
BioMed Central

BMC Medical Informatics and
Decision Making

ss
Open AcceResearch article
Evaluation of PROforma as a language for implementing medical
guidelines in a practical context
David R Sutton*1, Paul Taylor2 and Kenneth Earle2

Address: 1Oxford Brookes University, Oxford, UK and 2Centre for Health Informatics and Multiprofessional Education, Royal Free & University
College Medical School University College London, UK

Email: David R Sutton* - dsutton@brookes.ac.uk; Paul Taylor - p.taylor@chime.ucl.ac.uk; Kenneth Earle - Ken.Earle@stgeorges.nhs.uk

* Corresponding author

Abstract
Background: PROforma is one of several languages that allow clinical guidelines to be expressed
in a computer-interpretable manner. How these languages should be compared, and what
requirements they should meet, are questions that are being actively addressed by a community of
interested researchers.

Methods: We have developed a system to allow hypertensive patients to be monitored and
assessed without visiting their GPs (except in the most urgent cases). Blood pressure
measurements are performed at the patients' pharmacies and a web-based system, created using
PROforma, makes recommendations for continued monitoring, and/or changes in medication. The
recommendations and measurements are transmitted electronically to a practitioner with
authority to issue and change prescriptions.

We evaluated the use of PROforma during the knowledge acquisition, analysis, design and
implementation of this system. The analysis focuses on the logical adequacy, heuristic power,
notational convenience, and explanation support provided by the PROforma language.

Results: PROforma proved adequate as a language for the implementation of the clinical reasoning
required by this project. However a lack of notational convenience led us to use UML activity
diagrams, rather than PROforma process descriptions, to create the models that were used during
the knowledge acquisition and analysis phases of the project. These UML diagrams were translated
into PROforma during the implementation of the project.

Conclusion: The experience accumulated during this study highlighted the importance of structure
preserving design, that is to say that the models used in the design and implementation of a
knowledge-based system should be structurally similar to those created during knowledge
acquisition and analysis. Ideally the same language should be used for all of these models. This means
that great importance has to be attached to the notational convenience of these languages, by which
we mean the ease with which they can be read, written, and understood by human beings. The
importance of notational convenience arises from the fact that a language used during knowledge
acquisition and analysis must be intelligible to the potential users of a system, and to the domain
experts who provide the knowledge that will be used in its construction.

Published: 05 April 2006

BMC Medical Informatics and Decision Making2006, 6:20 doi:10.1186/1472-6947-6-20

Received: 28 October 2005
Accepted: 05 April 2006

This article is available from: http://www.biomedcentral.com/1472-6947/6/20

© 2006Sutton et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16597341
http://www.biomedcentral.com/1472-6947/6/20
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Medical Informatics and Decision Making 2006, 6:20 http://www.biomedcentral.com/1472-6947/6/20
Background
We have implemented a distributed system for the man-
agement of hypertensive patients. The study is one of a
number of initiatives in which the management of
chronic conditions is addressed by improving the connec-
tions between different community-based professionals
and, specifically, extending the traditional role of pharma-
cists in dispensing medicines to allow them to give advice
based on measurements of their patients' conditions. This
system is being used in a small study in which patients'
blood pressures are monitored by their local pharmacists.
Six community pharmacies are participating. Initially 250
suitable patients will be identified by the pharmacists
from their prescriptions and invited to participate.

The project builds on earlier work evaluating a stand-
alone computer-based decision support tool [1]. In this
project we sought to overcome significant practical diffi-
culties of the earlier system by using a distributed
approach. The pharmacists have access, via a web-based
interface, to a computerised clinical guideline, which
advises how the patient should be managed. If the system
infers that a patient's medication needs to be altered then
this information is passed on to a medical practitioner
(GP) with authorisation to prescribe. The system will pro-
vide the practitioner with advice as to how the patient's
medication should best be modified. The practitioner will
contact the patient by phone in order to arrange modifica-
tion of the patient's prescription. In extreme cases the sys-
tem may advise that the patient should leave the study
and be cared for in a conventional manner. Although a
limited history is stored on the system it is associated with
a study number so that no identifiable patient data is
stored on the system.

The system provides potential benefits to patients and
healthcare providers in that it should be cheaper and
more convenient for patients to visit their pharmacists
rather than their GP's surgery.

In this paper we present an account of the development of
the system. Our account focuses on the formalism used to
represent the clinical guideline and is intended as a qual-
itative evaluation of the appropriateness of the guideline
representation language, PROforma, in a practical setting.

Clinical guidelines
Systematic reviews of randomised controlled trials have
shown that clinical guidelines are an effective tool for
improving the quality of care and changing clinical prac-
tice [2]. Healthcare professionals have, however, com-
plained that hypertension guidelines are too complex,
that the documentation associated with the guidelines is
cumbersome and that there are simply too many guide-
lines for compliance to be practical [2-6]. The computeri-

sation of such guidelines and their integration into
systems that support routine clinical work may be one
way in which the demand for increased use of guidelines
can be reconciled with the concerns of clinicians. At least
one trial has shown that a computerised guideline had a
greater impact on care than the same guideline in a paper
form [6].

Computerised guidelines are an attractive paradigm for
clinical decision support tools, since much of the knowl-
edge contained in guidelines has already been rendered
explicit. A number of groups have now developed lan-
guages that express medical guidelines and processes, with
the hope that non-programmers will be able to create
computerised clinical guidelines. These are examples of
knowledge representation languages. In the next two sections
we consider guideline and process representation lan-
guages, concentrating on one in particular, PROforma.

Computer interpretable guideline representation
languages
A computer interpretable guideline (CIG) is a representa-
tion of the knowledge that is needed in order for a com-
puter system to advise clinicians in a way that adheres to
guidelines for clinical practice. A number of knowledge
representation languages have been developed specifically
for the purpose of representing such knowledge. These
languages include Arden Syntax[7,8], Asbru [9,10],
EON[11], GLIF [12-14] GUIDE [15,16], PRODIGY [17],
and PROforma [18-20].

The Arden syntax is a rule-based formalism that is used to
create Medical Logic Modules (MLM), each of which
encodes the logic necessary for an individual medical
decision. A MLM contains information representing the
context in which an individual rule may become relevant,
the logical conditions necessary for it to be activated, and
the action that is performed when it is activated. Asbru,
EON, GLIF, GUIDE, PRODIGY, and PROforma are lan-
guages that permit the description of "Task Network Mod-
els". Such models represent sets of interacting medical
decisions and actions that are carried out in sequence or
in parallel over a period of time. These six languages have
been compared in a recent paper by Peleg et al. [21], who
have identified areas of common ground, as well as signif-
icant differences, between the languages.

All six languages can be used to describe plans, where a
plan can be defined, as in the Merriam-Webster diction-
ary, to be "an orderly arrangement of parts of an overall
design or objective". The languages differ slightly as to
what they consider the elements of a plan to be, and how
its objective is expressed. However all allow plans to con-
tain, among other things, decisions, actions, and nested
sub-plans. All contain expression languages that represent
Page 2 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:20 http://www.biomedcentral.com/1472-6947/6/20
criteria which influence decisions and control plan execu-
tion (e.g. to express conditions that determine whether a
task might be started or terminated).

PROforma
PROforma is a knowledge representation language that
can be used to create descriptions of processes that unfold
over time and require the cooperation of various actors,
such as clinicians or other medical personnel. The lan-
guage benefits from an easy-to-use graphical editor, which
can be obtained by agreement with the research team
developing the language. This, and the fact that the
authors had some previous experience with PROforma,
led us to choose it as the description language to be eval-
uated in this study.

The use of Process Descriptions is illustrated in. A Process
Description is loaded into a software component referred
to as the PROforma Engine which maintains a record of
the dynamic state of the process, this includes informa-
tion on which tasks have been performed, which need (or
need not) be performed, and the values of any data items
associated with the process. The PROforma engine imple-
ments a set of operations (the Engine Interface) which
allow other components to read or change the state of the
guideline in certain predefined ways. In general the execu-
tion of the process will require actions to be performed by
external actors (e.g. clinicians) who will interact with the
engine via some set of user interfaces.

A Process Description is composed of objects drawn from
the classes set out diagrammatically in figure 2. Each class
of object has a set of named properties (to avoid clutter,
properties are not shown in figure 2). Each instance of a
given class will have different values for these properties.
If one class of object is connected to another by a "kind
of" relationship then the more specific class inherits all
the properties of the more general class, for instance a
PROforma Component has a property named "Descrip-
tion" and hence Tasks, Data Items and all other kinds of
PROforma Component will also have this property.

A Process is defined in PROforma as a set of PROforma
Components. A PROforma Component can be, among

other things, a Task or a Data item. A Task can be an
Action, an Enquiry, a Decision or a Plan. An Action gener-
ally represents a request for an external actor to do some-
thing (e.g. prescribe a drug, or perform some other clinical
intervention). An Enquiry represents a request to an exter-
nal actor to provide values for data items (the Sources of
the Enquiry). A Decision represents a choice between one
or more Candidates. The choice of Candidate(s) may be
performed by an external actor or it may be made auto-
matically by the system. The engine keeps a record of
which Candidate(s) have been chosen in which Decisions
and this information can be used to control the subse-
quent execution of the Process. Each Candidate is associ-
ated with one or more Arguments, logical expressions
which if evaluated as true influence the recommendation
of a Candidate.

PROforma includes an expression language that is used to
define, among other things, the preconditions that must
be true for a task to be activated and the criteria that must
be fulfilled for an Argument to be true. The PROforma
expression language includes the usual logical, arithmetic,
and comparison operators, as well as functions that eval-
uate the execution states of tasks (i.e. whether they have
been, or need to be, performed) as well as the values of
data items.

The PROforma language has been given a precise syntax
and semantics [18,22]. The semantics defines the value
that is returned when an expression is evaluated as well as
the way in which the process state changes when Engine
Interface operations are invoked. Two implementations of
a PROforma engine are available, the Arezzo implementa-
tion, which is available commercially from InferMed Ltd.
(London, UK) and the Tallis implementation from Cancer
Research UK.

PROforma ClassesFigure 2
PROforma Classes.

Process
Description

Data Item

Action Enquiry

Task

Plan

.

PROforma

Component

Parameter

Argument

root plan

1

* 1 *

Decision

1

*

Candidate
*

1

1

1..

Source

Warning
Condition

.
1

1

* * is source

.
1

*

Use of PROformaFigure 1
Use of PROforma.

PROforma
Engine

Process
Description

Engine
Interface

External
Actors

load
User
Interfaces
Page 3 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:20 http://www.biomedcentral.com/1472-6947/6/20
PROforma has been used in a variety of research projects
and a smaller number of clinical applications. Although
publications have arisen from some of these projects, little
has been written about the experience of using PROforma
in practice. In this paper we present an account of the
development of a PROforma guideline for the manage-
ment of hypertension and evaluate its suitability in a dis-
tributed decision aid to be used by pharmacists. First we
present a brief discussion of this kind of task, which is to
say of knowledge engineering and knowledge representa-
tion, in order to identify suitable criteria for the evalua-
tion.

Knowledge engineering principles
Knowledge engineering involves using computers to per-
form knowledge-intensive tasks. Implementing a knowl-
edge intensive system requires the co-operation of a
number of participants, who can be divided into those
who are principally interested in what the system does
(e.g. domain experts, who supply the knowledge embod-
ied in the system, or potential users, who provide the
information about requirements) and those concerned
with how it does it (e.g. knowledge engineers, who analyse
and model the system, or system developers, who develop
it).

The development of a knowledge intensive system
includes three phases:

• knowledge acquisition in which knowledge engineers and
domain experts create a shared model of a domain
expert's knowledge,

• a process in which a design is agreed for a system,

• system implementation in which the model is instantiated
in the designed software system.

We argue for a "model view" [23] as opposed to a "transfer
view" of the knowledge engineering process. That is to say
that knowledge engineers and domain experts should
construct a shared model of knowledge rather than trans-
ferring knowledge expressed by the expert in, for example,
natural language into a format intelligible only to the
knowledge engineer.

We also argue that the development process should be
structure preserving [23] the models used in the design and
implementation of the system should have the same
structure as those developed during knowledge acquisi-
tion and analysis. This is because participants interested in
what a knowledge-based system does, will often need to
talk to participants with an interest in how it does it. Such
dialogue occurs during knowledge acquisition; it occurs
when the requirements of the system are drawn up; and it

occurs when the output of the system needs to be
explained or when explanations need to be provided by
the system. These dialogues are greatly facilitated if the
models that describe what the system does and the mod-
els that describe how it does it have a similar structure.

This implies that the models constructed during knowl-
edge acquisition should be reused in the implementation
of the system. In order to achieve this it is necessary to cre-
ate models that are intelligible to domain experts and
interpretable by computer systems. The same philosophy
underpins, for example, the use of objects as a consistent
metaphor across both object-oriented software design and
object-oriented programming languages. The process of
building a representation of the domain expert's knowl-
edge, therefore, straddles different phases of the software
development lifecycle. It involves decisions about the sys-
tem's functionality. The resulting representation may be
simply a documentation of a design, but, depending on
the development methodology, a key component of the
software may also be programmed in the course of build-
ing the model. In this evaluation we assess the adequacy
of PROforma and the Tallis implementation as a knowl-
edge engineering tool under three headings: knowledge
acquisition, system design and implementation, noting
that in practice these three phases overlap.

Knowledge representation principles
The knowledge in a knowledge-based system must be
described and stored in a computable form. Knowledge
representation languages are computer languages that
facilitate such descriptions. There are various criteria by
which such languages can be assessed [24]: logical ade-
quacy can the language to represent all the distinctions
that one might want to make? heuristic power does the lan-
guage allow the system to draw the required inferences
and solve problems within its intended domains of appli-
cation? notational convenience can the language can be
read, written, and understood (by humans as well as by
computer systems)? explanatory support does the language
make it easy for a knowledge based system to explain to a
user the chain of reasoning that led it to perform a partic-
ular action or to reach a particular conclusion?

Methods
In this section we briefly describe the development of the
software and the evaluation of PROforma. The project can
be viewed as having three, somewhat overlapping, phases:
knowledge acquisition, system design, and implementa-
tion. The suitability of PROforma as a guideline represen-
tation formalism for this application will have
implications at each stage. In this section we present a
short account of each stage of the project, indicating the
rationale for the different decisions that were made.
Page 4 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:20 http://www.biomedcentral.com/1472-6947/6/20
Knowledge acquisition
The guideline in the computerised system was based on
that disseminated by the British Hypertension Society
[25]. A customised version of the guideline was produced,
in a paper form, by the lead clinician on the project. This
was then discussed with the other members of the team,
both of whom had experience in the development of com-
puterised guidelines, and in a wider forum, including
input from a clinical pharmacist. These discussions iden-
tified a number of ambiguities which required further
clinical input. As explained in later sections, these discus-
sions required the use of paper diagrams which we found
were most conveniently created as UML Activity Dia-
grams, an example of which is presented in figure 5. The
modelled activities are presented as rounded rectangles, or
activity states. The text enclosed in square brackets associ-
ated with arrows indicates the conditions that must be ful-
filled for the transitions between states.

System design
The concept of a web-based tool emerged from our expe-
rience with an earlier, stand- alone, system, an attempt to
provide a stand alone decision tool. The design was
refined through a series of meetings in which the first
author played the role of a systems analyst with the third
author acting as a customer. Use Case diagrams were used
to support the dialogue and help establish the precise
requirements of the system.

The specification of the design has implications for the
representation of the clinical guideline. The intended
users of the system are pharmacists and GPs. The pharma-
cists must decide how frequently to monitor patients,
when to refer to them to GPs, and under what circum-
stances such a referral becomes a matter of urgency. The
reasoning required for these decisions is essentially that
needed to set target blood pressures and to identify when
deviations from these target pressures become significant
and/or a matter of urgent concern. The advice provided to
GPs in our system is somewhat less detailed than that pro-
vided by other hypertension systems that have appeared
in the literature (e.g. those constructed for the compara-

tive study by Peleg et al.) as some decisions are left to the
discretion of the GPs themselves. For instance, if a patient
is to be prescribed more than one anti-hypertensive agent,
then the choice of the second agent is left to the GP. The
reason for this division of responsibilities is that we felt
that it would be easier to gain the confidence of the vari-
ous stakeholders in the system if the more detailed deci-
sions were delegated to GPs, even though it would in
principle be possible to incorporate them in the process
description.

System implementation
The guideline was modelled using the Tallis implementa-
tion of PROforma. The Web interface was built specifi-
cally for this study using Java Servlets/JSP and consists of
pages containing nothing other than simple HTML in
order to avoid making assumptions about the capabilities
of the browsers used by the pharmacists. In order to sup-
port this project's requirement for an enduring record of
the patient's interaction with the system, an SQL database
was designed and implemented and an interface created
between this and the Tallis PROforma Engine.

Figure 4 illustrates how the process description is
deployed and used in the system. The process description
is loaded into a PROforma engine. An advice module inter-
rogates the state of the Process Description to provide
advice to the pharmacist and patient, who access the sys-
tem over the Web. The advice module provides an abstrac-
tion of the PROforma process description, exposing
certain details and concealing others. The advice module
makes certain assumptions about the state of the guide-
line, for instance it assumes that only one action will be
active at any given time.

PROforma process descriptions can be described graphi-
cally using a convention in which squares represent
Actions, circles represent Decisions, lozenges represent
Enquiries, and round-edged rectangles represent Plans.
Using these conventions the root (top-level) plan of the
Process definition used in our study can be set out as in
figure 3. The Enquiry Patient Data represents the step in
the process at which data about patient state are acquired
from external actors. The three Decisions Urgent Referral
Decision, Treatment Decision and Monitoring Decision are
points at which choices are made between various candi-
dates. The logic underlying these choices is represented by
Candidates and Arguments that are associated with the
decisions, but which are not displayed graphically. The
choice of Candidates will determine which Actions are
performed. The four Actions in the root plan represent
instructions that the patient be urgently referred for treat-
ment, or return for further monitoring in two, four, or
eight weeks time. The sub-plan FLAP Assessment is invoked
when the logic encoded in the Decisions implies that the

PROforma Process DescriptionFigure 3
PROforma Process Description.
Page 5 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:20 http://www.biomedcentral.com/1472-6947/6/20
patient's medication should be altered. The plan contains
further Decisions and Actions not described here.

The Actions in the Process Description have a number of
user-defined parameters that express the values of various
properties such as whether the action implies a change to
the patient's medication, or the amount of time that
should elapse until the next visit.

The arrows between the tasks in the figure represent sched-
uling constraints, that prevent one task from being acti-
vated until another has finished, for instance, the Action
Urgent Referral cannot be activated unless the Decision
Urgent Referral Decision has completed. Scheduling con-
straints express necessary, but not sufficient, conditions
for the activation of tasks: the completion of the Urgent
Referral Decision does not guarantee that the Action Urgent
Referral will take place since each task has a set of logical
preconditions that are evaluated after its scheduling con-
straints are satisfied, and the task is only activated if both
its scheduling constraints and its preconditions are satis-
fied.

Evaluation
In this project PROforma was used in conjunction with
other modelling tools (UML) and the engine was inte-
grated with other elements of software. The work there-
fore provides a richer test of the language than previous
comparative studies and allows us to examine the advan-
tages of specialised approaches to guideline modelling,
such as PROforma, in the context of a realistic software
engineering project.

The evaluation described here is qualitative, and some of
our comments are necessarily subjective. The essential

data for the evaluation was generated by the first author,
in the form of comments based on his experience as the
developer. His comments were discussed with other
members of the team and a consensus process used to
assess the performance of PROforma against each of the
identified desirable characteristics of knowledge represen-
tation languages (logical adequacy, heuristic power, nota-
tional convenience, and explanatory support) at each
stage of the project. These were operationalised in terms
that allowed a range of responses, identifying specific
strengths and weaknesses. These are categorised by refer-
ence first to the phases of knowledge acquisition, system
design and implementation and then to the four charac-
teristics.

Results
In this section we present summary conclusions of our
assessment of PROforma in each phase of the project.
Detailed discussion of the more important points is pre-
sented in the next section.

Knowledge acquisition
Logical adequacy
We found that most of the logic of the medical process
involved could be readily described using the constructs
provided by PROforma. The process, although complex
when taken as a whole, can be broken down into individ-
ual decisions that can be represented using simple arith-
metic comparisons and propositional logic. However, we
noted the following weaknesses:

• limited support for constraints

The actions described in the process description used in
our system are intended to be mutually exclusive (if one
action is performed then the others are not), and the
advice module described in assumes that this constraint
will be obeyed. However PROforma provides no mecha-
nism by which such a constraint can be expressed,
checked, or enforced.

• limited support for structured data

The value of a data item used in a PROforma process may
be atomic (e.g. an integer or string) or it may be an
ordered list of atomic values, all of the same type. How-
ever the Tallis implementation of PROforma provides no
support for record structures or for collections other than
ordered lists (The Arezzo implementation has some facil-
ities for representing complex objects but does not place
any constraints on the classes of these objects).

Heuristic power
The term heuristic power is used to describe the extent to
which a knowledge representation language allows a

Deployment of the Process DescriptionFigure 4
Deployment of the Process Description.

Web ServerAdvice
Module

PROforma
Engine

Process
Description

load

Engine
Interface

Advice
Interface

Web Server Host

Patient
Database

Database Server Host

Pharmacist Client(s)

Practitioner Client
Page 6 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:20 http://www.biomedcentral.com/1472-6947/6/20
knowledge-based system to draw inferences and solve
problems within its intended domains of application. The
PROforma language proved adequate to encode the rea-
soning required.

Notational convenience
Acquiring knowledge from a domain expert involves the
construction, validation, and refinement of models. The
principle of structure preserving design means that, in an
ideal world, these models should be reused during the
implementation of the eventual system. If we aim at a
structure preserving design then notational convenience,
i.e. the ease with which a knowledge representation lan-
guage can be read, written, and understood, acquires a
greater importance than the word "convenience" might
suggest. If our knowledge representation language does
not allow us to create models that can be understood by a
domain expert then we will have to use some other for-
malism to create such models and therefore risk losing the
advantages of structure preserving design. We noted the
following weaknesses in the PROforma notation:

• graphical representation

During the knowledge acquisition phase of this project it
was frequently necessary to express models on paper.
Conventions for expressing models graphically are there-
fore of great importance. PROforma can be represented as
text and also in a graphical form, as illustrated in figure 3.
The syntax of the textual representation has been given a
complete definition in EBNF [18,22] however the graphi-
cal representation is less completely defined. De facto
conventions exist for the graphical representation of tasks
and the scheduling constraints that link them; however
other constructs of the PROforma language have no con-

ventional graphical representation. Because of this we fre-
quently made use of UML activity diagrams in the
knowledge acquisition phase, and translated the contents
of these into PROforma during system implementation.

• duplication of arguments

It also became apparent during the study that the PRO-
forma notation occasionally requires designers to dupli-
cate elements of a process. As can be seen in figure 2, the
relationship between PROforma Candidates and Argu-
ments is one to many. However in practice it often desira-
ble to associate an Argument with more than one
Candidate, for instance an Argument in favour of one
Candidate may be an Argument against another. In PRO-
forma this can only be expressed by creating multiple cop-
ies of Arguments. This is notationally inconvenient and
carries the risk that errors may be introduced into a Proc-
ess Description as it is refined, because a designer may
update one copy of an Argument but omit to do the same
to other copies.

Explanatory support
A knowledge-based system should be capable of explain-
ing to its users the reasons why it has recommended a par-
ticular course of action, or drawn a particular inference.
We use the term explanatory support to describe the
extent to which a knowledge representation language
facilitates such explanation.

The PROforma Argument and Candidate constructs offer
a natural way to present explanations to a user that relates
well to the manner in which such explanations are pre-
sented in ordinary human dialogue. The Argument class
has Description and Caption properties, which it inherits
from the PROforma Component class. The values of these
properties are text descriptions of the Argument, the dif-
ference between them lies only in their intended use, the
Caption property is intended to provide a short descrip-
tion of a component and the Description a longer one.
The value of a Caption or Description can be expressed
either as a fixed text string or as a PROforma expression
that is evaluated to yield a text string that can vary as the
state of the process changes during its execution. The latter
option can be used to create descriptions of arguments
that vary according to the truth or falsity of the logical
conditions associated with the argument.

System design
Logical adequacy and heuristic power
In the system we consider here, PROforma process
descriptions are considered as part of a larger software sys-
tem. Hence some of the knowledge that the system con-
tains is encoded in PROforma, whereas other parts are
encoded in other components of the system, or held by

Top Level Plan Expressed as a UML Activity DiagramFigure 5
Top Level Plan Expressed as a UML Activity Diagram.

Measure BP
Measure SBP and DBP

Record comments

Urgent Referral
Urgent referral to GP

Patient care by GP from now on

FLAP Assessment

Return in Four Weeks

Set monitoring period to four

weeks

[SBP>=160 or DBP>=100]

[else]

[SBP>=200 or DBP>=110]

[Diabetic and (SBP>=130 or DBP>=80)]

[Not Diabetic and (SBP>=140 or DBP>=90)]

[else]

[CVD Risk > 20 or monitoring period = two weeks]

Return in Two Weeks

Set monitoring period to two

weeks

[else]

[else]

Return in Eight Weeks

Set monitoring period to eight

weeks

[monitoring period = two weeks]

[else]
Page 7 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:20 http://www.biomedcentral.com/1472-6947/6/20
human actors. This raises the question of what knowledge
should be represented within a CIG, and what is more
appropriately encoded outside of the CIG. For instance, in
order to determine appropriate treatment of a patient
enrolled in the study, it is necessary to estimate his or her
risk of developing cardiovascular disease over a specified
period. These risks are calculated using various measure-
ments (e.g cholesterol levels) made at the beginning of the
study. Therefore we must decide whether the PROforma
process description should take, as input, the risk level
itself, or the readings from which the risk level is calcu-
lated. If we adopted the latter option then the mathemat-
ical process by which one gets from the readings to the risk
levels would be encoded within the PROforma process
description and available for inspection by domain
experts reading that process description. However we felt
that setting out the calculation in this way would not be
sensible, since it is part of a distinct and separate problem
from that of deciding how to treat the patients enrolled in
the study. Hence it seems more appropriate to calculate
risk levels using another software component. Making
these decisions, as part of the process of designing a soft-
ware tool, is however a matter of judgement and we recog-
nise that although the decision was not justified on the
basis of the ease with which the assessment could be done
in PROforma, the logical adequacy and heuristic support
were factors in the decision since PROforma is designed to
model processes and decisions, not inferences based on
statistical models.

System implementation
Logical adequacy
The implementation revealed two weaknesses in PRO-
forma's logical adequacy.

• support for abstraction and information hiding

The PROforma Engine Interface permits inspection of all
the data items and tasks in a PROforma Process Descrip-
tion, as well as all the values of all of their properties. It is
however frequently useful to conceal some aspects of a
Process Description and reveal others in order to distin-
guish between the essential logic of a process and the
information that is required by some particular imple-
mentation of that logic. At present this distinction cannot
easily be represented in PROforma.

• support for the definition of classes of tasks

The language allows the designer of a process to attach
parameters to tasks in order to describe properties of those
tasks that are important to the process but which are not
built in to the PROforma language. This is important
when Process Descriptions are embedded in a larger soft-
ware system because it allows the other components of

the system to query the process in a structured manner by
reading the values of these parameters. However it is fre-
quently the case that a Process Description will contain
several tasks that have the same parameters and can there-
fore be regarded as forming a class. For instance tasks that
involve altering a patent's medication might be grouped
together into a class whose common properties are used
to express the modifications needed. PROforma provides
some facilities for the definition of task classes, but the
expressive power of these facilities is limited (for instance
they do not allow task classes to be grouped into hierar-
chies) and they are rather awkward to use.

Notational convenience
As noted above we used activity diagrams in the knowl-
edge acquisition phase and translated these to PROforma
in the implementation phase. When performing the trans-
lation we became aware of a limitation of PROforma. A
transition between two states in a UML Activity Diagram
can be given a guard condition and will only occur if that
condition is satisfied. In PROforma transitions between
tasks can be constrained using scheduling constraints,
however it is not possible to attach a guard condition to a
scheduling constraint. Instead preconditions are attached
to the tasks themselves. It is possible to translate guarded
transitions into PROforma by "migrating" the guard tran-
sition so that it becomes a precondition on a task, how-
ever this translation is not always straightforward because
a precondition is always evaluated before a task com-
mences whereas a guard is only evaluated when a state is
entered via a particular transition.

Explanatory support
The translation from Activity Diagrams also made it
harder to provide usable explanations because the Deci-
sions, Arguments and Candidates in the PROforma proc-
ess description used did not map directly on to the activity
states and choice points identified in the activity diagrams
created during analysis.

Discussion
In this section we consider the most significant points
indicated above under the four headings of logical ade-
quacy, heuristic power, notational convenience, and
explanation support and comment on the value of evalu-
ation.

Logical adequacy
In general we feel that the PROforma meets most of the
demands of this application for logical adequacy in all
three phases. The most serious shortcomings emerged in
implementation and concern the lack of support for infor-
mation hiding and data abstraction.
Page 8 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:20 http://www.biomedcentral.com/1472-6947/6/20
Consider the top-level plan shown in figure 3. It would be
possible to modify this plan and yet argue that the essen-
tial logic of the process had not changed. For instance the
three actions of the form "Return in N weeks" could be
replaced by a single action containing a parameter that
varied so as to express the value of N. Similarly the three
decisions in the plan could be combined into a single
decision with more complex logic. Ideally the Process
Description would contain some sort of guarantee that
such changes could not "break" any component of the sys-
tem that accessed the process description. In order to do
this it would be necessary to prevent "inessential" details
of the process being revealed to other components of the
system so as to provide a guarantee that these details
could not affect their behaviour. At present there is no way
of incorporating this kind of information hiding into a
process description. The significance of this weakness
becomes apparent when a complete system is created
because the knowledge encoded in a process description
often needs to be refined and one needs to know whether
consequent changes will affect other components of the
system.

Heuristic power
Heuristic power describes the ability to draw inferences
and solve problems within the intended application
domains of the language. In order to decide whether
requirements for heuristic power are met we must first
decide what problems we expect to be able to solve and
what type of inferences we expect to be able to draw. Such
decisions affect the scope of guidelines and resulted in
some of the most interesting reflections to emerge in the
course of the study. One of the aims of the PROforma lan-
guage is to describe the logic of processes in a way that
allows the computerised form to be examined and vali-
dated by domain experts. Furthermore a PROforma Proc-
ess Description is generally associated with a particular
process and its authors envisage it being studied by a par-
ticular group of domain experts. Thus, when deciding
whether to include knowledge within a Process Descrip-
tion, it is useful to ask whether those particular experts are
in a position to validate it and, if so, whether it is sensible
for it to be validated as part of a description of that partic-
ular process, or whether it should be decoupled and exam-
ined separately. The calculations used to derive estimates
of cardiovascular risk are routinely used by expert cardiol-
ogists but their contents would have to be validated by a
statistician or an epidemiologist.

Ethical, legal, and organisational considerations may also
come into play when deciding whether to incorporate
knowledge into a CIG. For instance stakeholders in a sys-
tem may wish to consider who would be held responsible
for any errors in advice provided, or the practicality of
refining process descriptions if the knowledge involved

was subject to frequent change. These factors had an
impact on the advice provided by our system to GPs.

Also we observe that the PROforma expression language is
not Turing complete. That is to say that there are calcula-
tions that could be performed by a Turing Machine (or
expressed in a language such as Java or Pascal) but which
cannot be expressed in the PROforma expression lan-
guage. This is because the PROforma expression language
does not provide any way of expressing functions that
involve recursion or iteration (i.e. functions that would be
expressed using a "do. .while" construct). It is possible to
express such functions by attaching an expression to a task
and then specifying that the task itself be executed in an
iterative manner. However the use of such a mechanism
to evaluate functions is clumsy, and obscures the logic of
the guideline.

Notational convenience
The most significant weakness was in the lack of a com-
plete graphical notation for the language. This weakness is
illustrated by the top-level plan set out in figure 3. By
examining this figure we can see that there are, for exam-
ple, circumstances under which a patient would be
advised to return in two weeks time. However there is no
standard way of indicating graphically what these circum-
stances are. The circumstances in question are encoded in
the PROforma text of the process description and can be
made visible through the use of appropriate software
tools, but if one wants to convey information to a domain
expert it is often much more convenient to draw a picture
than to present him or her with a software tool, or with
pages of text in an unfamiliar language.

By contrast the UML [26] has a complete graphical repre-
sentation in the sense that every UML concept can be rep-
resented in a standard way in a UML diagram. This was
one of the main reasons why UML activity diagrams were
used during the knowledge acquisition phase of the
project. In principle PROforma has many advantages over
UML. For instance it can represent concepts such as argu-
ments and candidates. Unfortunately there is no conven-
tion for representing them graphically and consequently it
is hard to make use of these advantages.

Figure 5 represents the top-level plan as a UML Activity
Diagram. The activity states of the form 'Return in N
weeks' in the diagram correspond to the three actions of
that form in the PROforma top level plan, as does the state
'Urgent Referral'. The state 'Flap Assessment' is nested
(that is to say it contains a set of sub-states that are not
shown in the diagram) and corresponds to the plan of the
same name in the PROforma version. The decisions in the
PROforma version are represented by choice points in the
UML diagram, although there is not a one-to-one corre-
Page 9 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:20 http://www.biomedcentral.com/1472-6947/6/20
spondence between decisions and choice points. An
important advantage of the UML diagram is that there is a
convention for expressing the conditions that have to be
satisfied in order for a transition to occur between one
state and another. They are represented as the 'guards', i.e.
the text enclosed in square brackets on the arcs that con-
nect states. In order to represent the same information in
PROforma we would need to be able to represent the Can-
didates and Arguments of Decisions and the precondi-
tions of Tasks in some graphical manner. It should be
pointed out that the semantics of PROforma are better
defined than those of UML diagrams. The relative impre-
cision of UML semantics did not prove a great drawback
in this particular project. However had the logic of the sys-
tem been more complex, we might have had to reconsider
the use of UML as a modelling language.

Hederman et al. [27] have investigated the use of UML
activity diagrams for the modelling clinical guidelines and
have described a mapping between these diagrams and
representations in GLIF.

Explanatory support
We found the presentation of information in terms of the
Arguments for favoured Candidates of Decisions was,
broadly, a successful approach for the provision of expla-
nations. However we experienced some difficulty in trans-
lating explanatory information from the UML Activity
Diagrams to PROforma.

Methodology
This paper uses a case study to investigate the PROforma
language. It is perhaps worthwhile to compare and con-
trast our approach to that of the previous mentioned
paper by Peleg et al. [21], who also used a case study to
reveal the characteristics of Task Network Languages.

The most obvious difference between this paper and that
of Peleg et al. is that we are only studying one language,
PROforma, whereas Peleg et al. compared six languages.
However this study embeds the PROforma process defini-
tions in a real, distributed, system to be used in a clinical
study, whereas contributors to the Peleg paper created
Process Definitions, or guidelines, that were not used in
this way and consequently did not have to be embedded
in a larger software system. It is hoped that the more real-
istic demands placed on PROforma by the system studied
in this paper will reveal strengths and weaknesses of the
PROforma language that would not be apparent in a more
theoretical study.

In particular we consider that strengths and weaknesses of
the PROforma language are revealed by: the need to
acquire the knowledge necessary to implement the system
and to model this knowledge in a ways that can be both

understood by domain experts and also implemented in a
distributed computer system; the need to test and validate
the knowledge so acquired; and the need to provide inter-
faces by which other components in a distributed system
can access the state of the clinical processes that are mod-
elled.

For instance the lack of graphical standards for PROforma
emerges as an important issue when modelling knowl-
edge acquired from experts because, at this stage of a
project, it is necessary to be able to represent knowledge
as diagrams on paper that can be read without the use of
software tools. The need to hide information and create
abstractions emerges when process descriptions are incor-
porated into larger systems because they provide a means
of decoupling the process description from other compo-
nents of the system and of limiting the changes to the sys-
tem that are necessary when the process description is
modified due to knowledge refinement.

It should be pointed out that the methodology used in
this paper cannot be as systematic or as rigorous as that
which would be expected when reporting, for example, a
controlled clinical study. The criteria used for evaluation,
such as notational convenience, have an unavoidable sub-
jective element to them, and cannot be precisely meas-
ured.

Conclusion
We have implemented a guideline-based decision support
tool as a part of a research trial exploring the role commu-
nity pharmacists could play in the management of hyper-
tension. The development of the system involved a
knowledge engineering exercise in which PROforma, a
process description language designed specifically for cap-
turing clinical guidelines, was used to represent the trial
protocol. Although PROforma was used for knowledge
representation, UML diagrams were used in the knowl-
edge acquisition process.

The PROforma representation was successfully employed
as part of a web-based tool in which the PROforma engine
was integrated with other software elements, notably a
secure database of patient information.

This case study reveals a number of important lessons
about guideline representation languages such as PRO-
forma. These include a number of limitations in logical
adequacy, but no difficulty with heuristic power. Most
importantly, the experience accumulated during this
study has highlighted the importance of structure preserv-
ing design in the construction of systems that make use of
computer interpretable guidelines. A consequence of this
is that great importance is attached to the notational con-
venience of the languages in which these guidelines are
Page 10 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:20 http://www.biomedcentral.com/1472-6947/6/20
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

expressed. It is particularly important that the languages
should allow the construction of complete and unambig-
uous graphical representations of guidelines.

Competing interests
David Sutton was one of the principal designers of the Tal-
lis system and is occasionally employed as a consultant by
Cancer Research UK.

Authors' contributions
DS implemented the software used in this study and is the
primary author of this paper. PT worked extensively on
the background section to the paper and helped to set the
other sections in the context of existing research, as well as
clarifying and expanding them. KE and PT instigated and
designed the hypertension study for which the software
was developed. All authors read and approved the final
manuscript.

Acknowledgements
We are grateful to Cancer Research UK for permission to use the Tallis
toolset and for providing support to the software used in the study. This
paper has benefited enormously from the thoughtful comments of the BMC
reviewers.

References
1. Earle KA, Taylor P, S W, S B, J R: A physician-pharmacist model

for the surveillance of blood pressure in the community. Jour-
nal of Human Hypertension 2001, 15:529-533.

2. Grimshaw JM, Thomas RE, MacLennan G, Fraser C, Ramsay CR, Vale
L, Whitty P, Eccles MP, Matowe L, Shirran L, Wensing M, Dijkstra R,
Donaldson C: Effectiveness and efficiency of guideline dissem-
ination and implementation strategies. Health Technol Assess
2004, 8:iii-iv, 1-72.

3. Campbell NC, Murchie P: Treating hypertension with guidelines
in general practice. Bmj 2004, 329:523-524.

4. Hagemeister J, Schneider CA, Barabas S, Schadt R, Wassmer G,
Mager G, Pfaff H, Hopp HW: Hypertension guidelines and their
limitations--the impact of physicians' compliance as evalu-
ated by guideline awareness. J Hypertens 2001, 19:2079-2086.

5. Hibble A, Kanka D, Pencheon D, Pooles F: Guidelines in general
practice: the new Tower of Babel? Bmj 1998, 317:862-863.

6. Rood E, Bosman RJ, van der Spoel JI, Taylor P, Zandstra DF: Use of
a computerized guideline for glucose regulation in the inten-
sive care unit improved both guideline adherence and glu-
cose regulation. J Am Med Inform Assoc 2005, 12:172-180.

7. Hripcsak G: Writing Arden Syntax Medical Logic Modules.
Comput Biol Med 1994, 24:331-363.

8. Hripcsak G, Ludemann P, Pryor TA, Wigertz OB, Clayton PD:
Rationale for the Arden Syntax. Comput Biomed Res 1994,
27:291-324.

9. Shahar Y, Miksch S, Johnson P: The Asgaard project: a task-spe-
cific framework for the application and critiquing of time-
oriented clinical guidelines. Artif Intell Med 1998, 14:29–51.

10. Miksch S, Shahar Y, Johnson P: Asbru: A task-specific, intention-
based and time-oriented language for representing skeletal
plans.: ; Open University, Milton Keynes. Edited by: Motta E,
van Harmelen F, Pierret-Golbreih C, Filby I and Wijngaards NJE. ;
1997.

11. Musen MA, Tu SW, Das AK, Shahar Y: EON: a component-based
approach to automation of protocol-directed therapy. J Am
Med Inform Assoc 1996, 3:367-388.

12. Ohno-Machado L, Gennari JH, Murphy SN, Jain NL, Tu SW, Oliver
DE, Pattison-Gordon E, Greenes RA, Shortliffe EH, Barnett GO: The
guideline interchange format: a model for representing
guidelines. J Am Med Inform Assoc 1998, 5:357-372.

13. Peleg M, Boxwala AA, Ogunyemi O, Zeng Q, Tu S, Lacson R, Berns-
tam E, Ash N, Mork P, Ohno-Machado L, Shortliffe EH, Greenes RA:
GLIF3: the evolution of a guideline representation format.
Proc AMIA Symp 2000:645-649.

14. Peleg M, Ogunyemi O, Tu S, Boxwala AA, Zeng Q, Greenes RA,
Shortliffe EH: Using features of Arden Syntax with object-ori-
ented medical data models for guideline modeling. Proc AMIA
Symp 2001:523-527.

15. Dazzi L, Fassino C, Saracco R, Quaglini S, Stefanelli M: A patient
workflow management system built on guidelines. Proc AMIA
Annu Fall Symp 1997:146-150.

16. Quaglini S, Stefanelli M, Cavallini A, Micieli G, Fassino C, Mossa C:
Guideline-based careflow systems. Artif Intell Med 2000, 20:5-22.

17. Purves IN, Sugden B, Booth N, Sowerby M: The PRODIGY
project—The iterative development of the release one
model. Comput Methods Programs Biomed 1997, 54:59–67.

18. Sutton D, Fox J: The syntax and semantics of the PROforma
guideline modeling language. Journal of the American Medical Infor-
matics Association 2003, 10:433-443.

19. Fox J, Johns N, Rahmanzadeh A: Disseminating medical knowl-
edge: the PROforma approach. Artif Intell Med 1998, 14:157-181.

20. Bury J, Fox J, Sutton D: The PROforma guideline specification
language: progress and prospects.: ; Prague. ; 2000.

21. Peleg M, Tu S, Bury J, Ciccarese P, Fox J, Greenes RA, Hall R, Johnson
PD, Jones N, Kumar A, Miksch S, Quaglini S, Seyfang A, Shortliffe EH,
Stefanelli M: Comparing computer-interpretable guideline
models: a case-study approach. J Am Med Inform Assoc 2003,
10:52-68.

22. Sutton D, Fox J: Syntax and Semantics of PROforma. [http://
www.acl.icnet.uk/lab/PUBLICATIONS/proforma/proformaspec.pdf].

23. Schreiber G, Akkermans H, Anjewierden A, de Hoog R, Shadbolt N,
Van de Velde W, Bob W: Knowledge Engineering and Manage-
ment: The CommonKADS Methodology. 1st edition. , The
MIT Press; 2002:455.

24. Jackson P: Introduction to Expert Systems. 3rd edition. , Addi-
son-Wesley; 1998:542.

25. Williams B, Poulter NR, Brown MJ, Davis M, McInnes GT, Potter JF,
Sever PS, Mc GTS: Guidelines for management of hyperten-
sion: report of the fourth working party of the British Hyper-
tension Society, 2004-BHS IV. J Hum Hypertens 2004,
18:139-185.

26. Rumbaugh J, Jacobson I, Booch G: The Unified Modeling Lan-
guage Reference Manual. In Object Technology , Addison-Wesley;
2001:550.

27. Hederman L, Smutek D, Wade V, Knape T: Representing Clinical
Guidelines in UML: A Comparative Study. 2002:471-477.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1472-6947/6/20/prepub
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11677375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11677375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11677375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9748185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9748185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15561795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15561795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15561795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7705066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7956129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7956129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8930854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8930854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9670133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9670133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9670133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11079963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11079963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11825243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11825243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9357606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9357606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11185420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11185420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12807812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12807812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9779888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9779888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12509357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12509357
http://www.acl.icnet.uk/lab/PUBLICATIONS/proforma/proformaspec.pdf
http://www.acl.icnet.uk/lab/PUBLICATIONS/proforma/proformaspec.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15460739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15460739
http://www.biomedcentral.com/1472-6947/6/20/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Clinical guidelines
	Computer interpretable guideline representation languages
	PROforma
	Knowledge engineering principles
	Knowledge representation principles

	Methods
	Knowledge acquisition
	System design
	System implementation
	Evaluation

	Results
	Knowledge acquisition
	Logical adequacy
	Heuristic power
	Notational convenience
	Explanatory support

	System design
	Logical adequacy and heuristic power

	System implementation
	Logical adequacy
	Notational convenience
	Explanatory support

	Discussion
	Logical adequacy
	Heuristic power
	Notational convenience
	Explanatory support
	Methodology

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References
	Pre-publication history

