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Abstract
Background: Numerous methods for classifying brain tumours based on magnetic resonance
spectra and imaging have been presented in the last 15 years. Generally, these methods use
supervised machine learning to develop a classifier from a database of cases for which the diagnosis
is already known. However, little has been published on developing classifiers based on mixed
modalities, e.g. combining imaging information with spectroscopy. In this work a method of
generating probabilities of tumour class from anatomical location is presented.

Methods: The method of "belief networks" is introduced as a means of generating probabilities
that a tumour is any given type. The belief networks are constructed using a database of paediatric
tumour cases consisting of data collected over five decades; the problems associated with using this
data are discussed. To verify the usefulness of the networks, an application of the method is
presented in which prior probabilities were generated and combined with a classification of
tumours based solely on MRS data.

Results: Belief networks were constructed from a database of over 1300 cases. These can be used
to generate a probability that a tumour is any given type. Networks are presented for astrocytoma
grades I and II, astrocytoma grades III and IV, ependymoma, pineoblastoma, primitive
neuroectodermal tumour (PNET), germinoma, medulloblastoma, craniopharyngioma and a group
representing rare tumours, "other". Using the network to generate prior probabilities for
classification improves the accuracy when compared with generating prior probabilities based on
class prevalence.

Conclusion: Bayesian belief networks are a simple way of using discrete clinical information to
generate probabilities usable in classification. The belief network method can be robust to
incomplete datasets. Inclusion of a priori knowledge is an effective way of improving classification of
brain tumours by non-invasive methods.

Background
The current "gold standard" for brain tumour diagnosis is
histopathology which requires a sample of tumour

obtained at operation. These operations have an inherent
risk of morbidity and mortality. Magnetic Resonance
Imaging (MRI), Magnetic Resonance Spectroscopy (MRS)
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and other imaging modalities may offer a non-invasive
way of making a diagnosis, but no method has yet
attained sufficient accuracy to replace histopathology.
MRS in particular has been shown to provide useful infor-
mation about the biochemical content of a brain tumours
[1] and numerous methods for classifying brain tumours
based on magnetic resonance spectra have been presented
[2-6].

When making a classification decision it is intuitively sen-
sible to use as much relevant information as possible, but
very few of the published classifiers have attempted to
combine information from different modalities and
sources (but see [7-10]). This work details a method
which uses data from the West Midlands Regional Child-
hood Tumour Registry (WMRCTR) to produce probabili-
ties of brain tumour class, given its anatomical location.

The WMRCTR provides data from the last five decades on
over 1700 childhood cancer patients, mostly in free-text
form. During that period the format of the stored data has
changed: knowledge of the exact anatomical location has
improved with the advent of MRI and the classification
scheme for tumours has changed to the WHO [11] sys-
tem. This presents a considerable challenge to its use in
computer-based systems.

The discriminating power of "anatomical location" as a
feature for a classifier is not sufficient to make classifica-
tions based on this variable alone. However it is envisaged
that the probabilities obtained from the WMRCTR data
could be used as "informative priors" in existing classifica-
tion methods. In this work we demonstrate their impact
on a simple MRS based classifier. It is worth emphasising
that this work focusses on paediatric brain tumours,
which are significantly more varied and more difficult to
diagnose using MRI alone, than those in adults.

The approach to using the WMRCTR data is based on a
graphical representation of Bayesian inference called belief
networks. Since anatomical location and tumour class are
discrete random variables, probabilities can be estimated
directly from the data, without the need to rely on
assumptions about the form of probability density func-
tions. In the following sections we introduce the belief
network method, present some examples and discuss the
construction of the final network from the data in the
WMRCTR. Finally, the network is presented and demon-
strated on some test-cases.

Methods
Belief networks
A Bayesian belief network or often just belief network is a
graphical representation of the joint probability distribu-
tion function of a collection of variables [12,13]. A belief

network makes exactly the same inferences as would be
made by applying Bayes' rule to a series of probabilities,
but the graphical construction often provides insight into
the problem. The network is represented as a weighted,
acyclic, directed graph, each vertex representing a discrete
variable/event (see Figure 1). To use the terminology of
Russell and Norvig [12], each of these vertices fall into one
of three categories:

1. query variables, i.e. events the probability of which is of
interest (in Figure 1 these are "medulloblastoma" and
"astrocytoma");

2. evidence variables, i.e. events known to have occurred (in
Figure 1 these are taken to be "posterior fossa" and
"supratentorial");

3. hidden variables, i.e. events which may occur but cannot
be measured (in Figure 1 these are taken to be "IV ventri-
cle" and "cerebellum").

The weighted edges connecting vertices represent the
probability that the target vertex is true, conditioned on
the source vertex. Here, vertices represent anatomical loca-
tions or tumour types. If an edge connects two anatomical
locations then its weight is the probability that the
tumour was in the target vertex, given that it is known to
be in the source vertex. If an edge connects an anatomical
location to a tumour type then its weight is the probability
that the tumour is of the type specified by the target vertex,
given that it is known to have occurred in the source ver-
tex.

A simplified belief network showing conditioned probabilities of eventsFigure 1
A simplified belief network showing conditioned probabilities 
of events. The vertex numbers are shown in brackets, refer 
to the adjacency matrix representation in (1). The numbers 
shown are purely for pedagogical purposes, for the correct 
and complete graph refer to Table 1 and Figure 2.
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To illustrate the utility of the method, consider the follow-
ing example. Referring to Figure 1, suppose it is known
that the tumour occurs in the posterior fossa (vertex v1)
and the probability that the tumour is a medulloblastoma
is sought. Working backward from vertex v5 (the medul-
loblastoma) and applying Bayes' rule:

Of course, if it was known that the tumour occurred in the
IV ventricle then the expression could have stopped there
and the probability obtained by inspection, thus hidden
variables may sometimes be evidence variables depending
on the particular sample. The important point is that dif-
ferent "resolution" information can be used, this is partic-
ularly important if a tumour spans several regions, as will
be discussed later. It also means that data of lower resolu-
tion can be incorporated into the network. For example,
many tumours in the WMRCTR are just listed as having
location: "posterior fossa". Working back from the query
variables is relatively complicated to implement. An easier
and equivalent way is to work forward from the evidence
variables. As such it is convenient to represent a graph as
an adjacency matrix, for the example in Figure 1 this is:

Each element aij of A refers to the weighted connection
from vertex vi to vj, i.e. the row index refers to the source
vertex, the column index to the target.

The adjacency matrix representation permits easy calcula-
tion of the vector of class probabilities, given knowledge
of which evidence variables to use. To find the probabili-
ties of each class, given any evidence variable the follow-
ing procedure is used (more computationally efficient
methods are given in [12]):

1. Construct the n-dimensional column vector x where n
is the number of vertices (variables) and set all the ele-
ments to zero.

2. Set the single element of x that corresponds to the evi-
dence variable known be to true, to one.

3. Compute x ← ATx until x stops changing. At every iter-
ation, those vertices connected to those with non-zero
entries x will become non-zero.

4. Those elements of x corresponding to output variables
have the probability that the tumour belongs to each
class, given the evidence. All other elements of x will be
zero.

Clearly, the axioms of probability require that the sum of
all elements in x is unity. It is important to note that the
terminating vertices (v5 and v6 in Figure 1) need to be con-
nected to themselves so that the method just described
will converge to the correct value. If they are not present,
x will converge to the zero vector. As well as giving proba-
bilities of class membership given a single location,
tumours that span adjacent anatomical regions can also
be considered; for every region in which the tumour is
present compute the output vector, then average these to
produce the final vector of probabilities. Although this is
an intuitively sensible property, it has not been evaluated
in this work.

Data processing
The WMRCTR database was made available as a spread-
sheet giving hand-typed strings for the diagnosis and loca-
tion of each case. Occasionally, grade of tumour was also
specified. In total there were 1712 cases available. By
hand, each record was examined and modified. If the
tumour type was classified with the WHO system, it was
left unchanged. If a WHO equivalent existed for a tumour
classified using the old scheme, then it was changed; oth-
erwise the record was removed. This reduced the number
of cases to 1367. These cases were then further reviewed,
and only those tumours with location specified were
included, reducing the final number of cases used to
1333. Of these, the site of the primary lesion was often
only specified vaguely, e.g. "posterior fossa" or "cere-
brum". Tumours specified with a greater degree of accu-
racy were then grouped (by hand) under these broader
headings, as well as maintaining their original informa-
tion. A graph showing the anatomical distinctions made is
given in Figure 2. Very occasionally, the location was spec-
ified in great detail (e.g. "foramen of Munro") but this was
very rare and these samples were marked as being in the
appropriate containing location.
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The classes used were: astrocytoma grades I and II, astro-
cytoma grades III and IV, ependymoma, pineoblastoma,
PNET, germinoma, medulloblastoma, craniopharyngi-
oma and a group representing rare tumours, "other"
(classes represented by fewer than 15 cases). It is common
practice to group paediatric astrocytomas of different
grades in this way as they thought to be very similar dis-
eases.

Results and discussion
The simplest method to represent the results would be an
adjacency matrix, but this is too large for publication in its
direct format. Instead, the graph is specified by Table 1; an
adjacency list representation. A subgraph of the final belief
network is shown in Figure 2, giving the paths necessary
to generate a probability for a medulloblastoma.

Figure 2 indicates that medulloblastomas have been
recorded in the database as occurring in several locations
in the brain. Typically however, they are thought to arise
from the cerebellum. The IV ventricle and the brain stem
are adjacent to the cerebellum and are often invaded by
these tumours making it impossible to be certain of the
location from which the tumour originated. This illus-
trates the power of the belief network in dealing with this
situation; the possibility of the tumour being a medullob-
lastoma is not discounted if it does not occur in the typical
position.

Figure 2 also illustrates another feature of the network
arising from the fact that a large amount of historical data
was used: a small number of medulloblastomas were also
recorded as being present in the parietal and temporal

Table 1: Adjacency list representation of final belief network. The destination vertices from each vertex are shown in the 
"Connections" column

Vertex Description Connections (vertex, weight)

v1 posterior fossa (v3, 222/631), (v4, 109/631), (v5, 300/631)
v2 supratentorial (v6, 276/702), (v7, 67/702), (v8, 21/702), (v9, 17/702), (v10, 99/702), (v11, 

104/702), (v12, 67/702), (v13, 51/702)
v3 brain stem (v24, 189/222), (v28, 1/222), (v29, 3/222), (v30, 4/222), (v31, 6/222), (v32, 19/

222)
v4 IV ventricle (v24, 16/109), (v28, 3/109), (v29, 24/109), (v30, 56/109) (v32, 10/109)
v5 cerebellum (v24, 168/300), (v28, 9/300), (v29, 12/300), (v30, 87/300), (v31, 3/300), (v32, 

21/300)
v6 cerebrum (v14, 4/230), (v15, 55/230), (v16, 14/230), (v17, 70/230), (v18, 87/230)
v7 pineal (v24, 3/67), (v26, 19/67), (v27, 17/67), (v28, 1/67) (v32, 27/67)
v8 pituitary (v25, 12/21), (v32, 9/21)
v9 lateral ventricle (v24, 5/17), (v29, 1/17), (v31, 1/17), (v32, 10/17)
v10 optic pathway (v19, 25/99), (v20, 74/99)
v11 sella turcica (v24, 25/104), (v25, 51/104), (v27, 10/104), (v28, 1/104), (v29, 1/104), (v31, 1/

104), (v32, 15/104)
v12 "deep structures" (v21, 52/67), (v22, 14/67), (v23, 1/67)
v13 III ventricle (v24, 26/51), (v25, 4/51), (v29, 3/51), (v30, 2/51), (v31, 1/51), (v32, 15/51)
v14 "other cerebral area" (v24, 3/4), (v32, 1/4)
v15 frontal lobe (v24, 19/55), (v25, 3/55), (v28, 4/55), (v29, 5/55), (v31, 8/55), (v32, 16/55)
v16 occipital lobe (v24, 7/14), (v28, 2/14), (v29, 2/14), (v32, 3/14)
v17 parietal lobe (v24, 37/70), (v28, 13/70), (v29, 4/70), (v30, 2/70), (v31, 3/70), (v32, 11/70)
v18 temporal lobe (v24, 51/87), (v28, 2/87), (v29, 7/87), (v30, 1/87), (v31, 5/87), (v32, 21/87)
v19 optical chiasm (v24, 22/25), (v25, 1/25), (v32, 2/25)
v20 optic nerve (v24, 73/74), (v32, 1/74)
v21 thalamus (v24, 35/52), (v28, 1/52), (v29, 1/52), (v31, 3/52) (v32, 12/52)
v22 hypo-thalamus (v24, 10/14), (v27, 1/14), (v32, 3/14)
v23 basal ganglia (v24, 1/1)
v24 astrocytoma G1, G2 and optic pathway glioma (v24, 1)
v25 craniopharyngioma (v25, 1)
v26 pineoblastoma (v26, 1)
v27 germinoma (v27, 1)
v28 PNET (v28, 1)
v29 ependymoma (v29, 1)
v30 medulloblastoma (v30, 1)
v31 astrocytoma G3, G4 (v31, 1)
v32 other tumour (v32, 1)

The probabilities (weights) for each connection are expressed as a fraction, giving the final quantities obtained from the WMRCTR. For example, 
222 cases of the 631 tumours in the posterior fossa, were in the brain stem.
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lobes, which are distant from the cerebellum. These cases
may be due to an incorrect assumption being made at the
time of diagnosis that a meta-static deposit from the pri-
mary medulloblastoma tumour was actually the primary
tumour itself. Again this rare but known clinical scenario
is well accounted for by the belief network.

To validate the method presented above, two simple clas-
sifiers were investigated using data from 46 recent patients
forming part of an ongoing study of MRS of childhood
brain tumours [14]. Each patient had a tumour from one
of seven classes: astrocytoma grade I and II (16 cases, v24),
medulloblastoma (13 cases, v30), ependymoma (3 cases,
v29), germinoma (3 cases, v27), PNET (3 cases, v28), astro-
cytoma grade III and IV (2 cases, v31), and "other" (6 cases,
v32).

The first classifier used only the belief network in the clas-
sification; assigning to each sample the label of the class
with the highest probability as predicted by the network.
This classifier had an error rate of 59%, compared with an
error rate of 65% when using probabilities predicted by
class prevalence.

The second classifier investigated the effect of using the
network to augment a basic MRS classifier. Each of the 46
samples available was a short-echo time (30 ms) single
voxel spectroscopy acquisition acquired on a Siemens
Symphony 1.5T scanner. The free induction decay (FID)
contained 1024 points and was sampled at 1000 Hz. Post-
acquisition residual water was removed using the HSVD
method [15] to model the water component ± 30 Hz
either side of the water signal. Each FID was then Fourier
transformed with no line-broadening to give the magni-
tude spectrum and then normalised to have unit length in
the l2-norm. The normalised spectra were feature-reduced

using principal components analysis (PCA) to 10 dimen-
sions. Gaussian functions were then used as the discrimi-
nant with mean estimated for each tumour class and a
common estimate of the covariance matrix shared across
all samples. Two scenarios were then investigated, prior
probabilities based on class prevalence and prior proba-
bilities using the belief network. Prior probabilities were
applied by multiplying the value of each Gaussian discri-
minant. Classifier performance was measured using three
metrics: apparent error, leave-one-out cross-validation
error and the 632+ error rate estimator [16].

With prior probabilities based on class prevalence the
apparent error rate was 20%, corresponding to a correct
classification of 37 out of 46 tumours. However, the cross
validation and 632+ error rates were 41% and 48%
respectively, indicating a poor generalisation to unseen
cases. With prior probabilities based on the belief network
the apparent error rate was 15% corresponding to a cor-
rect classification of 39 out of 46 tumours, the cross vali-
dation and 632+ error rates were 32% and 37%
respectively, indicating that the prior probabilities meas-
urably improve the generalisation performance of the
classifier. When using belief network prior probabilities,
five of the incorrectly classified samples were the same as
those incorrectly classified when using class prevalence
priors, the remaining two (one ependymoma, one astro-
cytoma grade I/II) were correctly classified using preva-
lence information.

The distribution of the error rate among the classes was
approximately the same for both methods of generating
prior probabilities, although there were slight differences.
Complete results are presented in Table 2. In nearly all
incorrectly classified cases, the class with the second high-
est posterior probability was the correct class; although
this was true for both methods of generating priors. In the
incorrectly classified cases, the difference in posterior
probability between the predicted label and the correct

Table 2: Breakdown of Classification Errors

Class Share of Error 
(Prevalence)

Share of Error (Belief 
Network)

astrocytoma G1, G2 
v24

18.5% 15.2%

medulloblastoma v30 27.1% 25.6%
ependymoma v29 9.2% 11.3%
germinoma v27 8.0% 4.8%
PNET v28 7.6% 7.3%
astrocytoma grade 
G3, G4 v31

12.1% 14.1%

other v32 17.5% 21.6%

Each percentage is the apportionment of total classification errors 
attributable to each class, obtained over the 920 trials used to 
estimate the 632+ error.

Part of the complete belief network, showing the locations common to all tumour types but just one tumour classifica-tion pathFigure 2
Part of the complete belief network, showing the locations 
common to all tumour types but just one tumour classifica-
tion path. The complete specification, including weights and 
paths for all tumour types covered is shown in Table 1.
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label's probability was small (≈ 0.01) for about half the
misclassifications and large (≈ 0.4) for the other half; this
was also true for both methods of generating prior proba-
bilities.

The simple classifier presented here attempts only to dem-
onstrate that the belief network method can be useful and
that the data used for its construction is sufficiently accu-
rate. The application of the belief network to other classi-
fiers depends on the choice of classifier, but many
classifiers have a natural way to use prior probabilities
either directly or in the form of weights.

Conclusion
Data from a large clinical database, collected over five dec-
ades, was used to construct a Bayesian belief network suit-
able for generating probabilities of tumour class. The
network was shown to enhance a simple probability-
based classifier that uses PCA reduced raw MRS spectra for
features. It is suggested that additional (discrete) informa-
tion could be incorporated into the belief network to fur-
ther enhance classifier performance.
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