtained as follows

where d is the number of predictors in the model, si the
score associated with the ith predictor and i a coefficient
assigned a value of 0 or 1 after comparison of xi with the
corresponding cut-off point.

In the original paper of Higgins and colleagues the risk
levels of test patients were categorized on the basis of sim-
ilar outcomes in the training set, because mortality and
morbidity risks were both taken into account in develop-
ing the score model. For example, in that paper patients
with a score s less than 5 at ICU admission were classified
at a risk level of less than 1% for mortality and less than
5% for morbidity [7]. When the model is developed
accounting only for one type of outcome (morbidity), an
alternative approach can be to directly estimate the prob-
ability of morbidity for a test patient x by dividing the
value obtained for s by its maximum possible value given
by

Direct score model
An alternative approach to the Higgins one can be to
directly select a weighted combination of binarized pre-
dictor variables to be summed to obtain the model output
as an integer score of morbidity risk. We refer to this

model as the direct score (DS) model. More in detail, in
this approach all predictor variables have to be coded to
binary values (0 or 1) on the basis of their association
with ICU morbidity. Thus continuous variables are bina-
rized by selecting suitable cut-off points, defining corre-
sponding values for sensitivity and specificity [48]. Once
a cut-off point for a continuous variable has been chosen,
the resulting 2 × 2 classification matrix on training data
allows the computation of SE = TP/(TP+FN) and SP = TN/
(TN+FP), where TP, TN, FP and FN are true positives, true
negatives, false positives and false negatives, respectively
[63]. Of course, SE and SP both vary, changing the cut-off
point. A suitable choice can be made setting the cut-off
point so that SE and SP are equal; with reference to the
example of Figure 1, this choice corresponds to an age of
71 years. Thus each continuous variable can be binarized,
comparing its value with the established cut-off point.

Whenever a variable is binary coded, its discrimination
power must be evaluated on the basis of the correspond-
ing confidence interval of the odds ratio [64], so that only
binary variables with an odds ratio significantly greater
than 1 are considered likely to be chosen as risk predictors
from the final selection of model features carried out
using a forward stepwise method.

At the first step, the forward method of feature selection
chooses the binary variable with the highest AUC on the
training data. At any subsequent step the variable giving
the highest increment to AUC is entered. The procedure
stops when no appreciable increment to AUC occurs. The
model integer score is simply computed by summing the
binary values of the selected variables. At each step, for-
merly selected variables are also reconsidered for entry
into the model. This allows the model to give different
weights (scores) to each predictor variable by adding its
corresponding binary value several times. Like the HS
model, the output of the DS system for test patient x can
therefore be obtained using equation12, where si is the
weight given to the ith model predictor. Since the DS
model does not have a parametric mathematical structure,
backward sessions and the LOO procedure for cross-vali-
dation cannot be applied.

The class-conditional model probability of morbidity risk,
P(M | x), is estimated dividing the integer score obtained
for patient x by its maximum possible value, given again
by equation13.

Artificial neural networks
The starting point of artificial neural networks is quite dif-
ferent from that of statistical models. Neural networks are
generic learning systems [34]. Although ANNs directly
estimate class-conditional probabilities, the model design
parameters are meaningless [2,34]. The LR approach also
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estimates such probabilities directly but the model param-
eters have simple interpretations in terms of natural loga-
rithms of odds, that are easily understood by subject-
matter researchers.

Two feed-forward ANN architectures are considered here:

• ANN1: the simplest possible feed-forward ANN archi-
tecture, with only one output neuron, the so-called single
layer perceptron;

• ANN2: containing two layers, a hidden layer with two
neurons and an output layer with one neuron, respec-
tively.

The number of inputs of ANN1 and ANN2 is equal to the
dimension d of the vector x of selected features. Both have
one output neuron designed to estimate the probability of
morbidity risk through a logistic sigmoid (logsig) activa-
tion function, generating an output y between 0 and 1.
The function logsig is defined as

where g is

g = w¨u + b (15)

and u is the neuron input vector, w the weight vector and
b the bias [34]. It is interesting to observe that
equations14 and 15 express the same mathematical rela-
tionship as equation 9.

For the single layer network ANN1, the input vector u of
the output logsig neuron is simply the feature vector x of
the test patient, whereas for ANN2 it is the outputs yi (i =
1,2) of the hidden layer characterized by the following
hyperbolic tangent sigmoidal (tansig) activation function

where gi is defined as for equation15.

Each predictor variable xi (i = 1, 2,...,d) is standardized
before presentation to the network, so as to have zero
mean and unit standard deviation, because standardiza-
tion has been shown to increase the efficiency of ANN
training. Weight vectors and biases are the ANN parame-
ters to estimate by iterative learning procedures. Of
course, ANN2 has more parameters to estimate than
ANN1.

Feed-forward ANNs for classification, designed with one
output logsig activation function, have proven able to pro-
vide reliable estimates of class-conditional probabilities,
such as P(M | x) and P(N | x) [34].

The ANN output (target) is set equal to 1 for training
examples of morbid and 0 for normal course patients.
Usually the mean square error MSE, i.e. the mean of the
squared differences between real and network predicted
outputs, is minimized to estimate ANN parameters. The
dependence of the solution on training procedure initial-
ization can be limited by running many training sessions
from as many different randomly-selected initial condi-
tions, and choosing the session corresponding to the 50th

sorted value (median) of AUC.

Discussion
In any application, the choice of an optimal model is
rarely univocal and cannot be made a priori. For clinical
decisions, users should prefer simple intuitive models to
complex ones, but this preference should be evaluated in
the light of model fit to the experimental data. An exces-
sively simple model may be unable to provide good fit of
the data. On the other hand, the prediction results
obtained using highly complex models, which may fit the
data very well, may not allow an immediate and intuitive
interpretation in terms of cause and effect from a clinical
point of view. The choice of a predictive model can there-
fore generally be made only a posteriori, after the training
process and after model performance and its characteris-
tics have been evaluated on a suitable test set. In Part II of
this study, the working of the above models will be com-
pared using clinical data acquired in a specialized ICU.

In the following subsections the key peculiarities of each
predictive model are analysed from a purely theoretical
point of view, independent of clinical scenarios and real
data. Model advantages and disadvantages are evaluated
and discussed on the basis of design procedures and spec-
ulative characteristics.

Bayesian models
Assuming that class prior probabilities do not vary,
knowledge of the prior probability and class-conditional
probability density function for each class allows the
Bayes decision rule to be optimal in the sense that it min-
imizes the probability of error or the expected cost [5,33].
However, even if the prior probabilities vary, the minimax
test can be used to design a Bayes classifier to minimize
maximum possible risk [33].

The BL model originates from the assumption of normal
CPDF for each class with equal covariance matrices. Nev-
ertheless, in many cases, the simplicity and robustness of
the BL model compensate the loss of performance occa-
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sioned by non-normality or non-homoscedasticity
[33,39,59]. This model is easy to implement in clinical
decision-making, requiring only the knowledge of the dif-
ferent class mean vectors and only one covariance matrix
which can be estimated by a suitable training set [39]. Its
simplicity of application in clinical practice is another sig-
nificant advantage of this approach with respect to other
methods. In fact for recognizing morbidity, the Bayes
decision rule can be expressed as a linear function of the
observation vector, and computed with a hand calculator
[33].

The BQ model is generally more robust than BL though its
clinical application may be slightly more complex and
time consuming from a computational point of view,
because the decision rule is expressed as a quadratic func-
tion of the observation vector.

The BL and BQ models can be easily tailored to a given
institution, because their local customization only
requires the estimation of class mean vectors and covari-
ance matrices (only one covariance matrix for BL). Fur-
thermore both models can be updated in a
straightforward way by entering each new correctly classi-
fied case in the training set, since this simply involves
updating mean vector and covariance matrix estimates by
the following recursive relationships

where (n + 1) and (n + 1) are the estimates of mean

vector and covariance matrix updated according to the

new case x(n + 1) and the previous estimates (n) and

(n). The parameter  is a coefficient weighting later

observations. If  is set equal to 1/(n + 1) all observations
have the same weight irrespective of the time of occur-
rence.

Poor calibration is generally a weakness of Bayes models.
It may therefore be convenient to perform a recalibration
to improve the model's ability to estimate the correct
probability of morbid or normal outcomes in ICU
patients.

The k-nearest neighbour model
The kNN algorithm uses training data directly for classifi-
cation. A key advantage of this non-parametric approach
is that it does not make any statistical assumption about
the data, thus enabling an arbitrary decision boundary.
kNN models are also very easy to update with new data:

each new correctly classified patient can be added to the
training database and used to classify subsequent cases.

Another strength of kNN algorithms over other
approaches is that any new test case can be analysed and
interpreted by comparing it with its k neighbours. This
provides useful insights for clinical interpretation of the
classification results, helping in comparative diagnosis.

However, it is clear that the choice of k is critical, because
it represents a trade-off between local and global approxi-
mations of the model. The optimal neighbourhood size
depends on training data, that is, on the number of cases
and features in the training set. According to the asymp-
totic reasoning of Fukunaga [33], k should be chosen so as
to be proportional to n4/(d+4), where n is the number of
training cases and d is the dimension of the vector for
which the nearest-neighbour density has to be estimated,
with the proportionality constant depending on the
underlying density [65,66]. Nevertheless, in practice, the
choice of k is often necessarily based on the square root of

all possible candidates, that is [60]. Alternatively,

one can also use objective criteria such as generalized
cross validation, which involves determining classifica-
tion accuracy for multiple partitions of the input cases
used in training [65].

The choice of metric for calculating distances between
cases can be another critical point in the design of kNN
models, because model performance also depends on the
measure of distance used. In Part II of the present study,
where the classical Euclidean distance was used, each pre-
dictor variable was standardized by subtracting its mean
value and dividing by its standard deviation.

Computational cost and the need for large data storage are
weaknesses of this algorithm. In fact the kNN algorithm
searches through all the dataset looking for the most sim-
ilar instances. Although fast computers are available
today, this is a time consuming process and may be criti-
cal in data mining where very large databases are ana-
lyzed. Of course, training and customization to a local
institution only become valid when many cases have been
recorded. For a large database, the distance between the
new test case and each training cases must be calculated,
and then distances must be ranked. However, the compu-
tational complexity of the kNN model can be reduced in
several ways [60], for example, sample selection, storing
only a reduced sample (such as prototypical examples of
each class) of the historic database so that fewer distances
have to be computed, or box generation, pre-processing
the whole training set using a balanced box decomposi-
tion tree [67]. On the other hand, techniques for reduc-
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tion of computational complexity generally make
updating the model more complex.

Finally, kNN is also sensitive to the presence of variables
that are irrelevant for classification purposes. All non-par-
ametric techniques have a tendency to overfit the model
when the number of variables used is too large.

Logistic regression model
Logistic regression allows one to predict a discrete out-
come, such as group membership, from a set of independ-
ent predictor variables that may be continuous, discrete,
dichotomous, or a mix of any of these. Indeed, LR does
not require that the independent variables be interval and
unbounded.

Since the natural logarithm of the odds is a linear function
of the observed variables (see equation11), the applica-
tion of a binary LR decision rule may seem to have affinity
with the BL model [39]. However, a key advantage of
binary LR is that only d + 1 parameters (constant  and
vector ), where d indicates the number of independent
predictor variables in the model, are estimated from the
training set, whereas assuming normal CPDF for each
class with equal covariance matrices, the BL model
requires estimation of many more parameters (mean vec-
tors of the two classes and pooled within-sample covari-
ance matrix), that is (d2 + 5d)/2. Moreover the natural
logarithm of the odds is linear in x for a range of different
assumptions about the CPDF of the independent varia-
bles, so that the logistic model is optimal under a wide
range of data types and the assumption of logistic form of
the posterior probabilities generally yields a reasonable
decision rule [39].

The performance of LR models has often been compared
to that of BL classifiers in discrimination problems. A
common conclusion is that the LR approach is preferable
to BL when CPDFs are clearly non-normal or covariance
matrices are manifestly different. Otherwise, the two
approaches generally give very similar results [33,39].

It should also be noted that logistic regression does not
assume a linear relationship between the dependent and
independent variables. Indeed, by assuming a linear rela-
tionship between the natural logarithm of the odds and
the predictor variables, it may handle a variety of nonlin-
ear effects.

Despite the above lack of constraints on the type of inde-
pendent variables and their distribution, LR should only
be used if certain assumptions about these variables are
true [15]. As in most regression procedures, LR is very sen-
sitive to large linear correlations between the predictor
variables in the model [48]. Another crucial point is the

assumption of inclusion of all relevant variables and
exclusion of all irrelevant ones in the regression model.
Furthermore all effects are additive; LR does not account
for interaction effects except when interaction terms (usu-
ally products of standardized independents) are created as
additional variables in the analysis.

A key assumption in LR models is that error terms are
independent. Violations of this assumption can have seri-
ous effects. This occurs, for example, in correlated samples
and repeated measure designs, such as matched-pair stud-
ies and time-series data. Variations of logistic regression
are available to fit correlated or clustered observations
[15,68-70].

A main weakness of LR is that outliers can affect the results
significantly. The researcher should analyse standardized
residuals for outliers and consider removing them or
modelling them separately.

A final remark is that the LR model is not simple to update
with new training data although periodic full retraining
may not cause excessive problems. Like Bayesian models,
its clinical implementation may require the use of a per-
sonal computer, which also allows much other medical
information to be obtained in the ICU.

Integer score models
The Higgins score model
The Higgins score model is derived from a LR model using
a procedure which transforms independent continuous
variables into categorical variables and LR coefficients
into integer scores. These transformations make the HS
model very attractive for clinical applications, because its
routine application in the ICU is simple and does not
require the use of a personal computer. However, this
implies a loss of performance with respect to the original
LR model [5]. The training process is complicated and
partly subjective, the model is less flexible and lower pre-
dictive accuracy can be expected, model customization is
difficult, updating is practically impossible without
retraining and no other reliable clinical information can
be obtained apart from discrimination. All scoring sys-
tems provide a discrete estimate of the class-conditional
probability of morbidity risk and consequently poor cali-
bration.

Direct score model
The direct score system is the simplest model analysed in
the present study. Like the Higgins score model, it suffers
from the empirical nature of the process used for dichot-
omizing continuous variables, which requires the choice
of suitable cut-off points. However setting the cut-off
points so as to obtain equal values for SE and SP makes
Page 12 of 16
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this choice less subjective and allows the same procedure
to be repeated in different ICUs.

The clinical use of this model is very simple, because it
only requires comparison of predictor values measured in
the test patient with the corresponding cut-off points and
then summing of integers to obtain the model-predicted
morbidity score. This great simplicity may not enable suf-
ficient predictive accuracy. Moreover the use of this type of
model implies a discrete estimate of class-conditional
probability and subsequently poor calibration. Finally,
updating requires complete retraining.

Artificial neural networks
Artificial neural networks have recently had many success-
ful applications in medicine [1-4,45]. Key advantages with
respect to common statistical models are: no statistical
assumption about data distribution is required; no math-
ematical model has to be defined; not too much complex
network architecture has to be designed to suitably
approximate any unknown nonlinear relationships
between predictor input variables and output probabili-
ties; the distributed structure of the network may account
for correlations among input variables; ANNs can be
trained with examples like human brains to use acquired
knowledge in decision making; the training process can
be controlled to avoid overfitting and loss of generaliza-
tion capacity.

To solve complex problems many attempts can be made,
increasing the complexity of the architecture by trial and
error or using sophisticated techniques, such as growing,
pruning and genetic algorithms, to find optimal ANN
structure [34]. However prediction of morbidity in the
ICU generally does not require excessively complex mod-
elling, at the risk of uncontrollable overfitting. In this case
it may be preferable to favour system generalization by
using simple models that approximate the real phenome-
non by means of few design parameters.

Considerable difficulties may arise when designing and
using ANNs. The training process is difficult and not uni-
vocal: the problem of initialization is all but trivial; as in
all nonlinear procedures, many different solutions, which
are difficult to compare and interpret, may be obtained;
the complexity of ANN architecture is only roughly defin-
able in terms of number of neurons, layers and connec-
tions.

For the above reasons, only two simple ANN architectures
are considered in Part II of the present study. ANN1 is the
simplest possible feed-forward ANN architecture, having
only one output neuron, the so-called single layer percep-
tron. ANN2 has two layers, a hidden layer with two neu-
rons and an output layer with one neuron. When

predicting the risk of morbidity in the ICU these two
architectures allow a good compromise between ANN
capacity in describing training data and generalization
power. In particular, the simpler one (ANN1) gives the
same input-output nonlinear mathematical relationship
as the LR model, though its parameters are estimated by a
different computational procedure.

The high flexibility and sophisticated training procedures
of ANN models allow very good customization to data of
local institutions, but continuous updating is practically
impossible. Periodic retraining is inadvisable, because of
the complexity of the training process. ANNs should
therefore be trained once and for all, using a sufficiently
large number of cases representative of the study popula-
tion.

Conclusion
Different approaches for developing predictive models of
morbidity in cardiac postoperative intensive care units
have been reviewed in a unitary framework from a theo-
retical point of view. We grouped popular methods into
distinct categories according to their underlying mathe-
matical principles. Modelling techniques and intrinsic
advantages and disadvantages of each predictive model
have been discussed with a view to clinical applications.
Main strengths and weaknesses are summarized in Table
1. Briefly:

1) Integer score models, application of which does not
require a personal computer, are frequently preferred in
clinical practice for their simplicity. However, this sim-
plicity may undermine their predictive capacity which is
generally worse than that of more complex models.

2) k-nearest neighbour algorithms do not make any statis-
tical assumptions about data, are attractive from an inter-
pretative point of view and are very easy to update with
new data. Computational cost and the need for large data
storage are weaknesses of this approach.

3) Logistic regression is a valid approach proven to give
good predictive results in many clinical applications. As in
most regression procedures, it is very sensitive to large lin-
ear correlations between the predictor variables in the
model. LR models are not easily updated with new train-
ing data.

4) Artificial neural networks have intrinsic advantages
with respect to common statistical models and the net-
work architecture needed for clinical prediction problems
is generally not too complex. However, the training proc-
ess is problematical and updating by periodic retraining is
inadvisable.
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5) Bayesian models (especially Bayes quadratic models)
seem a good compromise between complexity and predic-
tive performance. Entering new correctly classified cases
into the training set is a straightforward procedure, since
it merely involves updating the mean vector and covari-
ance matrix estimates using simple recursive relation-
ships. A need for recalibration is generally a weakness of
Bayes models.

Although it is essential to know model theoretical charac-
teristics when a classification problem has to be solved by
predictive models, the final choice of an appropriate
model for a clinical scenario also calls for evaluation and
comparison of the actual performance of several locally-
developed competitive models using real experimental
data in order to find satisfactory agreement between local
needs and model response. In Part II of this study the
above predictive models are applied and tested with real
data of patients in a specialized cardiac postoperative ICU.

Note: This paper is accompanied by a Part II which gives
a full account of an illustrative example [71].
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